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Abstract. It is shown that equations X = ¢(X), in which the unknown
X is a set of natural numbers and ¢ uses operations of union, intersection
and addition S+ 7T = {m+n | m € S,n € T}, can simulate systems
of equations X; = ;(X1,...,X,) with 1 < ¢ < n, in the sense that
the solution of a system is encoded in the solution of an equation. This
implies undecidability of some properties of one-nonterminal conjunctive
grammars over a unary alphabet.
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1 Introduction

This paper is concerned with systems of equations, in which the unknowns are
sets of natural numbers, while the left- and right-hand sides use Boolean opera-
tions, as well as element-wise addition of sets defined as S+ T ={m+n|m €
S, n € T}. On one hand, such equations can be regarded as a generaliza-
tion of integer expressions, introduced in the seminal paper by Stockmeyer and
Meyer [13] and later systematically studied by McKenzie and Wagner [8]. On the
other hand, these equations are a particular case of language equations defined
over a unary (one-letter) alphabet.

Language equations, which have formal languages as unknowns, have recently
received much attention [7]. Their most well-known kind are systems of the form

X1 =o1(X1,...,X5)
: (*)
Xn=on(Xq,...,X,)

in which the right-hand sides ¢; may contain union and concatenation of lan-
guages, as well as singleton constants. These equations, first proposed by Gins-
burg and Rice [I], provide the most natural semantics for context-free grammars.

* Supported by MNiSW grants N206 024 31/3826 2006-2008 and N206 259035 2008—
2010.
** Supported by the Academy of Finland under grant 118540.
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If intersection is further allowed, then systems (ED represent comjunctive gram-
mars, which are a natural extension of the context-free grammars introduced
and studied by Okhotin [9/10].

The expressive power of conjunctive grammars over a unary alphabet has
been realised only recently, once Jez [3] constructed a grammar for the nonregular
language {a*" | n > 0}. This grammar can be equally regarded as a system of
four equations over sets of numbers, using union, intersection and addition, and
one of the questions raised by Jez [3] was how many variables are necessary to
obtain any non-periodic solution. This question was answered by Okhotin and
Rondogiannis [IT], who constructed a single univariate equation X = ¢(X) with
a non-periodic solution, as well as presented a class of sets of numbers that are
not representable by any such equations.

This paper generalizes the construction of Okhotin and Rondogiannis [11]. It
will be shown that for every unary conjunctive grammar, the languages generated
by all of its nonterminal symbols can be encoded together in a single unary lan-
guage generated by a one-nonterminal conjunctive grammar. This construction
implies that some undecidability and complexity results for unary conjunctive
grammars due to Jez and Okhotin [4J5] hold already for one-variable grammars.

Then consequences for decision problems for one-nonterminal unary con-
junctive grammars are studied. Several decidable and undecidable problems are
identified. In general, the complexity of such problems may differ from the com-
plexity in the case of unary conjunctive grammars with many non-terminals.

2 Conjunctive grammars and systems of equations

Conjunctive grammars generalize context-free grammars by allowing an explicit
conjunction operations in the rules.

Definition 1 (Okhotin [9]). A conjunctive grammar is a quadruple G =
(X,N,P,S), in which X and N are disjoint finite non-empty sets of terminal
and nonterminal symbols respectively; P is a finite set of grammar rules, each
of the form

A—-a&... &a, (where A€ N,n>1anday,...,an, € (XUN))
while S € N is a nonterminal designated as the start symbol.

The semantics of conjunctive grammars may be defined either by term rewrit-
ing [9], or, equivalently, by a system of language equations. According to the
definition by language equations, conjunction is interpreted as intersection of
languages, and the ***,

Definition 2 ([10]). Let G = (X, N, P, S) be a conjunctive grammar. The as-
sociated system of language equations is the following system in variables N :

A= mai forall Ae N
U N o )

A—ai1&...&a,€P i=1
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Let (..., La,...) beits least solution and denote Lg(A) := L4 for each A € N.
Define L(G) := Lg(S5).

The existence of a least solution with respect to componentwise inclusion
follows from the basic fixpoint theory. Moreover, it can be easily shown *** cite
?77*% that for a large class of systems of language equations there is a unique
e-free solution: a system of language equations is strict if there is no production
into € and no chain dependency. A strict system of language equations has a
unique e-free solution. *** cite? ***

An equivalent definition of conjunctive grammars is given via term rewriting,
which generalizes the string rewriting used by Chomsky to define context-free
grammars.

Definition 3 ([9]). Given a grammar G, consider terms over concatenation
and conjunction with symbols from X U N as atomic terms. The relation = of
immediate derivability on the set of terms is defined as follows:

— Using a rule A — a1& ... &ay,, a subterm A € N of any term ¢(A) can be
rewritten as p(A) = p(a1& ... &ay,).

— A congunction of several identical strings can be rewritten by one such string:
p(wk ... &w) = p(w), for every w € X*.

The language generated by a term ¢ is Lg(p) = {w |w € X*, ¢ =* w}. The
language generated by the grammar is L(G) = Lg(S) = {w|w € X*, S =* w}.

The question of whether conjunctive grammars can generate any non-regular
unary languages has been an open problem for some years [I0], until recently
solved by Jez [3], who constructed a grammar for the language {a*" |n > 0}. Let
us formulate this grammar as the following resolved system of four equations
over sets of numbers:

Ezample 1 (Jez [3]). The system

X, = ((X2+X2)0(X1 +X3)) U {1}
Xy = ((XG + XQ) n (Xl + Xl)) U {2}
X3 = ((X@ + XG) N (X1 + Xg)) U {3}
X6 = (X34 X3) N (X1 + X3))

has least solution X; = {i-4™ | n > 0}, for i = 1,2, 3, 6.

Sets of this kind can be conveniently specified by regular expressions for the
corresponding sets of base-k notations of numbers, which in this case are 10*,
20*, 30" and 120*, respectively. In the following, some parentheses in the right-
hand sides of equations shall be omitted, and the following default precedence
of operations shall be assumed: addition has the highest precedence, followed by
intersection, and then by union with the least precedence.

The construction in Example [I| essentially uses all four variables, and there
seems to be no apparent way to replicate it using a single variable. However, this
was achieved in the following example:
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Ezample 2 (Okhotin, Rondogiannis [I1)]). The univariate equation

X =[(X+X+11) N (X+X+22)] U [(X+X+1) N (X+X+9)]U
U[(X4+X+7) N (X+X+12)] U [(X+X+13) N (X+X+14)] U {56,113,181}

has the unique solution
S={4"-8|n>3}U{2-4"—15|n =2 3}U{3-4"—11|n > 3}U{6-4"—9|n > 3}.

This equation is actually derived from Example |1} and its solution encodes
the values of all four sets in Example [I} Each of the four components in §
represents one of the variables in Example [1| with a certain offset (8, 15, 11 and
9).

Note that the set from Example 2]is exponentially growing. It is known that
unary conjunctive grammars can generate a set that grows faster than any given
recursive set:

Proposition 1 (Jez, Okhotin [4]). For every recursively enumerable set of
natural numbers S there exists a system X; = @;(X1,...,X,) over sets of natural
numbers with the least solution X; = S;, such that the growth function of Sy is
greater than that of S at any point.

On the contrary, for univariate equations it has been proved that if a set grows
faster than exponentially (for example, {n!|n > 1}), then it is not representable:

Proposition 2 (Okhotin, Rondogiannis [11]). Let S = {n1,n2,...,n;,...}
with 0 < np < ng < ... < n; < ...be an infinite set of numbers, for which

23

liminf;_, rl 0. Then S is not the least solution of any equation X = ¢(X).

However, even though one-nonterminal conjunctive grammars cannot gener-
ate all unary conjunctive languages, it will now be demonstrated that they can
represent a certain encoding of any conjunctive language.

3 One-nonterminal conjunctive grammars

The goal is to simulate an arbitrary conjunctive grammar over {a} by a con-
junctive grammar with a single nonterminal symbol. The construction formalizes
and elaborates the intuitive idea of Example 2| making it provably work for any
grammar.

The first step towards the construction is a small refinement of the known
normal form for unary conjunctive grammars. It is known that every conjunctive
language over every alphabet can be generated by a conjunctive grammar in the
binary normal form, with all rules of the form A — B1Ch& ... &B,C,, withn > 1
or A — a. The following stronger form is required by the below construction.
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Lemma 1. For every conjunctive grammar G = (X, N, P, S) there exists a con-
Junctive grammar G' = (X, N', P',S") generating the same language, in which
every rule is of the form A — a with a € X or

in which the sets {B1,C1}, ..., {Bn,Cp} are pairwise disjoint.

Proof. If there is a rule with no intersection, that is, A — « for some nonterminal
A and a € (N U X)*, it can be replaced by a trivial intersection 4 — a&a.

Let m be the greatest number of conjuncts in the rules in P. Define m copies
of every nonterminal: N’ = N x {1,...,m}. Replace every rule

A— BlCl& ‘e &BgCg

with
(A,4) — (B1,1)(C1, )& ... &(By, £)(Cy, 0)

For every rule A — a in the original grammar, define a new rule (4,7) — a. Let
S’ = (S,1) be the new start symbol. The resulting grammar generates the same
language. O

Theorem 1. For every unary conjunctive grammar G =
({a},{A1,..., An}, P, A1) of the form given in Lemma 1| there exist num-
bers 0 < dy < ...<dp <p and an equation of the form

X=FulJNX+X+{e})

over a set of natural numbers X, with a unique solution S = \J;*, S;, where
S; = {np —d; | a” € Lg(Al)}

(**to be done: improve the form of the equation, mention that F is finite,
mention that each € is positive**)

Furthermore,

1. The numbers p and dy,...,d,, depend only on m.
2. The size of ¢ is polynomial in the size of G.
3. FEach subexpression to which the union is applied generates a subset of some

S

Let p=4"%2 and let d; = §+4i for every nonterminal A;. For every number
t € {0,...,p}, the set {np —¢t|n > 0} is called track number t. The goal of the
construction is to represent each set S; in the track d;. The rest of the tracks
should be empty.

For every rule A; — o, where a = Aj, Ay, & ... &Aj, Ay, , consider the follow-
ing expression over sets of numbers:

4
Pia(X) =X + X + (dj, +dy, — di).

t=1
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Define the following equation:

xX= U eexu U {p-d}

A;—a€eP A;—a€P

Now the task is to prove that the unique solution of this equation is S = (J, S;,
where S; = {np —d; | a"™ € Lg(A;)}.

Each time X appears in the right-hand side of the equation, it is used in the
context of an expression ¢; o(X). The proof of the theorem is based upon the
following property of these expressions.

Lemma 2. Let i,j,k, € {1,...,m} with {i,j} N{k,{} = &. Then
(S+S+di+dj)NS+S+dp+de) =(Si +5;+di +d;j)N(Sk + Se + di, + dy) .

Proof. As addition is distributive over union and union is distributive over in-
tersection,

(S+S+di+dj)N(S+S+dy+dp) =
=J S+ Sy +di+dy) n | Sk + Se +di +de) =
7;/7]’/ k/,j/
= U (Sy + Sj’ +d; + dj) N (Sk + Ser + di + dyp)
i/’jl)k/’jl

It is sufficient to prove that if {i’,j'} # {i,j} or {k',¢'} # {k,{}, then the
intersection is empty. Consider any such intersection

(Sir + Sy +d;i + dj) N (S + S +d +do) =
({np|a™ € L(Av)} —dir +{np | a" € L(Aj)} — dj + di + d;) 0
({npla"™ € L(Ap)} —dp +{npla”™ € L(Ap)} — de + di + dy)

and suppose it contains any number, which must consequently be equal to d; +
d; — dy — dj» modulo p and to dji + d¢ — dpr — dp modulo p. As each d; satisfies
£ > d, > &, both offsets are between —£ and £, and therefore they must be
equal to each other:

di+dj—di/—dj/:dk-i-dg—dk/—dg/.

Equivalently, d; +d; + dir +dp = di, +d¢ +dy + djr, and since each d; is defined
as & 4 4", this holds if and only if

Y7L/ R L UL S LT

Consider the largest of these eight numbers, let its value be d. Without loss
of generality, assume that it is on the left-hand side. Then the left-hand side is
greater than d. On the other hand, if no number on the right-hand side is d, then
the sum is at most 4 - % = d. Thus at least one number on the right-hand side
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must be equal to d as well. Removing those two numbers and giving the same
argument for the sum of 3, 2 and 1 summands yields that

{d;,d;,dps,de} = {di,de,dir, dj }.
Then, by the assumption that {i,j} N {k,{} = @,
{di,d;} ={di,dy} and {dp,dp} = {di,de},
and since the addition is commutative,
i=4, j=4, k=k and £=/.
Therefore,

(S+S+d;+dj)N(S+S+dy+dp) =
U (Si+ Sy +di+d;) 0 (Sk + Ser + di + dy) =

i3 k"5

(Si+Sj+di +dj) N (Sk+ Se + di + de),

which completes the proof.

Proof (Proof of Theorem . Let P = P, U Fy, where Py contains rules of the
form A; — a, while P; consists of multiple-conjunct rules. The equation is strict
and thus has a unique solution in the set of positive natural numbers, so it is
enough to show that S is a solution, that is,

S= U waS)u U {p-d}

A;—a€P; A;—a€Py

Consider each rule A; — o € Py with a = Aj, A, & ... &Aj, Ag,. Then
’ ¢

(Pi,a(s) = n(djt +dkt - dl) + S+S = m(djt + dkt - d’b) +Sjt + Skt

t=1

t=1

by Lemma |2 and it is easy to calculate that

e~

(djt + dkt - dl) + Sjt + Skt = {np - dl | a" € L(a)}

t=1
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Calculating further,
¢
()(dj, + dx, — di) + Sj, + Sk, =
t=1

¢
(\(ds, + di, — di) + {pn; — dj, | @™ € L(A;,)} + {pre — di, | @™ € L(Ay,)} =
t=1

¢
({p(n; +ni) — di | @™ € L(A;,),a™ € L(Ag,)} =
- ¢
(V{np—di |a™ € L(A;,) - L(A,)} =
. fp— di | a” € Lo)}.
Similarly for A; — a € P,
{p—di} ={np—d;|a" € L({a})}.
Altogether,

U Pia(S)U U {p—di} =

A;—a€eP; A;—a€P,
U( U wa®u U -l -
[ A, —a€Py A;—a€Py

U( U {np—di|a"eL(a)}U{np—di\a”GL(a)}) =

% A, —a€P;

U U {np—d;|a" € L(B)}.

i A;—B€EP

Since (..., L(A;),...) is the solution of the associated system of language equa-
tions, L(A;) = U4, .sep L(B), and hence the latter expression equals

U{np— d; I a” e L(Al>} = USZ = S,

?

which completes the proof.

Corollary 1. For every unary conjunctive language L C a*t there exist numbers
p=d =1 and a conjunctive grammar G = ({a},{S}, P, S), such that L(G) N
(aP)*aP~% = {a""~ |a" € L}.

Example of this transformation:

Ezxample 3. Consider the four-nonterminal grammar from Example[l] It satisfies
the condition in LemmdT} but it is not precisely in the binary normal form, as
it contains rules Ay — aa and A3z — aaa.
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However, these rules do not affect the general construction, and one can
extend the transformation of Theorem [I] to this grammar. The constants are
p = 4™+2 = 4096, d; = 516, dy = 520, d3 = 528 and dy = 544, and the
transformation yields an equation

X =[(X+X+524)N (X + X +528)] U [(X +X +544) N (X + X +512)]U
U[(X + X +560) N (X 4+ X +508)] U [(X + X +512) N (X + X +492)]U
U{3580, 7672, 11760}

with a unique solution ***,

Note that this equation can be transcribed as a conjunctive grammar

S — a52455&a52855 | a54455&a51255 | a56055&a50855 | a51255&a49255 | CL3580 | a7672 | a11760

generating the language ***.

4 Complexity of the membership problem

The most fundamental problem for every grammar, in particualr for a conjunc-
tive gramamar is the membership problem, for the grammar G and a word w
an answer, whether w € L(G) is expected. The complexity of this problem may
depend on the way word and grammar are encodeed, especially when w is a
unary word. We say that unary w = a' is compressed if it is encoed as a binary
string representing n. Also a conjunctive grammar (context-free grammar) with
a single non-terminal over a unary alphabet is in compressed form if conjuncts
in its production are encoded in binary, i.e. A¥a’ is encoded as a pair of binary
numbers (k, ¢). Compressed membership problem is a membership problem in
which the input word w is compressed and membership problem for grammar in
compressed form is a memebership problem in which the gramamar is in com-
presed form. In the follwoing it is shown that the compression of the word has
impact on the complexity of the membership problem in case of the conjunctive
grammars with one non-terminal even if the grammr is not compressed. On the
contrary, the complexity of membership problem for context-free grammar with
a single non-terminal remains in P for a compressed word or for a compressed
grammar. On the other hand, this problem is N P-complete when compression
of both input word and the grammar is allowed.
The following is known:

Proposition 3 (Jez, Okhotin [5]). There exists a EXPTIME-complete set of
numbers S C N, such that the language L = {a™ | n € S} of unary notations of
numbers from S is generated by a conjunctive grammar.

The problem stated as “Given a unary conjunctive grammar G and a number
n in binary, determine whether o™ € L(G)” is EXPTIME-complete.

To show that both results still hold for one-nonterminal unary conjunctive
grammars, it is sufficient to take the grammar generating L and to transform it
according to Theorem
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Theorem 2. There exists a EXPTIME-complete set of numbers S C N, such
that the language L = {a™ |n € S} is generated by a one-nonterminal con-
junctive grammar. The general membership problem for one-nonterminal unary
conjunctive grammars with input encoded in binary is EXPTIME-complete.

Proof. This problem clearly belongs to this complexity class, as it is decidable in
exponential time in more general case of systems of such equations [5, Th. 4.1].

Hardness follows from Theorem [1| as follows. It is known [5, Th. 4.1] that
there exists a system of equations X; = ¢;(X1,... Xx) with a least solution
(S1,...5k), in which S; is an EXPTIME-hard set.

By Theorem |[1| one can efficiently construct an equation Y = ¢(Y) with a
least solution S and numbers p,d > 1 such that n € Sy if and only if pn—d € S.
Hence the general membership problem for a system of equations polynomially
reduces to the general membership problem for a single equation. a

It is natural to ask, what is the complexity of the compressed membership
problem for unary context free grammars with one non-terminal — it is known,
that in case of many non-terminals it is NP-complete. Does this hold also for one
non-terminal? In the following it is shown that the answer to the above question
is yes, if we allow the productions of the grammar to be compressed (as well as
the input string) and no, if the grammar cannot be compressed.

Theorem 3. The fully compressed membership problem for one-nonterminal
unary compressed CFG is NP-hard.

Proof. 1t is known that the compressed membership problem for compressed
unary context-free grammars is in NP [2].

The NP-hardness is proved by reduction from the NP-complete Knapsack
problem. In its original Karp’s formulation the problem is stated as follows:
“Given integers b1,...,b, and z in binary notation, determine whether there
exist ¢1,...,¢, € {0,1} with X b;c; = 27.

Assume, without loss of generality, that z > max; b;

Based on the instance of the Knapsack problem, a grammar G and a string
a’ are constructed, such that a® € L(G) if and only if the given instance of the
Knapsack problem is positive.

Let m be the least power of two with m > max{z,2"} + 2. Let d;,o =
m2+2"1 and d; ; = m? +mb; +2'"1. Construct a context-free grammar G with
a set of rules {S — a0 S — adit i€ {1,...,n}} U{S — S"} and a string
anm’*+2m+(2" =1 (Clearly the size of G and a™™ +*m+(2"=1) i polynomial in the
size of the given Knapsack problem.

It is claimed that the numbers ci,...,c, € {0,1} with X7 ,b;c; = z exist
if and only if ¢"™ +2m+(2"~1) ¢ L(@). This will prove the NP-hardness and
establish the theorem.

& Suppose that there exist such cy,...c,. Then the string a
can be derived as follows:

nm2+zm+(2" -1)

S — §" — adl,cl Sn—l — ad1,c1 adz,c2 Sn—? — = adl‘ﬁ N .ad"mn’
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where
n n
Zdi,w = Z:(m2 +ebm 4+ 27 =nm? 4 2m + 27 — 1 = |w|.
i=1 i=1

@ Assume now that the string ™™ +*m+2" =1 can be derived by G. It is
claimed that the derivation of a™™ +*m+(2" 1) must be of the same general form
as in the previous part of the proof. This allows recreating the values ¢; out of
the choices between d; o and d; ;.

Claim 1. In the derivation of @™ +*m+2" =1 the production S — S™ is used
exactly once.

Proof. Suppose that the rule S — S™ was used at least twice. Then there were
at least 2n — 1 productions of the form into terminal symbols, each generating
string of length greater than m?2. Then the produced string is of length greater
than (2n — 1)m? = nm? + (n — 1)m? > nm? + zm + 2" — 1 = |w|. At the same
time, amm*+=m+(2"=1) cannot be derived without using the rule S — S™, as each
d;o and d; 1 is at most m? + (max; b;)m + 2"~ < nm? + zm + 2" — 1.

Claim 2. Tn derivation of a™™ +#m+(2"=1) after the production A — A™ for each
i exactly one of the productions S — a% or S — a%' was used.

Proof. By Claim [I] there are exactly n productions into terminal symbols, i.e.
a*',...,a"", where for each j holds z; € {d;0,d;1|%=1,...,n}. As the string

nm?+zm4(2"

a —1 is derived, we obtain that

n
ij =nm? +mz+2" — 1.
j=1

Let us look at the numbers d; o,d; 1 and nm? 4+ mz + 2" — 1 written in binary.
Then on the last n bits nm? + mz + 2™ — 1 has only 1’s and for each i numbers
di,0, d; 1 have exactly it bit set to 1 and each other to 0. So each x; has exactly
one non-zero bit among the last n bits. Thus it cannot hold that any two x; and
x;» have the same considered non-zero bit. Hence for each ¢ exactly one of d; o,
d; 1 is among {z; |j=1,...,n}. O

Using Claim 2] ¢;’s can be defined: ¢; = 0 if the production S — a%° was
used and ¢; = 1 if the production S — a%1. Then a™ n+m¥iieibi+2"—1 —
a™ntEm+2" =1 a1 hence 2 ,c;b; = z. Hence the answer for the instance of the
Knapsack problem is YES. O

This result can be compared with complexity of membership problem, when
the grammar or the string is not compressed.

Lemma 3. Let G = ({a},{S}, P, S) be a one-nonterminal context-free grammar
with m rules and with the longest right-hand side of a rule of length k. Then L(G)
is periodic starting from 2k*m + k with a period at most k2.
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Proof. Let P = {S — a*S*}™  with £;,k; > 0.

Claim 3. For any productions S — S*ia for k; > Oand S — a%. Then p =
(ki — 1)¢; + £; < 2k? is a period of L(G).

Proof. Given a derivation of a string a”, one can derive a string of length n +
(ki — 1)¢; + £; by first using the production S — S*¥a‘, then substituting each
of k; — 1 copies of S by a%, thus obtaining Sa®—D%+¢ and deriving a™ from
S.

Hence, for each 0 < i < p — 1 it is enough to find the smallest n; such that
a™i?* € L(G) or find out that no such n; exists. We show that n; < 7, where n
is polynomial in the size of the grammar G.

We say that a production S — S*a is of arity k;.

Claim 4. Let {q1,...,qm} be a set of natural numbers. Then there exists a
derivation of G in which every i*" production S — a%S% is used exactly ¢;
times if and only if

1—|—Zqi(ki—1)20

Proof. & Rule of arity k& > 1 creates k — 1 new copies of S, each application
of rule of arity 0 destroys one copy S. Also there is one additioanl non-terminal
— the starting one. Since after the derivation there is no S left in the string, it

holds that
1+ Y qilki—1)— Y ;=0
itk >1 i:k; =0
and hence the claim follows.
& Assume the equality holds. Without loosing generality we may assume
that the productions of arity 0 are the last one with respect to the enumeration.
Then a derivation is constructed as follows:

S =0 gaihr glta(ki—1) a2 jaibitaalz gltai(ki—1)+aa(ka—1)

— = grim Gl I ai(ki—1) — 30 4t

with the last equality following from the assumption. Since rules of arity greater
than 0 do not decrese the number of copie sof S in the string, then a rule with
arity greater than 0 can always be applied. Rules of arity 0 can be applied, as
in the end no copy of S remains.

O

Claim 5. Let a"P*t € L(G), fix its derivation. If there is a production S — S*a*
used at least p times in the derivation and a production S — a’ used at least
(k — 1)p in the derivation then a string ap(n=(E=DE=O+i ghorter than o™t can
also be derived.

Proof. This follows from the Claim [] — we can produce a string with p less
productions S — S*a’ and (k — 1)p less productions S — a’ . O
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Let k be the length of the largest concatenation of symbols (terminals and
non-terminals) in productions. Consider the a™?™* € L(G) such that n; is as
small as possible. We show that the derivation of a™?** cannot use more than
2kmp +m(p — 1) productions, and thus the length of a™?*% is at most (2kmp +
m(p — 1))k. Suppose it uses more. Then one of the following holds:

1. it uses more than m(p — 1) productions of arity 1
2. it uses more than kmp productions of arity at least 2
3. it uses more than kmp productions of arity 0

We show that in each case it cannot be the shortest such string.

If it uses more than m(p — 1) productions of arity 1 then one of them is used
at least p times and all those p productions can be removed and shorter string
derived, by Claim

If it uses more than kmp production of arity 2 or more then at least one
production of arity 2 or more is used kp times. By Claim [ applied to this
derivation, there must be at least kmp + 1 productions of arity 0, hence one of
them appears at least kp 4+ 1 times. Then, again, Claim [5] is applicable, and it
yields a shorter string, which is a contradiction.

If there are kmp productions of arity 0 then by Claim [4] there are at least mp
productions of arity greater than 0, thus one of them occurred at least p times,
and, as in the previous case, a contradiction is obtained via Claim
Hence n < w < 2k%m + k, which is polynomial in the size of
the input grammar. O

Theorem 4. The compressed membership problem for one-nonterminal unary
CFGs is in NLOGSPACE.

Proof. Firstly an algorithm for uncompressed membership problem is given. :

Note that we may assume that there are no € prodcuctions in the grammar.
If there were then we may omit them and construct grammar G’ with produc-
tions A — Aia% whenever k; > k; and A — Akigli s a production of the
grammar G. Clearly L(G) = L(G")U{e} and this construction can be simulated
in LOGSPACE — if we want to check that A — AFia% is a production of G’ it is
enough to find a production in G A — A*ia% for k; > k.. The non-determinsitic
algorithm deriving a™ from G’ needs only to remember the current number of
terminals and non-termianls in the derived string. Moreover, as soon as there
are more than n of them we may reject, as clearly the derived word is longer.

For (2), note that while the grammar is compressed, it cannot have produc-
tions into very long concatenations of non-terminals or terminals — if the string
a™ then concatenations of more than n symbols cannot derive this string. Hence
we can remove such long productions and then decompress the description of
the grammar — each of the productions is of length n at most, thus the growth
of size of the grammar is quadratic at most. Thus the problem was reduced to
(1). This reduction can be done in LOGSPACE, so also in this case the problem
is in NLOGSPACE.
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Case (3) follows from Lemmg3| — the following simple algorithm is guaran-
teed to run in polynomial time:

If there is no termianting rule then reject, as such grammar cannot produce
any word. If there are no non-terminating rules then check, whether a™ is one
of the word appearing on the right-handside of the produciton. This ends trivial
cases.

Take any terminating rule S — @’ and non-terminating rule S — S*af.
Then p = (k; — 1)¢; + ¢; is a period and 7 < 2k*m + k is a periodicity bolund.
If n < p(7 + 1) then @™ is short and we can check whether o™ € L(G) by an
algorithm running in time polynomial in n. If n > p(n) then let n = n'p + 1.
Since n is larger than the periodicity bound then a™ € L(G) if and only if
aP"t? ¢ L(G). Thus we can check whether a?"+? € L(G) by an algorithm running
in time polynomial in 7.

TEST-MEMBERSHIP(G, a™)

1 if there is no rule S — a%
2 then return NO
3 if there is no rule S — S*¥iab with k; > 0
4 then return, whether n = ¢; for some
5
6 let S — S*a% for k; >0 and S — a%% be rules of G
7 let p«+ (ki —1)¢; + ¢; be a period
8 let 1 « 2k>m + k be a periodicity bolund
9
10 ifn<(p+1)n
11 then return TEST-MEMBERSHIP-SIMPLE(G, a™), i.e. a™ is short.

12 ifn>(p+1)n

13 thenlet n=n'p+ifor0<i<p

14 return TEST-MEMBERSHIP-SIMPLE(G, a?"+7),
15 as a™ is longer than periodicity bound.

By Claim [3|p is a period. By Lemma [3]if n > (p + 1)@ then it is in the periodic
part of the language and hence a™ P** € L(QG) if and only if a"?¢ € L(G). O

5 Decision problems

(demagogy TBW: the membership problem considered, now some other)

Let us now consider the decidability of basic properties of one-nonterminal
unary conjunctive grammars. In the case of multiple nonterminals, most basic
problems are undecidable:

Proposition 4 (Jez, Okhotin [4]). For every fized unary conjunctive lan-
guage Lo C a*, the problem of whether a given conjunctive grammar over {a}
generates the language Lo is II1-complete.
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[ uncompressed [ compressed [ fully compressed
Context-free
general case P-complete PSPACE-complete [12] n/a
Y ={a}, any N P-complete NP-complete [2] NP-complete [2]
Y ={a}, N={S}|/in NLOGSPACE| in NLOGSPACE NP-complete
Conjunctive
general case P-complete EXPTIME-complete [5] n/a
Y ={a}, any N P-complete EXPTIME-complete [5]|EXPTIME-complete [5]
Y =A{a}, N={S} in P EXPTIME-complete EXPTIME-complete [5]

Table 1. Complexity of general membership problems.

equality to any fixed ultimately periodic set is clearly decidable: substitute,
check. but even more:

Theorem 5. There exists an algorithm, which, given a one-nonterminal con-
junctive grammar G = ({a},{S},P,S) over a unary alphabet and a finite
automaton M over an alphabet X = {0,1,...,k — 1}, determines whether
L(G) = {a" | the k-ary notation of n is in L(M)}.

*** the notation is not satisfactory! *** *** introduce H here? ***

Lemma 4. Let A and B be NFAs over an alphabet X, = {0,1,...,k — 1},
with L(My) N 0X% = L(M3) N 0Xy = &, let A and B have m and n
states, respectively. Then there exists and can be effectively constructed a
(2mn + 2m + 2n + 1)-state NFA over X}, which recognizes the language
{the k-ary notation of n1 + no | the k-ary notation of n,; is in L(M;)}.

The same method can be elaborated to characterize equality to any given
finite or co-finite language. By this characterization, both problems are clearly
decidable. However, the more general problem of equivalence of two grammars
is undecidable.

Theorem 6. The equivalence problem for one-nonterminal unary conjunctive
grammars is I -complete.

Proof. The proof is by reduction from the equivalence problem for unary con-
junctive grammars with multiple nonterminals. Two grammars are combined
into one, the construction of Theorem [1|is applied, and then the start symbols
of the two grammars are exchanged and the construction is applied again. The
two resulting one-nonterminal grammars are equivalent if and only if the original
grammars generate the same language.

Before approaching the equivalence problem for one-nonterminal conjunctive
grammars, let us establish the undecidability of the following technical problem:
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Claim 6. The problem of testing whether for a given conjunctive grammar G =
({a}, N, P, S) with two designated nonterminals S and S’, Lg(S) = Lg(5'), is
undecidable.

It is known that the problem of whether two unary conjunctive grammars
generate the same language is undecidable. Let G; = ({a}, P, N1,S1) and
G2 = ({a}, Py, N3, S3) be any two conjunctive grammars over {a}. Assume, with-
out loss of generality, that N; N No = @. Construct a new conjunctive grammar
G = ({CL},Pl U PQ,Nl @] NQ,Sl). Then Lg(Sl) = L(Gl) and LG(SQ) = L(GQ),
and therefore testing the equality of Lg(S1) and L (S2) solves the equivalence
problem for G; and Gs.

Now this technical problem may be easily reduced to the equivalence prob-
lem for one-nonterminal conjunctive grammars over {a}. Let a grammar G =
({a},{A1, As, ..., A}, P, Ay) be given, and assume without loss of generality
that it is of the form required in Lemmall} it is asked whether L (A4;) = La(As).
Construct a one-nonterminal unary conjunctive grammar G’ that encodes G ac-
cording to Theorem [I] with

L(G") = {a"™ % | a" € Lg(A)} U {a™~% | a" € Lg(As)} U U{a"p_d" |a™ € La(As)}.
i>3

Next, the same transformation is applied to the grammar G =

({a},{Aa, A1, A3, ..., Ap}, P, Ag), with nonterminals A; and A, exchanged. The

values of p,dy, . ..,d,, are the same, as they depend only on m, so the generated

language is

L(G") = {a" % |a" € Le(A1)} U {a™ % | a" € La(An)} U | J{a™

i>3

a" € La(A)).

Clearly, the two languages are the same if and only if L (A1) = La(Asg). O

Theorem 7. The co-finiteness problem for one-nonterminal unary conjunctive
grammars is Xy -complete.

Proof. The X1-hardness of the co-finiteness problem is established by a reduction
from the emptiness problem for unary conjunctive grammars with unrestricted
number of nonterminals, which is Xy-hard by Proposition[d] As before, to shorten
the notation we focus on equations over sets of numbers.

(***handle the small difficulty with e in L(Gg)***)

Let G be a unary conjunctive grammar with starting symbol A;. Construct
a grammar G by introducing an additional non-terminal A, with the same set
of productions as A;. It is easy to see that Lg(A1) = Lg(A2) = Lg,(A1). Then
turn G into equation over sets of natural numbers X = ¢(X) by Theorem [1| and
let S; = {np—d; |n € Lg(A;)}, as promised by Theorem [I} Now turn ¢ into ¢’
by introducing another term to ¢’

p—1
¢'(X) =p(X)U | J(X+dr+i 0 X+dy+i).
1=0
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Claim 7. If L(Gy) = @ then the unique solution S’ of ¢’ is the same as the
unique solution S of ¢ and it is not co-finite.

Proof. Tt is claimed that in this case each term S’ +d; +iN S’ +dy + i is empty.

Suppose the contrary. Consider the smallest number n € Uf;ol (8" +di +
t NS’ + dy +t). Then on all smaller numbers S and S’ coincide. In particular,
ifne S +di+tNS +dy+tthenalson € S+dy +tNS+dy+t, as the
numbers used to produce n on the right-hand side of the equation are smaller
than n. Now, by calculations similar to those in Lemma 2] it will be proved that
ifneS+d+tNS+dy+t, thenne Sy +di +tNSy+dy+t.

By distributivity,

S+di N S+dy = U(Si +dp) N U(Sj +d2) = U(Sl +di) N (S5 + da),

i J ,J

and the value of each subexpression is

(Si+d1)ﬂ(5j+d2) = ({np|n S LG(Ai)}—di—l—dl)ﬁ({nMn S Lg<Aj)}—dj+d2>.

Since dy,ds,d;,d; € {1,...,4 — 1}, the differences —d; 4 d1, —d; + d3 are in
{=&+1,-%+42,..., 2—1}, and thus any number that belongs to this intersection
is equal modulo p both to di — d; and to d2 — d;. Accordingly,

44 =47 -,

which is true only for i = 1 and j = 2. Therefore, both S; and S5 are nonempty,
which yields a contradiction, as S; = So = @ by the assumption.

The contradiction obtained proves that all the terms S’ +dy +tNS' +dy +1
are empty, and thus the unique solution S’ of X = ¢/(X) satisfies the equation
X = ¢(X), and hence must be equal to S. For the definition of S according to
Theorem [T} it is easy to see that it is never co-finite. O

Claim 8. If a™ € L(Gyp) for n > 1, then every number greater or equal to pn is
in §’, and thus S’ is co-finite.

Proof. By Theorem pn—dy,pn—ds € S, and accordingly pn—dy,pn—ds € S,
since S C §’.

Let m = pn’ + 1 for some 0 < i < p and n’ > n. By an induction on n’ it will
be proved that m € S’. If n’ = n then, as stated above, pn’ — dy,pn’ — ds € 5,
and if n’ > n, then pn’ — dyg,pn’ — dy € S by the induction assumption. In
each case m is produced by the subexpression X +d;+i N X +dy+i as follows:
pn' +i=pn' —di+di+i€ S +di+i,pn’+i=pn' —dy+do+i €S +dy+i
and thusme 8"+ di1 +iNS +da+i C (5= 5" 0

It follows from Claim m and Claim [§] that L(Gp) is non-empty if and only
if the solution of X = ¢(X) is co-finite, which shows the correctness of the
reduction. O
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Theorem 8. The finiteness problem for one-nonterminal unary conjunctive
grammars is X1-complete.

Proof. To see that the problem is in X; consider the following nondetermin-
istic Turing machine that tests whether a given conjunctive grammar G =
({a},{S}, P,S) generates a finite language. The machine starts with guessing
a finite language F' C a* and then uses the method of Theorem [§] to check
whether L(G) = F.

The XY;-hardness is shown by reduction from the problem of whether a given
unary conjunctive grammar G = ({a}, {A1,..., A}, P, A1) generates a language
other than a™. This problem is X;-complete, because testing whether G gener-
ates a™ is known to be a IT;-complete problem [4, Thm.4].

Assume without loss of generality that G contains a nonterminal that gener-
ates an infinite language and that G is of the form given in Lemma [I] By Theo-
rem [I] there exist numbers 1 < d; < ... < d, < p, and a one-nonterminal gram-
mar Gy = ({a}, {S}, P1, S) generating the language {a"?~% |a™ € Lg(A;)} can
be constructed. Accordingly, {a"?~% |n > 1} C L(G)) if and only if L(G) = a*.

Note that, according to the theorem, for each rule

S — a"8S8& ... &a*SS (1

~—

of this grammar there exists a number i with L(a*SS&...&a’*SS) C
{a"=% | n > 1}. Let such a rule be called an i-rule. Also note that L(G)
is always infinite, because of a nonterminal generating an infinite language.

Now construct a new grammar Go = ({a}, {S}, P, S), where P, contains all
“short” rules of GG1, as well as a “long” rule

S —a"18S& ... &a'* SS&aPT g (2)

for each i-rule .

Clearly, L(G2) C L(G1), as every rule in P, is a more restrictive version of
some rule from P; containing an extra conjunct, and thus every derivation in G»
can be simplified down to a derivation of the same string in G;. The goal of the
additional conjunct is to make the membership of a"?~% in L(G9) a necessary
condition for generating the number a(»+1VP=di In this way, if any number in
track d; is missing, then no larger numbers will be generated, and the language
will be finite.

Note that the grammar G5 inherits the property of GGy that a rule gener-
ates a subset of {a"?~% | n > 1}, for d; given in the last conjunct. ***check***
***put this to a better place***

Formally, it is claimed that G5 generates an infinite language if and only if
{a"P=% | n > 1} C L(GY).

& Assume that {a"P~% |n > 1} C L(Gy), that is, every string a™?~% with
n > 1isin L(Gy). It is claimed that L(G1) C L(G2) (as the converse inclusion
is known, this would show the equality of these languages).

Suppose the contrary, that L(Gs) \ L(G1) # @, and let a™?~% with n > 1
and 1 < ¢ < m be the shortest string in L(G;) that is not in L(Gs). This
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string must be produced by a long rule of G;. because all the short rules of
G1 are in G4 as well, and therefore n > 2. Consider the i-rule by which
a™~4i is generated. Then a"?~% € a% L(G1)? and hence a"?~% € a% L(G3)?,
as £; > 1 and L(Gy) and L(G2) do not differ on strings shorter than a"?~4:. The
number (n—1)p—d; is positive, as n > 2, and thus the string a(n=Dp—di g well-
defined and for the same reason, a(»~DP~% ¢ L(G,), L(G5), and, accordingly,
a4 ¢ gPtd=di [(Gy). Therefore, a™?~% is generated in G5 by the rule (2)
corresponding to , which contradicts the assumption.

& Conversely, if {a"?~% |n > 1} ¢ L(G), then there is a number n > 1
with a"?~% ¢ L(G1), and hence with a"?~% ¢ L(Gy) (as L(G2) € L(G1)). Now
the claim is that no string longer than a™~% is in L(G>).

Let a"'?~% € L(Gy) for some n’ > n and 1 < i < m be the shortest string of
length greater than np — d; generated by G, and let a”'P~di be generated by an
i-rule (2). According to the last conjunct of this rule, a?~% € aP+h =i [(Gy)
and hence o™ ~DP~4 e [(Gy). Now if n’ — 1 = n, then this does not hold by
assumption, and if n’ — 1 > n, then a(m'=Dp=di jg 5 string shorter than qn'P=di
satisfying the assumptions, and in both cases a contradiction is obtained.

The above claims imply that L(Gz) is finite if and only if L(G) # a™, which
completes the reduction.

reference to general CF: perhaps Cudia.

[equiv. to reg. Lo[ equivalence finiteness co-finiteness
Context-free
general case undecidable undecidable decidable  |undecidable(?)
Y ={a}, any N decidable decidable decidable decidable
Y ={a}, N={S}| decidable decidable decidable decidable
Conjunctive
general case undecidable undecidable undecidable | undecidable
Y ={a}, any N |IIi-complete [4] |II:-complete [4]|/undecidable [4]| X'i-complete
Y ={a}, N={S}| decidable II,-complete | ¥;-complete | X1 -complete

Table 2. Decision problems for grammars over {a}.

References

1. S. Ginsburg, H. G. Rice, |“Two families of languages related to ALGOL” Journal
of the ACM, 9 (1962), 350-371.
2. D. T. Huynh, “Commutative grammars: the complexity of uniform word prob-
lems”, Information and Control, 57:1 (1983), 21-39.

A. Jez,|“Conjunctive grammars can generate non-regular unary languages”|, Inter-

national Journal of Foundations of Computer Science, 19:3 (2008), 597—615.

A. Jez, A. Okhotin, “Conjunctive grammars over a unary alphabet: undecidability’

and unbounded growth”, Theory of Computing Systems, to appear.



http://dx.doi.org/10.1145/321127.321132
http://dx.doi.org/10.1016/S0019-9958(83)80022-9
http://dx.doi.org/10.1016/S0019-9958(83)80022-9
http://dx.doi.org/10.1142/S012905410800584X
http://dx.doi.org/10.1007/s00224-008-9139-5
http://dx.doi.org/10.1007/s00224-008-9139-5

20

10.

11.

12.

13.

Artur Jez and Alexander Okhotin

A. Jez, A. Okhotin, |“Complexity of equations over sets of natural numbers”] 25th
Annual Symposium on Theoretical Aspects of Computer Science (STACS 2008,
Bordeaux, France, 21-23 February, 2008), 373-383.

A. Jez, A. Okhotin, |“On the computational completeness of equations over sets
of natural numbers”| 35th International Colloquium on Automata, Languages and
Programming (ICALP 2008, Reykjavik, Iceland, July 7-11, 2008), 63-74.

M. Kunc, |“What do we know about language equations?”, Developments in Lan-
guage Theory (DLT 2007, Turku, Finland, July 3-6, 2007), LNCS 4588, 23-27.
P. McKenzie, K. W. Wagner, |“The complexity of membership problems for circuits
over sets of natural numbers”, Computational Complezity, 16 (2007), 211-244.

A. Okhotin, “Conjunctive grammars”, Journal of Automata, Languages and Com-
binatorics, 6:4 (2001), 519-535.

A. Okhotin, “Nine open problems for conjunctive and Boolean grammars”, Bulletin
of the EATCS, 91 (2007), 96-119.

A. Okhotin, P. Rondogiannis, “On the expressive power of univariate equations
over sets of natural numbers”| IFIP Intl. Conf. on Theoretical Computer Science
(TCS 2008, Milan, Italy, 8-10 September, 2008), IFIP vol. 273, 215-227.

W. Plandowski, W. Rytter, “Complexity of language recognition problems for com-
pressed words”, in: J. Karhumaéki, H. A. Maurer, G. Pdun, G. Rozenberg (Eds.),
Jewels are Forever, Springer, 1999, 262-272.

L. J. Stockmeyer, A. R. Meyer, “Word problems requiring exponential time”|
STOC 1973, 1-9.


http://drops.dagstuhl.de/opus/volltexte/2008/1319/
http://dx.doi.org/10.1007/978-3-540-70583-3_6
http://dx.doi.org/10.1007/978-3-540-70583-3_6
http://dx.doi.org/10.1007/978-3-540-73208-2_3
http://dx.doi.org/10.1007/s00037-007-0229-6
http://dx.doi.org/10.1007/s00037-007-0229-6
http://dx.doi.org/10.1007/978-0-387-09680-3_15
http://dx.doi.org/10.1007/978-0-387-09680-3_15
http://dx.doi.org/10.1145/800125.804029

One-nonterminal conjunctive grammars over a unary alphabet 21

A State complexity of symbolic addition

Lemma [4] Let A and B be NFAs over an alphabet X}, = {0,1,...,k — 1},
with L(M;) N 00X} = L(M;) N 0X; = o, let A and B have m and n
states, respectively. Then there exists and can be effectively constructed a
(2mn + 2m + 2n + 1)-state NFA over Y, which recognizes the language
{the k-ary notation of n; + ns | the k-ary notation of n; is in L(M;)}.

Proof (sketch). The new NFA has four types of states defined as follows:
(I) Each state q;‘}-f corresponds to A in state i, B in state j and carry ¢ (where
¢ is 0 or 1). The initial state is q()‘})% . The following diagram illustrates this case:
c

<-A(Q)—— x x x x X

<B(D--yyvyvyy

The string zzzzz has been read, and the NFA has guessed its representation
as xxzrxx B yyyyy, where A goes to ¢ by zzxxx and B goes to j by yyyyy. If
¢ =1, then zzxxxx Byyyyy = 1zzz22.

For all digits z,y € {0,...,k — 1}, such that A may go from ¢ to i’ by x and
B may go from j to j by y, the new automaton has a transition from qéf to
qﬁjB,c, by z +y+ ¢ mod k, where ¢/ = (x + y + ¢)/k rounded down.

(IT) If the automaton B is no longer running (that is, the second number is
over), while A still produces some digits, this case is implemented in states g},
where 7 is a state of A and c is a carry:

c
<-A(Q)—— x x x x X

For every state qf}cB, such that j is an accepting state of B, and for every

digit = € {0, ...,k — 1} there is a transition from in}f to qﬁc, by x + ¢ mod k,

where ¢ = (z + ¢)/k rounded down (this is the case when the second number
has just finished).

For every ¢;: and for every z, there is a transition from q{}c, by  +c¢ mod k,
where ¢/ = (z 4 ¢)/k rounded down.

(IIT) Symmetrically, there is a group of states qﬁ, which correspondings to
the case when the first number has ended.

(IV) qace 1s a dedicated accepting state with no outgoing transitions.

Other accepting states are the following: for every i accepting in A and j
accepting in B, qz‘-;‘-OB , qz‘% and qfé are accepting in the new automaton, while

ql‘-‘}f , ¢} and qul have transitions by 1 to gacc.
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This completes the construction.
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