ON THE EVALUATION OF POWERS*

ANDREW CHI-CHIH YAO†

Abstract. It is shown that for any set of positive integers $\{n_1, n_2, \dots, n_p\}$, there exists a procedure which computes $\{x^{n_1}, x^{n_2}, \dots, x^{n_p}\}$ for any input x in less than $\lg N + c \sum_{i=1}^{p} [\lg n_i/\lg \lg (n_i + 2)]$ multiplications for some constant c, where $N = \max_i \{n_i\}$. This gives a partial solution to an open problem in Knuth [3, § 4.6.3, Ex. 32] and generalizes Brauer's theorem on addition chains.

Key words. addition chains, Brauer's theorem

1. Introduction. An addition chain (of length r) is a sequence of r + 1 integers $a_0, a_1, a_2, \dots, a_r$ such that (i) $a_0 = 1$ and (ii) for each $i, a_i = a_j + a_k$ for some $j \leq k < i$. It is clear that, for any r and any set of integers $\{n_1, n_2, \dots, n_p\}$, there exists an addition chain of length r which contains the values n_1, n_2, \dots, n_p , if and only if there exists a procedure which, for any input x, computes $\{x^{n_1}, x^{n_2}, \dots, x^{n_p}\}$ in r operations using only multiplications. A theorem by Brauer [1], [3, pp. 398–418] states that, for any n, there exists an addition chain of length $1 \leq n + O(\lg n/\lg \lg n)$ which contains the value n; this implies the existence of a corresponding procedure to compute x^n in $\lg n + O(\lg n/\lg \lg n)$ multiplications. Furthermore, it was shown by Erdös [2], [3, pp. 398–418] that the above result is asymptotically with probability 1 nearly the best possible. In an open problem posed in Knuth [3, § 4.6.3, Ex. 32], it is asked if there are fast procedures to compute $\{x^{n_1}, x^{n_2}, \dots, x^{n_p}\}$ for $p \geq 2$. This problem cannot be solved by a direct extension of the technique used by Brauer in the proof of his theorem.

In this paper we show that for any positive integers n_1, n_2, \dots, n_p , there exists a procedure using only multiplications which, for any input x, computes $\{x^{n_1}, x^{n_2}, \dots, x^{n_p}\}$ in $\lg N + \operatorname{constant} \times \sum_{i=1}^{p} [\lg n_i/\lg \lg (n_i + 2)]$ multiplications where $N = \max_i \{n_i\}$. This gives a solution to Knuth's problem and leads to a corresponding theorem on addition chains which generalizes Brauer's theorem mentioned earlier.

2. Definition. Let e_i , $1 \leq i \leq p$, and f_j , $1 \leq j \leq q$, be positive integers. We shall say that $\{x^{e_1}, \dots, x^{e_p}\}$ is computable from $\{x^{f_1}, \dots, x^{f_q}\}$ in r multiplications $(r \geq 0)$ if there exists a set of r positive integers, $\{f_{q+1}, \dots, f_{q+r}\}$, such that

(i) for all $i = q + 1, \dots, q + r$,

 $x^{f_i} = x^{f_j} \cdot x^{f_k}$ for some $j \leq k < i$.

(ii) $\{x^{e_1}, \cdots, x^{e_p}\} \subset \{x^{f_1}, \cdots, x^{f_{q+r}}\}.$

¹ lg is logarithm to the base 2.

^{*} Received by the editors August 29, 1974.

[†] Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801. This research was supported by the National Science Foundation under Grant GJ-41538.

Since the exponents are added when two powers of x are multiplied, the above definition is a natural generalization of the definition of addition chains (cf. § 1). The exponents appearing in $\{x^{f_1}, \dots, x^{f_q}\}$ correspond to a set of numbers initially available in the chain, as opposed to a single number, 1, in the earlier definition.

3. The computation of $\{x^{n_1}, \dots, x^{n_p}\}$. The following lemma is well known [3, pp. 398–418).

LEMMA 1. For any integer i > 0, $\{y^i\}$ is computable from $\{y\}$ in at most $2\lfloor \lg i \rfloor$ multiplications.

Proof. Let the binary representation of *i* be

(1)
$$i = \sum_{j=0}^{v} b_j \cdot 2^j$$

where $v = \lfloor \lg i \rfloor$. Then,

(2)
$$y^i = \prod_{b_j=1} y^{2^j}.$$

Thus, we can first compute $y^2, y^4, y^8, \dots, y^{2^v}$ sequentially in v multiplications and then compute y^i by (2) in no more than v multiplications. The total number of multiplications is no greater than 2v. \Box

THEOREM 2. For any integers m, n where $0 < m \leq n$, $\{x^m\}$ is computable from $\{x, x^2, x^4, x^8, \dots, x^{2^{\lfloor \lg n \rfloor}}\}$ in less than $c \lg n/\lg \lg (n + 2)$ multiplications for some constant c.

Proof. Assume $n \ge 4$. Define the following quantities:

(3)
$$k = \lceil (\lg \lg n)/2 \rceil,$$

$$(4) D = 2^k.$$

(5)
$$t = \lfloor \log_D n \rfloor,$$

Let the D-ary representation of m be

$$m=\sum_{j=0}^t a_j D^j,$$

where

(6)
$$0 \le a_i \le D - 1$$
 for $j = 0, 1, \dots, t$

We partition the set of integers $\{0, 1, \dots, t\}$ into D disjoint subsets $S(0), S(1), \dots, S(D-1)$ by letting

$$S(i) = \{l|a_l = i\}$$
 for $i = 0, 1, \dots, D - 1$.

It follows from (6) that

(7)
$$m = \sum_{i=1}^{D-1} i \cdot \left[\sum_{l \in S(i)} D^{l}\right] = \sum_{i=1}^{D-1} i \cdot m_{i},$$

where

(8)
$$m_i = \sum_{l \in S(i)} D^l$$

From (7) and (8), we obtain the following two equations:

(9)
$$x^{m_i} = \prod_{l \in S(i)} x^{D^l}$$
 for $i = 1, 2, \dots, D - 1$,
(10) $x^m = \prod_{i=1}^{D-1} (x^{m_i})^i$.

Since all the x^{D^1} in (9) are available in the set $\{x, x^2, x^4, x^8, \dots, x^{2^{\lfloor \lg n \rfloor}}\}$ we can construct a procedure to compute x^m as follows.

Step 1. For $i = 1, 2, \dots, D - 1$ do the following:

(a) Compute x^{m_i} from (9) in fewer than |S(i)| multiplications.

(b) Compute $(x^{m_i})^i$ in at most $2|\lg i|$ multiplications (by Lemma 1).

Step 2. Compute x^m from (10) in D - 2 multiplications.

Let M be the total number of multiplications in the above procedure. Then,

(11)
$$M < \sum_{i=1}^{D-1} (|S(i)| + 2\lfloor \lg i \rfloor) + D - 2$$
$$\leq \sum_{i=1}^{D-1} |S(i)| + 2(D-1)\lg(D-1) + D - 2$$

Noting that the S(i)'s form a partition of the set $\{0, 1, \dots, t\}$, we obtain from (11) that

(12)
$$M < t - 1 + 2(D - 1) \lg (D - 1) + D - 2,$$

which together with equations (3), (4) and (5), implies that

(13)
$$M < 2(\lg n/\lg \lg n) + 1 + 4(\lg n)^{1/2} \lg \lg n + 2(\lg n)^{1/2}.$$

It follows from (13) that there exists a constant c such that

(14)
$$M < c \lg n / \lg \lg (n+2).$$

Thus the theorem is true if $n \ge 4$. Obviously we can choose c so that the theorem is also true for n = 1, 2, 3.

THEOREM 3. For any set of positive integers $\{n_1, n_2, \dots, n_p\}, \{x^{n_1}, x^{n_2}, \dots, x^{n_p}\}$ is computable from input $\{x\}$ in less than $\lg N + c \sum_{i=1}^{p} [\lg n_i / \lg \lg (n_i + 2)]$ multiplications for some constant c, where $N = \max_{i} \{n_i\}$.

COROLLARY. $\{x^{n_1}, x^{n_2}, \dots, x^{n_p}\}$ is computable from $\{x\}$ in less than $\lg N$ + $cp \lg N/\lg \lg (N + 2)$ nultiplications.

Proof of Theorem 3 and Corollary. First we compute $\{x, x^2, x^4, x^8, \cdots, x^{10}\}$ $x^{2\lfloor \lg N \rfloor}$ from input x in $\lfloor \lg N \rfloor$ multiplications. For each *i*, according to Theorem 2, x^{n_i} is computable from $\{x, x^2, x^4, \dots, x^{2\lfloor \lg N \rfloor}\}$ in $c \lg N / \lg \lg (N+2)$ multiplications for some constant ϵ . The theorem and corollary then follow immediately. \Box

In terms of addition chains, Theorem 3 and its corollary give the following generalization of Brauer's theorem [1], [3, pp. 398-418].

THEOREM 4. For any positive integers n_1, n_2, \dots, n_p , there exists an addition chain of length less than $\lg N + c \sum_{i=1}^{p} \lg n_i / \lg \lg (n_i + 2)$ containing the values n_1, n_2, \dots, n_p for some constant c, where $N = \max_i \{n_i\}$.

COROLLARY. For positive integers n_1, n_2, \dots, n_p , there exists an addition chain of length less than $\lg N + cp \lg N/\lg \lg (N+2)$ containing n_1, n_2, \dots, n_p . 4. Conclusion. We have shown that $\{x^{n_1}, x^{n_2}, \dots, x^{n_p}\}$ can be computed in $\lg N + cp \lg N/\lg \lg (N+2)$ multiplications for input x where $N = \max_i \{n_i\}$ and c is a constant. On the other hand, it is well known that to evaluate $\{x^{n_1}, x^{n_2}, \dots, x^{n_p}\}$ by arithmetic operations, at least $\lg N$ operations are necessary. Thus our procedures for evaluating $\{x^{n_1}, x^{n_2}, \dots, x^{n_p}\}$ are nearly the best possible when $p \ll \lg \lg (N + 2)$. It remains an interesting open problem to determine the complexity of computing $\{x^{n_1}, x^{n_2}, \dots, x^{n_p}\}$ for general p.

Note added in proof. (A) By choosing the value of k in (3) more carefully, say $k = \lceil \lg \lg n - 3 \lg \lg \lg n \rceil$, our algorithm in Theorem 3 takes at most $\lg N + p \lg N/\lg \lg N + (\text{smaller terms}) \text{ multiplications as } N \to \infty$. For fixed p, these leading terms are almost the best possible since, as observed by Larry Stockmeyer (private communication), the lower bound of Erdös [2] can be generalized straightforwardly. (B) Nicholas Pippenger proved the following (private communication): $\{x^{n_1}, x^{n_2}, \dots, x^{n_p}\}$ can be computed from x in min $\{(p + 2^l) \lceil \lg N/l \rceil \mid l \text{ is a positive integer}\}$ multiplications, and for some $c_1 > 0$ and every N, p, $c_1 p \lg N/(\lg P + \lg \lg N)$ multiplications are needed for some set of $\{n_1, n_2, \dots, n_p\}$ with max $\{n_i\} \leq N$. For large p ($p \geq \lg N$), this determines the worst-case complexity to be $p \lg N/\lg p$ up to a constant factor. (C) A related theorem on power evaluation may be found in Schönhage [4].

REFERENCES

- [1] A. BRAUER, On addition chains, Bull. Amer. Math. Soc., 45 (1939), pp. 736-739.
- [2] P. ERDÖS, Remarks on number theory-On addition chains, Acta Arith., 6 (1960), pp. 77-81.
- [3] D. E. KNUTH, The Art of Computer Programming, vol. 2, Addison-Wesley, Reading, Mass., 1969.
- [4] A. SCHÖNHAGE, Eine untere Schranke für die Lange von Additionsketten, preprint, 1974.