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ON THE EVALUATION OF POWERS*

ANDREW CHI-CHIH YAO’

Abstract. It is shown that for any set of positive integers {nl, n2, ,np}, there exists a procedure
which computes {x"’,x"2, ,x"p} for any input x in less than lg N + c ’=t [lg nJlglg(ni + 2)]
multiplications for some constant c, where N maxi Ini}. This gives a partial solution to an open
problem in Knuth [3, 4.6.3, Ex. 32] and generalizes Brauer’s theorem on addition chains.
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1. Introduction. An addition chain (of length r) is a sequence of r + integers
ao,al,a2,’", ar such that (i) ao and (ii) for each i, ai aj + ak for some
j =< k < i. It is clear that, for any r and any set of integers {nl, n2,’.., np},
there exists an addition chain of length r which contains the values n l, n2, "-, np

if and only if there exists a procedure which, for any input x, computes {x"1, x"2, ...,
x"p} in r operations using only multiplications. A theorem by Brauer [1], [3,
pp. 398-418] states that, for any n, there exists an addition chain of length
lg n + O(lg n/lg lg n) which contains the value n" this implies the existence of a
corresponding procedure to compute x in lg n + O(lg n/lg lg n) multiplications.
Furthermore, it was shown by Erd6s [2], [3, pp. 398-418] that the above result is
asymptotically with probability 1 nearly the best possible. In an open problem
posed in Knuth [3, 4.6.3, Ex. 32], it is asked if there are fast procedures to compute
x, x% ..., xp for p >= 2. This problem cannot be solved by a direct extension
of the technique used by Brauer in the proof of his theorem.

In this paper we show that for any positive integers n, n2,’.., np, there
exists a procedure using only multiplications which, for any input x, computes
{x"’, x% ..., x"} in lg N + constant x ’:1 [lg nJlg lg (n + 2)] multiplications
where N max {n}. This gives a solution to Knuth’s problem and leads to a
corresponding theorem on addition chains which generalizes Brauer’s theorem
mentioned earlier.

2. Definition. Let ei, <= <= p, and fj, 1=< j _< q, be positive integers.
We shall say that {xel, X} is computablefrom {xY, xyq} in r multiplica-
tions (r >= 0) if there exists a set of r positive integers, {f/ 1,"’, fq/r}, such
that

(i) for all q + 1,..., q + r,

xy’=xy.xy for somej=<k<i.

(ii) {x,..., Xer’} C {xft, xfq+"}.
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ON THE EVALUATION OF POWERS 101

Since the exponents are added when two powers of x are multiplied, the
above definition is a natural generalization of the definition of addition chains
(cf. 1). The exponents appearing in xSl, "’", xSq} correspond to a set of numbers
initially available in the chain, as opposed to a single number, 1, in the earlier
definition.

3. The computation of {x"1, ..., x"p}. The following lemma is well known
3, pp. 398-418).

LEMMA 1. For any integer > 0, .y’} is computable from IY} in at most 2[lg iJ
multiplications.

Proof Let the binary representation of be

(1) i= bj.2j,
j=0

where v [lg i]. Then,
2yi= I-IY(2) bj=

Thus, we can first compute y2, y4, yS, ..., yZV sequentially in v multiplications
and then compute y by (2) in no more than v multiplications. The total number
of multiplications is no greater than 2v. fq

TI-IEOREM 2. For any integers m, n where 0 < m <- n, {xm} is computablefrom
lgn]{x, x2, x4, x8, x2L } in less than c lg n/lg lg (n + 2) multiplications for some

constant c.

Proof Assume n _> 4. Define the following quantities"

(3) k [(lg lg n)/2 ],

(4) D 2k,

(5) [logo hi,

Let the D-ary representation of m be

m ajDj,
j=0

where

(6) 0=<aj_<D-

We partition the set of integers {0, 1,
S(D 1) by letting

S(i)-- {llal-- i}
It follows from (6) that

for j=0,1,...,t.

t} into D disjoint subsets S(0), S(1),

fori=0,1,...,D- 1.

(7) m i.
i= i)

D i. mi,
i=1

where
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102 ANDREW CHI-CHIH YAO

From (7) and (8), we obtain the following two equations:

(9) xm’= I-I xD’ for/= 1,2,...,D- 1,

D-I

(o) x= I-I (’).

Since all the xv’ in (9) are available in the set {x, x2, x4, x8,
we can construct a procedure to compute x" as follows.

Step 1. For 1, 2, ..., D do the following:
(a) Compute xm’ from (9) in fewer than IS(i)] multiplications.
(b) Compute (x"’) in at nost 2[lg i] multiplications (by Lemma 1).
Step 2. Compute x" from (10) in D 2 multiplications.

x2tlg nl}

Let M be the total number of multiplications in the above procedure. Then,
D-1

M< (S(i)[ +2LlgiI)+D-2
i=1

D-1

N(i)I +2(D- 1)lg(D- 1)+D-2.
i=1

Noting that the S(i)’s form a partition of the set {0, l, ..., t}, we obtain from (1 l)
that

(12) M< t-- +2(D- 1)lg(D- 1)+D-2,

which together with equat ons (3), (4) and (5), implies that

(13) M < 2(lgn/1;lgn) + + 4(lgn)/21glgn + 2(lgn) /2.

It follows from (13) that tt:.ere exists a constant c such that

(14) M < c lg n/lg lg (n + 2).

Thus the theorem is true f n 4. Obviously we can choose c so that the theorem
is also true for n 1, 2, 3.

THEOREM 3. For any set ofpositive integers {ha, n2, np}, {xn’, xn2, Xnp}
is computable from input tx} in less than lg U + c ’=x [lg n.]lg lg (ni + 2)] multi-
plications for some constat c, where N max/{ni}.

COROLLARY. {X"’,X’2, ..., X"P} is computable from {x} in less than lgN
+ cp lg N/lg lg (N + 2) r, mltiplications.

Proof of Theorem 3 and Corollary. First we compute {x, xZ, x4, xS,
x2[lgNl from input x in [?ig N multiplications. For each i, according to Theorem 2,
x"’ is computable from {x, x2, x’, ..., x2[lgN]} in c lg N/Ig Ig (N + 2) multiplica-
tions for some constant . The theorem and corollary then follow immediately.

In terms of addition chains, Theorem 3 and its corollary give the following
generalization of Braue"s theorem [1.], [3, pp. 398-418].

THEOREM 4. For any positive integers n, n2, np, there exists an addition
chain of length less than lg N + c ’= lg ni/lg lg (ni + 2) containing the values
n l, n2,... np for some constant c, where N max/{ni}.

COROLLARY. For positive integers n,n2,... np, there exists an addition
chain of length less than lg N + cp lg N/lg lg (N + 2) containing n n2,
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ON THE EVALUATION OF POWERS 103

4. Conclusion. We have shown that {Xtll, Xtl2, X/11’ can be computed in
lg N + cp lg N/lg lg (N + 2) multiplications for input x where N max {hi}
and c is a constant. On the other hand, it is well known that to evaluate {x"1,
x’2, x"p} by arithmetic operations, at least lg N operations are necessary.
Thus our procedures for evaluating {x"1, x"2, ..., x"p} are nearly the best possible
when p << lg lg (N + 2). It remains an interesting open problem to determine the
complexity of computing {x"1, x"2, x"} for general p.

Note added in proof (A) By choosing the value of k in (3) more carefully, say
k= [lglgn-31glglgn], our algorithm in Theorem 3 takes at most lgN
+p lg N/lg lg N + (smaller terms) multiplications as N . For fixed p, these
leading terms are almost the best possible since, as observed by Larry Stockmeyer
(private communication), the lower bound of Erd6s 2 can be generalized straight-
forwardly. (B) Nicholas Pippenger proved the following (private communication):
{x", x", ..., x".} can be computed from x in min {(p + 21) [lg N/Iql is a positive
integer} multiplications, and for some c > 0 and every N,p, c lplgN/(lg P
+ lglgN) multiplications are needed for some set of {n,n2, ..., np} with
max {hi} < N. For large p (p _>_ lg N), this determines the worst-case complexity
to be p lg N/lg p up to a constant factor. (C) A related theorem on power evalua-
tion may be found in Sch6nhage [4].
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