ON THE EVALUATION OF POWERS*

ANDREW CHI-CHIH YAO \dagger

Abstract

It is shown that for any set of positive integers $\left\{n_{1}, n_{2}, \cdots, n_{p}\right\}$, there exists a procedure which computes $\left\{x^{n_{1}}, x^{n_{2}}, \cdots, x^{n_{p}}\right\}$ for any input x in less than $\lg N+c \sum_{i=1}^{p}\left[\lg n_{i} / \lg \lg \left(n_{i}+2\right)\right]$ multiplications for some constant c, where $N=\max _{i}\left\{n_{i}\right\}$. This gives a partial solution to an open problem in Knuth [3, §4.6.3, Ex. 32] and generalizes Brauer's theorem on addition chains.

Key words. addition chains, Brauer's theorem

1. Introduction. An addition chain (of length r) is a sequence of $r+1$ integers $a_{0}, a_{1}, a_{2}, \cdots, a_{r}$ such that (i) $a_{0}=1$ and (ii) for each $i, a_{i}=a_{j}+a_{k}$ for some $j \leqq k<i$. It is clear that, for any r and any set of integers $\left\{n_{1}, n_{2}, \cdots, n_{p}\right\}$, there exists an addition chain of length r which contains the values $n_{1}, n_{2}, \cdots, n_{p}$ if and only if there exists a procedure which, for any input x, computes $\left\{x^{n_{1}}, x^{n_{2}}, \cdots\right.$, $\left.x^{n_{p}}\right\}$ in r operations using only multiplications. A theorem by Brauer [1], [3, pp. 398-418] states that, for any n, there exists an addition chain of length ${ }^{1}$ $\lg n+O(\lg n / \lg \lg n)$ which contains the value n; this implies the existence of a corresponding procedure to compute x^{n} in $\lg n+O(\lg n / \lg \lg n)$ multiplications. Furthermore, it was shown by Erdös [2], [3, pp. 398-418] that the above result is asymptotically with probability 1 nearly the best possible. In an open problem posed in Knuth [3, § 4.6.3, Ex. 32], it is asked if there are fast procedures to compute $\left\{x^{n_{1}}, x^{n_{2}}, \cdots, x^{n_{p}}\right\}$ for $p \geqq 2$. This problem cannot be solved by a direct extension of the technique used by Brauer in the proof of his theorem.

In this paper we show that for any positive integers $n_{1}, n_{2}, \cdots, n_{p}$, there exists a procedure using only multiplications which, for any input x, computes $\left\{x^{n_{1}}, x^{n_{2}}, \cdots, x^{n_{p}}\right\}$ in $\lg N+$ constant $\times \sum_{i=1}^{P}\left[\lg n_{i} / \lg \lg \left(n_{i}+2\right)\right]$ multiplications where $N=\max _{i}\left\{n_{i}\right\}$. This gives a solution to Knuth's problem and leads to a corresponding theorem on addition chains which generalizes Brauer's theorem mentioned earlier.
2. Definition. Let $e_{i}, 1 \leqq i \leqq p$, and $f_{j}, 1 \leqq j \leqq q$, be positive integers. We shall say that $\left\{x^{e_{1}}, \cdots, x^{e_{p}}\right\}$ is computable from $\left\{x^{f_{1}}, \cdots, x^{f q}\right\}$ in r multiplications ($r \geqq 0$) if there exists a set of r positive integers, $\left\{f_{q+1}, \cdots, f_{q+r}\right\}$, such that
(i) for all $i=q+1, \cdots, q+r$,

$$
x^{f_{i}}=x^{f_{j}} \cdot x^{f_{k}} \quad \text { for some } j \leqq k<i .
$$

(ii) $\left\{x^{e_{1}}, \cdots, x^{e_{p}}\right\} \subset\left\{x^{f_{1}}, \cdots, x^{f_{q+r}}\right\}$.

[^0]Since the exponents are added when two powers of x are multiplied, the above definition is a natural generalization of the definition of addition chains (cf. § 1). The exponents appearing in $\left\{x^{f_{1}}, \cdots, x^{f_{q}}\right\}$ correspond to a set of numbers initially available in the chain, as opposed to a single number, 1 , in the earlier definition.
3. The computation of $\left\{\boldsymbol{x}^{n_{1}}, \cdots, x^{n_{p}}\right\}$. The following lemma is well known [3, pp. 398-418).

Lemma 1. For any integer $i>0,\left\{y^{i}\right\}$ is computable from $\{y\}$ in at most $2\lfloor\lg i\rfloor$ multiplications.

Proof. Let the binary representation of i be

$$
\begin{equation*}
i=\sum_{j=0}^{v} b_{j} \cdot 2^{j} \tag{1}
\end{equation*}
$$

where $v=\lfloor\lg i\rfloor$. Then,

$$
\begin{equation*}
y^{i}=\prod_{b_{j}=1} y^{2^{j}} . \tag{2}
\end{equation*}
$$

Thus, we can first compute $y^{2}, y^{4}, y^{8}, \cdots, y^{2 v}$ sequentially in v multiplications and then compute y^{i} by (2) in no more than v multiplications. The total number of multiplications is no greater than $2 v$.

Theorem 2. For any integers m, n where $0<m \leqq n,\left\{x^{m}\right\}$ is computable from $\left\{x, x^{2}, x^{4}, x^{8}, \cdots, x^{2[1 \ln]}\right\}$ in less than $c \lg n / \lg \lg (n+2)$ multiplications for some constant c.

Proof. Assume $n \geqq 4$. Define the following quantities:

$$
\begin{align*}
k & =\lceil(\lg \lg n) / 2\rceil, \tag{3}\\
D & =2^{k}, \tag{4}\\
t & =\left\lfloor\log _{D} n\right\rfloor, \tag{5}
\end{align*}
$$

Let the D-ary representation of m be

$$
m=\sum_{j=0}^{t} a_{j} D^{j}
$$

where

$$
\begin{equation*}
0 \leqq a_{j} \leqq D-1 \quad \text { for } j=0,1, \cdots, t \tag{6}
\end{equation*}
$$

We partition the set of integers $\{0,1, \cdots, t\}$ into D disjoint subsets $S(0), S(1), \cdots$, $S(D-1)$ by letting

$$
S(i)=\left\{l \mid a_{l}=i\right\} \quad \text { for } i=0,1, \cdots, D-1
$$

It follows from (6) that

$$
\begin{equation*}
m=\sum_{i=1}^{D-1} i \cdot\left[\sum_{l \in S(i)} D^{l}\right]=\sum_{i=1}^{D-1} i \cdot m_{i} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
m_{i}=\sum_{l \in S(i)} D^{l} \tag{8}
\end{equation*}
$$

From (7) and (8), we obtain the following two equations:

$$
\begin{align*}
x^{m_{i}} & =\prod_{l \in S(i)} x^{D^{l}} \text { for } i=1,2, \cdots, D-1, \tag{9}\\
x^{m} & =\prod_{i=1}^{D-1}\left(x^{m_{i}}\right)^{i} . \tag{10}
\end{align*}
$$

Since all the $x^{D^{1}}$ in (9) are available in the set $\left\{x, x^{2}, x^{4}, x^{8}, \cdots, x^{2[1 \ln n}\right\}$, we can construct a procedure to compute x^{m} as follows.

Step 1. For $i=1,2, \cdots, D-1$ do the following:
(a) Compute $x^{m_{i}}$ from (9) in fewer than $|S(i)|$ multiplications.
(b) Compute $\left(x^{m_{i}}\right)^{i}$ in at nost $2\lfloor\lg i\rfloor$ multiplications (by Lemma 1).

Step 2. Compute x^{m} from (10) in $D-2$ multiplications.
Let M be the total number of multiplications in the above procedure. Then,

$$
\begin{align*}
M & <\sum_{i=1}^{D-1}(|S(i)|+2\lfloor\lg i\rfloor)+D-2 \tag{11}\\
& \leqq \sum_{i=1}^{D-1}|\zeta(i)|+2(D-1) \lg (D-1)+D-2 .
\end{align*}
$$

Noting that the $S(i)$'s form a partition of the set $\{0,1, \cdots, t\}$, we obtain from (11) that

$$
\begin{equation*}
M<t-1+2(D-1) \lg (D-1)+D-2 \tag{12}
\end{equation*}
$$

which together with equat ons (3), (4) and (5), implies that

$$
\begin{equation*}
M<2(\lg n / 1 ; \lg n)+1+4(\lg n)^{1 / 2} \lg \lg n+2(\lg n)^{1 / 2} . \tag{13}
\end{equation*}
$$

It follows from (13) that there exists a constant c such that

$$
\begin{equation*}
M<c \lg n / \lg \lg (n+2) \tag{14}
\end{equation*}
$$

Thus the theorem is true if $n \geqq 4$. Obviously we can choose c so that the theorem is also true for $n=1,2,3$.

Theorem 3. For any set of positive integers $\left\{n_{1}, n_{2}, \cdots, n_{p}\right\},\left\{x^{n_{1}}, x^{n_{2}}, \cdots, x^{n_{p}}\right\}$ is computable from input $\{x\}$ in less than $\lg N+c \sum_{i=1}^{P}\left[\lg n_{i} / \lg \lg \left(n_{i}+2\right)\right]$ multiplications for some constant c, where $N=\max _{i}\left\{n_{i}\right\}$.

Corollary. $\left\{x^{n_{1}}, x^{n_{2}}, \cdots, x^{n_{p}}\right\}$ is computable from $\{x\}$ in less than $\lg N$ $+c p \lg N / \lg \lg (N+2)$ niultiplications.

Proof of Theorem 3 and Corollary. First we compute $\left\{x, x^{2}, x^{4}, x^{8}, \cdots\right.$, $\left.x^{2\lfloor\lg N\rfloor}\right\}$ from input x in $\lfloor\mathrm{g} N\rfloor$ multiplications. For each i, according to Theorem 2, $x^{n_{i}}$ is computable from $\left\{x, x^{2}, x^{4}, \cdots, x^{2[\lg N]}\right\}$ in $c \lg N / \lg \lg (N+2)$ multiplications for some constant c. The theorem and corollary then follow immediately.

In terms of addition chains, Theorem 3 and its corollary give the following generalization of Brauer's theorem [1], [3, pp. 398-418].

Theorem 4. For ary positive integers $n_{1}, n_{2}, \cdots, n_{p}$, there exists an addition chain of length less than $\lg N+c \sum_{i=1}^{P} \lg n_{i} / \lg \lg \left(n_{i}+2\right)$ containing the values $n_{1}, n_{2}, \cdots, n_{p}$ for some constant c, where $N=\max _{i}\left\{n_{i}\right\}$.

Corollary. For positive integers $n_{1}, n_{2}, \cdots, n_{p}$, there exists an addition chain of length less than $\lg N+c p \lg N / \lg \lg (N+2)$ containing $n_{1}, n_{2}, \cdots, n_{p}$.
4. Conclusion. We have shown that $\left\{x^{n_{1}}, x^{n_{2}}, \cdots, x^{n_{p}}\right\}$ can be computed in $\lg N+c p \lg N / \lg \lg (N+2)$ multiplications for input x where $N=\max _{i}\left\{n_{i}\right\}$ and c is a constant. On the other hand, it is well known that to evaluate $\left\{x^{n_{1}}\right.$, $\left.x^{n_{2}}, \cdots, x^{n_{p}}\right\}$ by arithmetic operations, at least $\lg N$ operations are necessary. Thus our procedures for evaluating $\left\{x^{n_{1}}, x^{n_{2}}, \cdots, x^{n_{p}}\right\}$ are nearly the best possible when $p \ll \lg \lg (N+2)$. It remains an interesting open problem to determine the complexity of computing $\left\{x^{n_{1}}, x^{n_{2}}, \cdots, x^{n_{p}}\right\}$ for general p.

Note added in proof. (A) By choosing the value of k in (3) more carefully, say $k=\lceil\lg \lg n-3 \lg \lg \lg n\rceil$, our algorithm in Theorem 3 takes at most $\lg N$ $+p \lg N / \lg \lg N+$ (smaller terms) multiplications as $N \rightarrow \infty$. For fixed p, these leading terms are almost the best possible since, as observed by Larry Stockmeyer (private communication), the lower bound of Erdös [2] can be generalized straightforwardly. (B) Nicholas Pippenger proved the following (private communication): $\left\{x^{n_{1}}, x^{n_{2}}, \cdots, x^{n_{p}}\right\}$ can be computed from x in $\min \left\{\left(p+2^{l}\right)\lceil\lg N / l\rceil \mid l\right.$ is a positive integer $\}$ multiplications, and for some $c_{1}>0$ and every $N, p, c_{1} p \lg N /(\lg P$ $+\lg \lg N)$ multiplications are needed for some set of $\left\{n_{1}, n_{2}, \cdots, n_{p}\right\}$ with $\max \left\{n_{i}\right\} \leqq N$. For large $p(p \geqq \lg N)$, this determines the worst-case complexity to be $p \lg N / \lg p$ up to a constant factor. (C) A related theorem on power evaluation may be found in Schönhage [4].

REFERENCES

[1] A. Brauer, On addition chains, Bull. Amer. Math. Soc., 45 (1939), pp. 736-739.
[2] P. Erdös, Remarks on number theory-On addition chains, Acta Arith., 6 (1960), pp. 77-81.
[3] D. E. Knuth, The Art of Computer Programming, vol. 2,.Addison-Wesley, Reading, Mass., 1969.
[4] A. Schönhage, Eine untere Schranke für die Lange von Additionsketten, preprint, 1974.

[^0]: * Received by the editors August 29, 1974.
 \dagger Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801. This research was supported by the National Science Foundation under Grant GJ-41538.
 ${ }^{1} \mathrm{lg}$ is logarithm to the base 2.

