ON THE EVALUATION OF POWERS*

ANDREW CHI-CHIH YAO†

Abstract. It is shown that for any set of positive integers \(\{n_1, n_2, \ldots, n_p\} \), there exists a procedure which computes \(\{x^{n_1}, x^{n_2}, \ldots, x^{n_p}\} \) for any input \(x \) in less than \(\lg N + c \sum_{i=1}^{p} [\lg n_i/\lg (n_i + 2)] \) multiplications for some constant \(c \), where \(N = \max_i \{n_i\} \). This gives a partial solution to an open problem in Knuth [3, §4.6.3, Ex. 32] and generalizes Brauer’s theorem on addition chains.

Key words. addition chains, Brauer’s theorem

1. Introduction. An addition chain (of length \(r \)) is a sequence of \(r + 1 \) integers \(a_0, a_1, a_2, \ldots, a_r \) such that (i) \(a_0 = 1 \) and (ii) for each \(i \), \(a_i = a_j + a_k \) for some \(j \leq k < i \). It is clear that, for any \(r \) and any set of integers \(\{n_1, n_2, \ldots, n_p\} \), there exists an addition chain of length \(r \) which contains the values \(n_1, n_2, \ldots, n_p \) if and only if there exists a procedure which, for any input \(x \), computes \(\{x^{n_1}, x^{n_2}, \ldots, x^{n_p}\} \) in \(r \) operations using only multiplications. A theorem by Brauer [1], [3, pp. 398–418] states that, for any \(n \), there exists an addition chain of length \(\lg n + O(\lg n/\lg \lg n) \) which contains the value \(n \); this implies the existence of a corresponding procedure to compute \(x^n \) in \(\lg n + O(\lg n/\lg \lg n) \) multiplications. Furthermore, it was shown by Erdős [2], [3, pp. 398–418] that the above result is asymptotically with probability 1 nearly the best possible. In an open problem posed in Knuth [3, §4.6.3, Ex. 32], it is asked if there are fast procedures to compute \(\{x^{n_1}, x^{n_2}, \ldots, x^{n_p}\} \) for \(p \geq 2 \). This problem cannot be solved by a direct extension of the technique used by Brauer in the proof of his theorem.

In this paper we show that for any positive integers \(n_1, n_2, \ldots, n_p \), there exists a procedure using only multiplications which, for any input \(x \), computes \(\{x^{n_1}, x^{n_2}, \ldots, x^{n_p}\} \) in \(\lg N + \text{constant} \times \sum_{i=1}^{p} [\lg n_i/\lg (n_i + 2)] \) multiplications where \(N = \max_i \{n_i\} \). This gives a solution to Knuth’s problem and leads to a corresponding theorem on addition chains which generalizes Brauer’s theorem mentioned earlier.

2. Definition. Let \(e_i, 1 \leq i \leq p \), and \(f_j, 1 \leq j \leq q \), be positive integers. We shall say that \(\{x^{e_i}, \ldots, x^{e_q}\} \) is computable from \(\{x^{f_1}, \ldots, x^{f_q}\} \) in \(r \) multiplications \((r \geq 0) \) if there exists a set of \(r \) positive integers, \(\{f_{q+1}, \ldots, f_{q+r}\} \), such that

(i) for all \(i = q + 1, \ldots, q + r \),

\[x^{f_i} = x^{f_j} \cdot x^{f_k} \text{ for some } j \leq k < i. \]

(ii) \[\{x^{e_1}, \ldots, x^{e_q}\} \subseteq \{x^{f_1}, \ldots, x^{f_{q+r}}\}. \]

Received by the editors August 29, 1974.
† Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801. This research was supported by the National Science Foundation under Grant GJ-41538.

\(^1\) \(\lg \) is logarithm to the base 2.
Since the exponents are added when two powers of \(x\) are multiplied, the above definition is a natural generalization of the definition of addition chains (cf. §1). The exponents appearing in \(\{x^{f_1}, \cdots, x^{f_s}\}\) correspond to a set of numbers initially available in the chain, as opposed to a single number, 1, in the earlier definition.

3. The computation of \(\{x^n, \cdots, x^{n^p}\}\). The following lemma is well known [3, pp. 398-418].

Lemma 1. For any integer \(i > 0\), \(\{y^i\}\) is computable from \(\{y\}\) in at most \(2\lfloor \log i \rfloor\) multiplications.

Proof. Let the binary representation of \(i\) be

\[
i = \sum_{j=0}^{v} b_j \cdot 2^j,
\]

where \(v = \lfloor \log i \rfloor\). Then,

\[
y^i = \prod_{b_j=1} y^{2^j}.
\]

Thus, we can first compute \(y^2, y^4, y^8, \cdots, y^{2^v}\) sequentially in \(v\) multiplications and then compute \(y^i\) by (2) in no more than \(v\) multiplications. The total number of multiplications is no greater than \(2v\). \(\square\)

Theorem 2. For any integers \(m, n\) where \(0 < m \leq n\), \(\{x^m\}\) is computable from \(\{x, x^2, x^4, x^8, \cdots, x^{2^{\lfloor \log n \rfloor}}\}\) in less than \(c \log n / \log (n + 2)\) multiplications for some constant \(c\).

Proof. Assume \(n \geq 4\). Define the following quantities:

\[
k = \lfloor \log \log n / 2 \rfloor,
\]

\[
D = 2^k,
\]

\[
t = \lfloor \log_D n \rfloor,
\]

Let the \(D\)-ary representation of \(m\) be

\[
m = \sum_{j=0}^{t} a_j D^j,
\]

where

\[
0 \leq a_j \leq D - 1 \quad \text{for} \quad j = 0, 1, \cdots, t.
\]

We partition the set of integers \(\{0, 1, \cdots, t\}\) into \(D\) disjoint subsets \(S(0), S(1), \cdots, S(D - 1)\) by letting

\[
S(i) = \{a | a_i = i\} \quad \text{for} \quad i = 0, 1, \cdots, D - 1.
\]

It follows from (6) that

\[
m = \sum_{i=1}^{D-1} i \cdot \left[\sum_{\ell \in S(i)} D^\ell \right] = \sum_{i=1}^{D-1} i \cdot m_i,
\]

where

\[
m_i = \sum_{\ell \in S(i)} D^\ell.
\]
From (7) and (8), we obtain the following two equations:

\[x^{m_i} = \prod_{i \in S(i)} x^{D'} \quad \text{for } i = 1, 2, \ldots, D - 1, \]

\[x^m = \prod_{i=1}^{D-1} (x^m)^i. \]

Since all the \(x^{D'}\) in (9) are available in the set \(\{x, x^2, x^4, x^8, \ldots, x^{2^{\lg n}}\}\), we can construct a procedure to compute \(x^m\) as follows.

Step 1. For \(i = 1, 2, \ldots, D -1\) do the following:

(a) Compute \(x^{m_i}\) from (9) in fewer than \(|S(i)|\) multiplications.

(b) Compute \((x^{m_i})^i\) in at most \(2|\lg i|\) multiplications (by Lemma 1).

Step 2. Compute \(x^m\) from (10) in \(D - 2\) multiplications.

Let \(M\) be the total number of multiplications in the above procedure. Then,

\[M < \sum_{i=1}^{D-1} (|S(i)| + 2|\lg i|) + D - 2 \]

Noting that the \(S(i)\)'s form a partition of the set \(\{0, 1, \ldots, t\}\), we obtain from (11) that

\[M < t - 1 + 2(D - 1)\lg(D - 1) + D - 2, \]

which together with equations (3), (4) and (5), implies that

\[M < 2(\lg n/l; \lg n) + 1 + 4(\lg n)^{1/2} \lg \lg n + 2(\lg n)^{1/2}. \]

It follows from (13) that there exists a constant \(c\) such that

\[M < c \lg n/l \lg \lg n \lg (n + 2). \]

Thus the theorem is true if \(n \geq 4\). Obviously we can choose \(c\) so that the theorem is also true for \(n = 1, 2, 3\).

Theorem 3. For any set of positive integers \(\{n_1, n_2, \ldots, n_p\}\), \(\{x^{n_1}, x^{n_2}, \ldots, x^{n_p}\}\) is computable from input \(\{x\}\) in less than \(\lg N + c \sum_{i=1}^{p} [\lg n_i/|\lg \lg (n_i + 2)|]\) multiplications for some constant \(c\), where \(N = \max_i \{n_i\}\).

Corollary. \(\{x^n, x^{n_2}, \ldots, x^{n_p}\}\) is computable from \(\{x\}\) in less than \(\lg N + c p \lg n /|\lg \lg (N + 2)|\) multiplications.

Proof of Theorem 3 and Corollary. First we compute \(\{x, x^2, x^4, x^8, \ldots, x^{2^{\lg N}}\}\) from input \(x\) in \(\lg N\) multiplications. For each \(i\), according to Theorem 2, \(x^{n_i}\) is computable from \(\{x, x^2, x^4, \ldots, x^{2^{\lg N}}\}\) in \(c \lg N/|\lg \lg (N + 2)|\) multiplications for some constant \(c\). The theorem and corollary then follow immediately.

In terms of addition chains, Theorem 3 and its corollary give the following generalization of Brauer's theorem [1], [3, pp. 398–418].

Theorem 4. For any positive integers \(n_1, n_2, \ldots, n_p\), there exists an addition chain of length less than \(\lg N + c \sum_{i=1}^{p} \lg n_i/|\lg \lg (n_i + 2)|\) containing \(n_1, n_2, \ldots, n_p\) for some constant \(c\), where \(N = \max_i \{n_i\}\).

Corollary. For positive integers \(n_1, n_2, \ldots, n_p\), there exists an addition chain of length less than \(\lg N + c p \lg N/|\lg \lg (N + 2)|\) containing \(n_1, n_2, \ldots, n_p\)
4. Conclusion. We have shown that \(\{x^{n_1}, x^{n_2}, \cdots, x^{n_p}\} \) can be computed in \(\lg N + cp \lg N/\lg \lg (N + 2) \) multiplications for input \(x \) where \(N = \max_i \{n_i\} \) and \(c \) is a constant. On the other hand, it is well known that to evaluate \(\{x^{n_1}, x^{n_2}, \cdots, x^{n_p}\} \) by arithmetic operations, at least \(\lg N \) operations are necessary. Thus our procedures for evaluating \(\{x^{n_1}, x^{n_2}, \cdots, x^{n_p}\} \) are nearly the best possible when \(p \ll \lg \lg (N + 2) \). It remains an interesting open problem to determine the complexity of computing \(\{x^{n_1}, x^{n_2}, \cdots, x^{n_p}\} \) for general \(p \).

Note added in proof. (A) By choosing the value of \(k \) in (3) more carefully, say \(k = \lfloor \lg \lg n - 3 \lg \lg \lg n \rfloor \), our algorithm in Theorem 3 takes at most \(\lg N + plg N/\lg \lg N \) (smaller terms) multiplications as \(N \to \infty \). For fixed \(p \), these leading terms are almost the best possible since, as observed by Larry Stockmeyer (private communication), the lower bound of Erdős [2] can be generalized straightforwardly. (B) Nicholas Pippenger proved the following (private communication): \(\{x^{n_1}, x^{n_2}, \cdots, x^{n_p}\} \) can be computed from \(x \) in \(\min \{p + 2l \lfloor \lg N/l \rfloor \mid l \) is a positive integer\} multiplications, and for some \(c_1 > 0 \) and every \(N, p, c_1p \lg N/(lg P + \lg \lg N) \) multiplications are needed for some set of \(\{n_1, n_2, \cdots, n_p\} \) with \(\max \{n_i\} \leq N \). For large \(p \) \((p \geq \lg N) \), this determines the worst-case complexity to be \(p \lg N/\lg p \) up to a constant factor. (C) A related theorem on power evaluation may be found in Schönhage [4].

REFERENCES