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1 Introduction
In context of word equations we always consider a finite alphabet Σ and finite set of
variables Ω, which is disjoint with Σ. Elements of Σ are usually denoted by small letters
a, b, c, . . .. Elements of Ω are usually denoted as X, Y, Z, . . ..

A word equation is a pair (u, v), usually written as u = v, where u, v ∈ (Σ ∪ Ω)∗. A
system of word equations is a set of word equations, usually denoted as (u1, v1), (u2, v2),
. . .

A substitution is a morphism S : Ω 7→ Σ+ (we sometimes also consider Σ∗, but then
we explicitly state this). It is extended to Σ as an identity (so S(a) = a for a ∈ Σ) and
to (Σ ∪ Ω)∗ as a homomorphism (so S(αβ) = S(α)S(β) for α, β ∈ (Σ ∪ Ω)+.

A substitution is a solution of a word equation u = v, when S(u) = S(v) (the solution
of a system of equations is defined similarly). A solution S of a word equation u = v is
length-minimal (or simply minimal), when for any other solution S ′ it holds that

|S(u)| ≤ |S ′(u)| .

A satisfiability problem for word equations is:
“Given a system of word equations decide, whether they have a solution.”

We say that a system of word equations is quadratic, if every variable occurs at most
twice in it. It is cubic, when every variable occurs at most thrice.

Constraints for system of word equations are given as additional constraints of the
form X ∈ C or X /∈ C, where X ∈ Ω and C comes from some specified language class
(say: regular, context-free, etc.). The meaning of the constraint X ∈ C (or X /∈ C) is
that we require from a solution S that S(X) ∈ C (or S(X) /∈ C).
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2 Satisfiability of word equations

Algorithm 1 Compression of a word w
1: while |w| > 1 do
2: L← list of letters in w
3: for a ∈ L do
4: compress blocks of a . Replace a` with a`
5: P ← list pairs in w
6: for ab ∈ P do
7: replace all occurrences of ab in w by a fresh letter c

We say that a nondeterministic procedure is sound, when given a unsatisfiable word
equation U = V it cannot transform it to a satisfiable one, regardless of the nondeter-
ministic choices; such a procedure is complete, if given a satisfiable equation U = V for
some nondeterministic choices it returns a satisfiable equation U ′ = V ′. Observe, that a
composition of sound (complete) procedures is sound (complete, respectively)

Lemma 1. The following operations are sound:

1. replacing all occurrences of a variable X with wXv for arbitrary w, v ∈ Γ∗;

2. replacing all occurrences of a word w ∈ Γ+ (in U and V ) with a fresh letter c;

3. replacing occurrences of a variable X with a word w.

Proof. In the first case, if S ′ is a solution of U ′ = V ′ then S defined as S(X) = wS ′(X)v
and S(Y ) = S ′(Y ) otherwise is a solution of U = V .

In the second case, if S ′ is a solution of U ′ = V ′ then S obtained from S ′ by replacing
each c with w is a solution of U = V .

Lastly, in the third case, if S ′ is a solution of U ′ = V ′ then we can obtain S from S ′

by defining the substitution S(X) = w and S(Y ) = S ′(Y ) in other cases.

Definition 2. Given an equation u = v and a substitution S and a substring w ∈ Σ+ of
S(U) (or S(V )) we say that this occurrence of w is

• explicit, if it comes from substring w of u (or v, respectively)

• implicit, it it comes from S(X) for an occurrence of a variable X

• crossing otherwise.

A string w is crossing (with respect to a solution S) if it has a crossing occurrence and
non-crossing (with respect to a solution S) otherwise.

We say that a pair of ab is a crossing pair (with respect to a solution S), if ab has
a crossing occurrence. Otherwise, a pair is non-crossing. Unless explicitly stated, we
consider crossing/non-crossing pairs ab in which a 6= b. Similarly, a letter a ∈ Σ has a
crossing block, if there is a maximal block of a which has a crossing occurrence. This is
equivalent to a (simpler) condition that aa is a crossing pair.
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Algorithm 2 PairCompNCr(a, b) Pair compression for a non-crossing pair
1: let c ∈ Σ be an unused letter
2: replace each explicit ab in U and V by c

Algorithm 3 BlockCompNCr(a) Block compression for a letter a with no crossing block
1: for each explicit a occurring in U or V do
2: for each ` that is a visible length of an a block in U or V do
3: let a` ∈ Σ be an unused letter
4: replace every explicit a’s maximal `-block occurring in U or V by a`

Lemma 3. PairCompNCr(a, b) is sound and when ab is a non-crossing pair in an equation
U = V (with respect to some solution S) then it is complete and implements the pair
compression of ab for S.

Similarly, BlockCompNCr(a) is sound and when a has no crossing blocks in U = V
(with respect to some solution S) it is complete; to be more precise, if S is a solution of
U = V such that ab is non-crossing with respect to S, then the new equation U ′ = V ′ has
a solution S ′ such that S ′(U ′) is obtained by compression of pair ab in S(U).

Proof. From Lemma 1 it follows that both PairCompNCr(a, b) and BlockCompNCr(a) are
sound.

Suppose that U = V has a solution S such that ab is a noncrossing pair with respect
to S. Define S ′: S ′(X) is equal to S(X) with each ab replaced with c (where c is a new
letter). Consider S(U) and S ′(U ′). Then S ′(U ′) is obtained from S(U) by replacing each
ab: the explicit occurrences of ab are replaced by PairCompNCr(a, b), the implicit ones are
replaced by the definition of S ′ and by the assumption there are no crossing occurrences.
The same applies to S(V ) and S ′(V ′). Hence S ′(U ′) = S ′(V ′), which concludes the proof
in this case.

The proof for the block compression follows in the same way.

Algorithm 4 Pop(a, b)
1: for X ∈ Ω do
2: let b be the first letter of S(X) . Guess
3: if the first letter of S(X) is b then
4: replace each X in U and V by bX . Implicitly change S(X) = bw to
S(X) = w

5: if S(X) = ε then . Guess
6: remove X from U and V
7: . . . . Perform a symmetric action for the last letter and a

Lemma 4. The Pop(a, b) is sound and complete.
Furthermore, if S is a solution of U = V then for some nondeterministic choices the

obtained U ′ = V ′ has a solution S ′ such that S ′(U ′) = S(U) and ab is non-crossing (with
regards to S ′).

Lemma 5. CutPrefSuff is sound. It is complete, to be more precise: For a solution S of
U = V let for each X `X , rX be the lengths of a-prefix and suffix of S(X). Then when
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Algorithm 5 CutPrefSuff(a) Cutting a-prefixes and a-suffixes
1: for X ∈ Ω do
2: let `X and rX be the lengths of the a-prefix and suffix of S(X) . Guess

. If S(X) = a`XX then rX = 0
3: replace each X in U and V by a`XXarX . `X and rX are stored as bitvectors,

. implicitly change S(X) = a`XwarX to S(X) = w
4: if S(X) = ε then . Guess
5: remove X from U and V

CutPrefSuff pops a`X to the left and arX to the right, the returned equation U ′ = V ′ has a
solution S ′ such that S(U) = S ′(U ′) and a has no crossing blocks with respect to S ′.

Algorithm 6 WordEqSat Checking the satisfiability of a word equation
1: while |U | > 1 or |V | > 1 do
2: L← list of letters without crossing blocks
3: L′ ← list of letters with crossing blocks
4: for a ∈ L do
5: BlockCompNCr(a)
6: for a ∈ L′ do
7: CutPrefSuff(a)
8: BlockCompNCr(a)
9: P ← list pairs

10: while there is non-crossing ab ∈ P do
11: take some non-crossing ab ∈ P
12: PairCompNCr(a, b)
13: for ab ∈ P do
14: Pop(a, b)
15: PairCompNCr(a, b)
16: Solve the problem naively . With sides of length 1, the problem is trivial

Lemma 6. For appropriate nondeterministic choices, the equations stored by (successful)
computation of WordEqSat are of length O(n2), the additional computation performed by
WordEqSat use O(n2) space.

3 Exponent of periodicity
In this section it is more conveniant to use s for a solution. By n we denote the length of
the eqaution and by nv the number of occurrences of variables in this equation.

Definition 7. For a word w the exponent of periodicity per(w) is the maximal k such
that uk is a substring of w, for some u ∈ Σ+; Σ-exponent of periodicity perΣ(w) restricts
the choice of u to Σ.

The notion of exponent of periodicity is naturally transferred from strings to equations:
For an equation u = v, define the exponent of periodicity as

per(u = v) = max
s

[per(s(u))] ,
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where the maximum is taken over all length-minimal solutions s of u = v; define the
Σ-exponent of periodicity of u = v in a similar way.

3.1 Visible blocks and their lengths
Definition 8. A maximal a-block in s(u) or s(v) is visible for a solution s, if it contains
an explicit letter or non-empty a-prefix or a-suffix of some occurrence of s(X).

A visible length is a lenght of a visible (maximal) a-block.

Lemma 9. There are at most n+ 2nv different visible blocks.
When s is length-minimal, each maximal a-block has a visible length.

Proof. One letter and one prefix/suffix belongs to at most one maximal a-block.
If such a block has a length that is not visible, then all maximal blocks of this length

can be deleted (requires some further argument, but works).

By e1, e2, . . . , ek we denote the lengths of visible a-blocks. Note that some of those
values may be equal. By `X , rX we denote the length of the a-prefix and a-suffix of s(X),
if s(X) ∈ a+ then we set rX = 0. W generally disregard those values, that are equal 0:
simply remove them.

3.2 Arithmetic expressions
Definition 10. Arithmetic expressions may use positive constants and variables {LX , RX}X∈X .
They are usually denoted by E1, E2, . . . , Ek.

For a given word equation of length n a set of such expressions is a system of small
arithmetic expressions when

• it uses variables {LX , RX}X∈X , where X is a set of variables used in the word eqution

• the sum of constants in those expressions is at most n

• variable LX (RX) is used in this set at most as many times as the variable X in the
word equation

For an expression E depending on variables {LX , RX}X∈X by E[{LX , RX}X∈X ] we
denote the value that is obtained by substituting `X and rX (that are natural numbers)
for variables LX and RX , for each variable X.

Lemma 11. For a given word equation with variables X and lengths of visible blocks e1,
e2, . . . , ek there is a small set of arithmetic expressions E1, E2, . . . , Ek in variables
{LX , RX}X∈X such that ei = Ei[{`X , rX}X∈X ], where `X and rX are the lengths of the
a-prefix and a-suffix of s(X).

Proof. Consider the maximal visible block and think of the a-prefixes and suffixes.
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3.3 System of integer equations
Define a system of equations: partition the expressions e1, e2, . . . , ek into groups of the
same value. For each such group {ei1 , ei2 , . . . , eij} add equations

ei1 = ei2 , ei2 = ei3 , . . . , eij−1 = eij

And add to it inequalities LX > 0 (RX > 0), when `X exists, i.e. it is non-zero (the same
for rX). Call this system of equations D.

Lemma 12. {`X , rX}X∈X is a solution of D.
For every solution of this system {`′X , r′X}X∈X it holds that

ei = ej implies Ei[{`′X , r′X}X∈X ] = Ej[{`′X , r′X}X∈X ]

Proof. Straight from the definition: Ei = Ej is added when ei = ej and Ei[{`X , rX}X∈X ] =
ei.

Again, when ei = ej then Ei = Ej is a consequence of D.

3.4 Parametrised solutions
Consider a s(X). Each maximal block of a in s(X) that is not visible is of visible length.
Assign to each such block one of ei in an arbitrary way. To a visible block assign its
length.

Define a parametrised solution S(X): it is s(X) in which we replace each block assigned
with ei with aEi ; moreover, we replace the a-prefix and a-suffix with aLX and aRX .

Lemma 13. S(u) and S(v) are obtained by replacing each maximal a-block of length ei
(or assigned length ei) with aEi.

Proof. Easy induction.

We define S[{`′X , r′X}X∈X ](X) in a natural way: each aE we tun into aE[{`′X ,r
′
X}X∈X ]

and each aLX , aRX into a`′X , ar′X .

Lemma 14. Each S[{`′X , r′X}X∈X ] is a well-defined substitution.
S[{`X , rX}X∈X ] = s.

Proof. First: obvious.
Second: as Ei[{`X , rX}X∈X ] = ei.

Theorem 15. If {`′X , r′X}X∈X is a solution of D then S[{`′X , r′X}X∈X ] is a solution of the
word equation.

Moreover this solution is obtained by replacing an a-maximal block of length ei with
Ei[{`′X , r′X}X∈X ].

Proof. Both follow from the second observation in Lemma 12.
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3.5 Solutions of system of linear Diophantine equations
Consider a system of m linear Diophantine equations in r variables x1, . . . , xr, written as

r∑
j=1

ni,jxj = ni for i = 1, . . . , m (1a)

together with inequalities guaranteeing that each xi is positive

xj ≥ 1 for j = 1, . . . , r . (1b)

In the following, we are interested only in natural solutions, i.e. the ones in which each
component is a natural number; observe that inequality (1b) guarantees that each of the
component is greater than zero. We introduce a partial ordering on such solutions:

(q1, . . . , qr) ≥ (q′1, . . . , q′r) if and only if qj ≥ q′j for each j = 1, . . . , r.

A solution (q1, . . . , qr) is a minimal if it satisfies (1) and there is no solution smaller than
it. (Note, that there may be incomparable minimal solutions.)

It is known, that each component of the minimal solution is at most exponential:

Lemma 16 (cf. [26, Corollary 4.4]). For a system of linear Diophantine equations (1) let
w = r + ∑m

i=1 |ni| and c = ∑m
i=1

∑r
j=1 |ni,j|. If (q1, . . . , qr) is its minimal solution, then

qj ≤ (w + r)ec/e.

The proof is a slight extension of the original proof of Kościelski and Pacholski, which
takes in to the account also the inequalities. For completeness, we recall its proof, as
given in [26].

proof, cf. [26]. The proof follows by estimation based on work of [63] and independently
by [28]
Claim 1 ([63]; [28]). Consider a (vector) equations and inequalities Ax = B, Cx ≥ D
with integer entries in A, B, C and D. LetM be the upper bound on the absolute values of

the determinants of square submatrices of the matrix
(
A
C

)
, r be the number of variables

and w the sum of absolute values of elements in B and D. Then for each minimal natural
solution (q1, . . . , qr) of (1), for each 1 ≤ i ≤ r we have qi ≤ (w + r)M .

So it remains to estimate M from Claim 1, we recall the argument of [26].
Recall the Hadamard inequality: for any matrix N = (ni,j)ki,j=1 we have

det2(N) ≤
k∏
j=1

k∑
i=1

n2
i,j .
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Therefore

det(N) ≤
 k∏
j=1

k∑
i=1

n2
i,j

1/2

Hadamard inequality

≤

 k∏
j=1

(
k∑
i=1
|ni,j|

)21/2

trivial

=
k∏
j=1

k∑
i=1
|ni,j| simplification

≤

∑k
j=1

(∑k
i=1 |ni,j|

)
k

k inequality between means

≤
(
c

k

)k
by definition

k∑
j=1

k∑
i=1
|ni,j| = c

≤ ec/e calculus: sup at k = c/e.

Taking N to be any submatrix of (ni,j) yields that M ≤ ec/e and consequently qi ≤
(w + r)ec/e, as claimed.

3.6 Bound on Σ-exponent of periodicity
We can now infer the upper-bound on the Σ-exponent of periodicity of the length-minimal
solution of the word equation.

As a first step, let us estimate the values w, r,M from Lemma 16 in case of system of
equations D

Lemma 17. For a system of equations D Lemma 16 yields a bound of

O(ne4nv/e)

on coordinates of some of its solutions.

Proof. Concerning the sum of coefficients on the left hand side, for inequalities we have
1 per variable, so 2nv in total, for equalities we have 2nv, as each expression can be used
twice and they have sum of constants n. Thus w = 2nv+2n. For r: we have 2nv variables.

For M , note that the matrix C in our case is an identity, it is enough to consider the
bound on the values of determinants of square submatrices of A. Those are coefficients by
the variables, so by definition of small set of arithmetic expressions, this sum is at most
4nv.

Thus the bound is O(ne4nv/e).

Lemma 18 (cf. [26]). Consider a solution s of a word equation u = v, and a system D
created for it. Consider all solutions {`′X , r′X}X∈Ω of this system and the corresponding
solutions S[{`′X , r′X}X∈Ω]. For a length-minimal s′ among them the lengths of longest
a-block in s′(u) is O(n2e8nv/e)).

Proof. We know that all S[{`X , rX}X∈Ω] are solutions. Let, as in the statement, s′ be
a length minimal among them, let it correspond to a solution {`′X , r′X}X∈Ω of D. Let
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{`′′X , r′′X}X∈Ω be a solution of D for which Lemma 17 gives a O(ne4nv/e) on each `′′X and r′′X ;
let s′′ be the corresponding solution of the word equation. Then the total number of as in
s′(u) is not larger than the total number of as in s′′(u). But the latter is∑iEi[{`′′X , r′′X}X∈Ω]
which is O(nvne4nv/e) by Lemma 17.

As a short corollary we obtain:

Theorem 19 (cf. [26]). The Σ-exponent of periodicity of a word equation U = V with nv
occurrences of variables is O(poly(n)e4nv/e)).

Proof. We can estimate the lengths of maximal a-blocks for each a separately by Lemma 18.

4 LZ77 and SLPs

4.1 LZ77
An LZ77 factorisation or parse of a word w is a representation w = f1f2 · · · f`, where each
fi is either a single letter (called free letter in the following) or fi = w[j . . j + |fi| − 1] for
some j ≤ |f1 · · · fi−1|, in such a case f is called a factor or phrase and w[j . . j + |fi| − 1]
is called the definition of this factor. The size of the LZ77 factorisation f1f2 · · · f` is `.
There are several simple and efficient linear-time algorithms for computing the smallest
LZ77 factorisation of a word [1, 5, 9, 20, 25, 45, 21] and all of them rely on linear-time
algorithm for computing the suffix array [24]. It is easy to show (exercise) that the greedy
algorithm returns such smallest factorisation.

An LZ77 factorisation is called non-self-referencing, if for a factor fi with definition
w[j . . j + |fi| − 1] we have that j + |fi| − 1 ≤ |f1f2 · · · fi| and self-referencing otherwise.

The implicit assumption for the LZ77 is that the length of the text fits in O(1) memory
cells.

Practical notes For practical purposes, a single letter is represented as itself and a
factor is represented as an offset plus length. In practical implementation there is an
upper bound on the offset. If there are several possible definitions, we take the last one
(large offsets cause problems for access other than RAM).

4.2 SLP
Straight Line Programme (SLP) is a CFG in the Chomsky normal form that generates
a unique string. Without loss of generality we assume that nonterminals of an SLP are
X1, . . . , Xg, each rule is either of the form Xi → a or Xi → XjXk, where j, k < i. The
size of the SLP is the number of its nonterminals (here: g).

The problem of finding smallest SLP generating the input word w is NP-hard [61]
and the size of the smallest grammar for the input word cannot be approximated within
factor 8569

8568 [4]. On the other hand, several algorithms with an approximation ratio O(1 +
log(N/g)), where g is the size of the smallest grammar generating w, are known [4, 50,
52, 22].
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Relation between SLP and LZ77

Lemma 20 ([50]). Let ` and g be the sizes of the LZ77 and smallest SLP for a word.
Then ` ≤ g.

This bound is relatively easy to obtain: any SLP (of size k) defines a specific LZ77
factorisation (of size at most k), in particular, there is a factorisation of size g.

4.3 Composition systems
In many proofs it is easier to use the ‘substring’ approach of LZ77 rather than the SLP.
Thus the composition systems are SLPs that additionally allow a usage of substrings of
nonterminals, i.e. we can use A[b : e] in a rule, its semantics is ‘substring of a string
generated by a from positionb to e’. It is easy to show that composition system can be
transformed into an SLP with a polynomial size increase. (We shall show it later).

5 Short proof for small SLP representation of length-
minimal solution

This is based on [48].

Definition 21. A cut (in an equation) is a position between two explicit letters in an
equation or between two variables or between a variable and an equation. We generalise
this notion to cut for a solution.

A substring in S(u) or S(v) overlaps a cut α, if α is within this word or at its beginning
or end.

Note that there are |u|+ |v|+ 2 cuts in a word equation u = v.

Definition 22. For a function f : Ω 7→ N a solution S is an f -solution, if |S(X)| = f(X)
for each variable X.

Definition 23. Given a solution S we say that two position in S(uv) are in R′ relation,
if:

• they are corresponding positions of S(u) and S(v) or

• they are corresponding positions of different occurrences of some S(X)

Define R as a transitive closure of R′

Lemma 24. Consider a solution S and the R relation, let f be such that S is an f -
solution. Then

1. if there is a equivalence class corresponding containing no constant then S is not
length-minimal. Moreover, the symbols at positions in this class can be filled with
the same arbitrary string, in particular by ε.

2. For any two positions iRj an f -solution S ′ we have S ′(uv)[i] = S ′(uv)[j].

3. There is an f -solution if and only if no equivalence class contains two positions
corresponding to different constants.
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Proof. Rather obvious.

Lemma 25. Suppose that S is a length-minimal solution and w is a substring in S(u).
Then there is a substring w in S(u) or S(v) which overlaps with a cut.

spoiler, as this is an exercise. Look at R. What happens, when no letter in w touches a
cut? And what when it does?

In the following,we denote cuts by Greek letters. For a cut α let (α)k be the word
that extends 2k−1 to the left and right from α (truncate it, when this exceeds the S(U)
or S(v)).

Consider (α)k+1 and express it as

(α)k+1 = wk(α)kw′k

where |wk| = |w′k| = 2k−1.
By Lemma 25, we get that wk and w′k are substrings of some (β)k and (γ)k (note that

they are of length 2k−1, so when w overlaps α, it is within (α)k). Thus

(α)k+1 = (β)k[i . . j](α)k(γ)k[i′ . . j′]

Treating (α)k+1 as nonterminals, we obtain a composition systems for those cuts. Now,
for k = logN the (α)k+1 is actually the whole S(u). Thus, we have a composition system
of size O(n logN) for the smallest solution (and so also the same size for each variable).

6 Smallest grammar problem
We now investigate the question of constructing a small SLP for a given string.

The first two algorithms with an approximation ratio O(log(N/g)) were developed
simultaneously by Rytter [50] and Charikar et al. [4]. They followed a similar approach,
we first present Rytter’s approach as it is a bit easier to explain.

Rytter’s algorithm [50] applies the LZ77 compression to the input string and then
transforms the obtained LZ77 representation to an O(` log(N/`)) size grammar, where ` is
the size of the LZ77 representation. It is easy to show that ` ≤ g and as f(x) = x log(N/x)
is increasing, the bound O(g log(N/g)) on the size of the grammar follows (and so a bound
O(log(N/g)) on the approximation ratio). The crucial part of the construction is the
requirement that the derivation tree of the intermediate constructed grammar satisfies
the AVL condition. While enforcing this requirement is in fact easier than in the case of
the AVL search trees (as the internal nodes do not store any data), it remains involved
and non-trivial. Note that the final grammar for the input text is also AVL-balanced,
which makes is suitable for later processing.

Charikar et al. [4] followed more or less the same path, with a different condition
imposed on the grammar: it is required that the derivation tree is length-balanced, i.e.
for a rule X → Y Z the lengths of words generated by Y and Z are within a certain
multiplicative constant factor from each other. For such trees efficient implementation of
merging, splitting etc. operations were given (i.e. constructed from scratch) by the authors
and so the same running time as in the case of the AVL grammars was obtained. Since
all the operations are defined from scratch, the obtained algorithm is also quite involved
and the analysis is even more non-trivial.
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6.1 Basic notations
For a nonterminal A in an SLP G we use val(A) to denote the unique word generated
by A, val(G) is the word generated by the starting nonterminal of G. For an SLP G
by Tree(G) we denote the derivation tree of G, whose leaves are labelled with letters of
val(G) We sometimes label the inner nodes by the corresponding nonterminals.

Denote by height(G) the height of Tree(G) and by height(A) the height of the parse
tree with the root labelled by a nonterminal A.

6.2 AVL grammar
This section is essentially taken verbatim from [50].

AVL-grammars correspond to AVL-trees. We use the standard AVL-trees, for each
node v the balance of v, denoted balance(v) is the difference between the height of the left
and right subtrees of the subtree of T rooted at v. T is AVL-balanced i | balance(v)| ≤ 1
for each node v. We say that a grammar G is AVL-balanced if Tree(G) is AVL-balanced.

Lemma 26. If the grammar G is AVL-balanced then height(G) = O(log n), where n =
| val(G)|.

In each nonterminal A we keep also balance(A), no such information is stored in
terminals (as it is not defined there).

Lemma 27. Assume A, B are two nonterminals of AVL-balanced grammars. Then we
can construct in O(| height(A)− height(B)|) time a AVL-balanced grammar G such that
val(G) = val(A) · val(B). This introduces O(|height(A)− height(B)|) new nonterminals.

Proof. This is a simpler variant of standard AVL construction.
Note that the bound on the number of nonterminals follows from the bound on the

running time.
Let TA = Tree(A) and TB = Tree(B). Assume that height(TA) ≥ height(TB), other

case is symmetric. We follow the rightmost branch of TA, the heights of nodes decrease
each time at most by 2 in each step. We stop at a node v such that height(v)−height(TB) ∈
{0, 1}. Create a new node v′, attach it to father of v and attach to it v and root of TB The
resulting tree can be unbalanced (by at most 2) on the rightmost branch. Using standard
AVL rotation going up we perform at most O(|height(A)− height(B)) of them.

Note that the real parse-tree could be even of an exponential size, but we operate
only on right-most path and consider only O(|height(A) − height(B)) nodes on it, they
can be recovered from the SLP in constant time per nonterminal. Only occurrences of
nonterminals on the rightmost path (and their children) can be affected by the rotations.

6.3 From LZ77 to AVL grammar
Suppose we have an LZ-factorization w = f1f2 · · · fk. For each prefix f1f2 · · · fi we will
construct an AVL balanced grammar of size O(i logN).

Suppose that we have already constructed AVL-balanced for f1f2 · · · fi−1. If fi is
a letter a than we set G ← Cancat(G, a), which introduces O(logN) new nontermi-
nals. Otherwise we locate the segment corresponding to fi in the f1f2 · · · fi−1. As
G is balanced we can find an O(logN) nonterminals S1, S2, . . .St(i) of G such that
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fi = val(S1) val(S2) · · · val(St(i)). Denote by u1, u2, . . . the parents of those nodes. The
sequence S1, S2, . . .St is a grammar decomposition of fi. We concatenate the parts of the
grammar corresponding to this nonterminals with G, using Concat.

Observe that S1, S2, . . .St can be divided into two parts: S1, S2, . . .St1 and St1+1,
St1+2, . . .St such that heights of S1, S2, . . .St1 are non-decreasing and heights of St1+1,
St1+2, . . .St are non-increasing.

By easy induction it can be shown that the grammar Gi for S1, S2, . . . , Si (i ≤ t1) has
height at most height(ui). The induction basis is G1: the grammar for S1, for which this
is obvious (as S1 is a child of u1). Otherwise, when we concatenate Gi−1 and Si then by
standard analysis of the AVL trees it follows that the height of the grammar is at most
max(height(Gi−1), height(Si) + 1, and height(Gi−1) + 1 ≤ height(ui−1) + 1 ≤ height(ui)
and height(Si) + 1 ≤ height(ui).

Similar analysis can be made also for the non-increasing part of the sequence.
Thus for each merge the number of rotations is at most height(Si+1− height(Si)) and

this telescopically sums to O(logN)
The argument can be improved to O(log(n/g)) using appropriate modifications.

7 Generalising Recompression from word equations
to SLPs

We employ the following naming conventions for SLPs: its nonterminals are ordered
(without loss of generality: X1, X2, . . . , Xm), each nonterminal has exactly one production
and if Xj occurs in the production for Xi then j < i; we will use symbols A, B, etc. to
denote an SLP.

We can treat SLP as a system of word equations (in variables X1, . . . , Xm): production
Xi → αi corresponds to an equation Xi = αi; observe that such an equality is meaningful
as val(X) = val(α) (where val is naturally extended to strings of letters and nonterminals),
moreover, this is the unique solution of this equation. Thus the recompression technique
can be applied to SLPs as well (so far we used recompression only to one equation but
it easily generalises also to a system of equations). In particular, the space bound still
applies, which shows the SLPs considered during the algorithm have polynomial size.

It remains to deal with the effectiveness: the recompression for word equations is
highly non-deterministic, while algorithms for SLPs should, if possible, be deterministic
(in fact we usually want them to be efficient, i.e. we want as small polynomial degree as
possible).

Fortunately, it is easy to see that the non-determinism vanishes in case of SLPs—it is
needed to:

1. establish, whether val(Xi) = ε;

2. establish the first (and last) letter of val(Xi);

3. establish the length of a-prefix and suffix of val(Xi).

Each of those questions can be easily answered, assuming that we already know the
answers for Xj for j < i: let Xi → αi, then we first remove from αi all nonterminals Xj,
for which val(Xj) = ε, and then

1. val(Xi) = ε if and only if αi = ε;
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2. the first letter of val(Xi) is the first letter of αi or the first letter of val(Xj), if the
first symbol of αi is Xj;

3. the length of the a-prefix depends only on the letters a in αi and the lengths of
a-prefixes in nonterminals in αi.

All those conditions can be verified in linear time, thus the recompression for SLPs runs
in polynomial (in SLP’s size) time (so polynomial in total).

The first problem that we will consider in detail, is the equivalence of two SLPs, i.e.
whether they define the same word.

7.1 Size
Our implementation will use parallel block compression (so for all letters in parallel) and
pair compression for a all pairs from a partition.

To make the computation efficient, we run the algorithm in alternating phases:

• in the first it will use a partition so that the size of the encoded word is decreased
by a constant fraction

• in second it will use a partition so that the number of letters in the SLP is decreased
by a constant fraction.

In both cases the appropriate partition can be calculated in linear time.
In the former case this is an exercise, this requires that N = | val(X )| fits in O(1)

memory cells. In the latter case the proof is exactly the same as in the case of word
equations (as an SLP is a system of word equations).

This shows that

Lemma 28. The number of phases of the algorithm is O(logN).

We would like to also show a linear bound on the size of the SLP, but to this end we
need to know, how many letters are introduced into the SLP due to uncrossing.

Thus it remains ot show that each phase takes linear time.

7.2 Pair compression
We first uncross the partition, this can be done bottom-up; we give the code for one SLP,
but it is run on both.

Lemma 29. If Σ` and Σr are disjoint then after Pop(Σ`,Σr) no pair in Σ`Σr is crossing.
Furthermore, val(X ) has not changed.

Pop runs in time O(n+m) and introduces at most 4(n+m) letters to G.

Proof. Let βi be the string popped from αi to the left, i.e. a letter from Σr or ε and
similarly γi the string popped to the right. As before, by Xi, αi, etc. we denote the
nonterminals, rules, etc. in the input and X ′i, α′i, etc. the ones in the output. We use term
i-th rule (and i-th string) to denote the contemporary value of the rule for Xi and the
derived string. As a first step of the proof we show by a simple induction on i that:

1. When we have processed i-th rule then for j > i the j-th string is equal to val(Xi),
i.e. as in the input.
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Algorithm 7 Pop(Σ`,Σr): Popping letters from Σ` and Σr

1: for i← 1 . . n− 1 do
2: let Xi → αi and b the first letter of αi
3: if b ∈ Σr then . Left-popping
4: remove leading b from αi
5: replace Xi in G’s rules by bXi

6: if αi = ε then
7: remove Xi from rules of G . Xi is empty
8: else
9: let a be the last letter of αi
10: if a ∈ Σ` then . Right-popping
11: remove ending a from αi
12: replace Xi in G’s rules by Xia
13: if αi = ε then
14: remove Xi from rules of G . Xi is empty

2. βi 6= ε if and only if val(Xi) begins with a letter from Σr; additionally, this letter is
βi.

3. γi 6= ε if and only if val(Xi) ends with a letter from Σ`; additionally, this letter is
γi.

4. val(Xi) = βi val(X ′i)γi.

To see 1 observe that if we remove βi from the front of i-th rule, we also replace Xi with
βiXi, the same applies to popping letters to the right. Also, Xi is removed from the rules
if and only if i-th string is ε. To see 2 note that by induction assumption on 1 before
considering i-th rule, the i-th string is val(Xi). So if i-th rule begins with a letter, it is
the first letter of val(Xi) and we are done (as it is popped). The remaining case is that
the i-th rule begins with a nonterminal, say X ′j. But this means that we did not pop a
letter to the left from j-th rule when it was considered. So by 4 the val(X ′j) and val(Xj)
begin with the same letter, which is the same as the first letter of val(Xi), so it is in Σr,
contradiction with 2 for Xj. The same analysis applies also to 3. Lastly, for 4 note that
i-th string does not change when we consider j 6= i. So the only changes to i-th rule are
done when the algorithm considers it and the claim is obvious.

Returning to the main claim, we want to show that it is impossible that after Pop
there is a crossing pair, i.e. that one of (CP 1)–(CP 3) holds. Suppose for the sake of
contradiction that (CP 1) holds, i.e. that for some j < i the aX ′j occurs in the rule for X ′i,
where val(X ′j) begins with b ∈ Σr. By 4 we know that βj val(X ′j)γj = val(Xj). So val(Xj)
begins with a letter from Σr: if βj is a letter than it is from Σr by 1 and if not than we
know that val(X ′j) begins with a letter from Σr. Then by 2 we popped a letter from Xj

and so βj is a letter. But then the letter to the left of X ′j is this βj, and we assume that
it is from Σ`, contradiction, as Σ` ∩ Σr = ∅.

The other cases are shown in the same way.
Concerning the running time note that we do not need to read the whole G: it is

enough to read the first and last letter in each rule. To perform the replacement, for each
nonterminal Xi we keep a list of pointers to its occurrences, so that Xi can be replaced
with aXib in O(1) time, and there are at most 2(n + m) occurrences of nonterminals in
G.
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Note that at most 2 letters are popped from each nonterminal and so at most 4(n+m)
are introduced to G.

After Pop(Σ`,Σr) the pairs ab ∈ Σ`Σr are no longer crossing, we can compress them.
Since such pairs do not overlap, this can be done in parallel in timeO(|X |), using RadixSort
for grouping.

Concerning the block compression, we first uncross all blocks, in a bottom up way.

Algorithm 8 CutPrefSuff: removing crossing blocks.
1: for i← 1 . .m+ n, except m and n+m do
2: let Xi → αi be the production for Xi and a its first letter
3: calculate and remove the a-prefix a`i of αi
4: replace each Xi in rule’s bodies by a`iXi

5: if val(Xi) = ε then
6: remove Xi from the rules’ bodies
7: else
8: let b be the last letter of αi
9: calculate and remove the b-suffix bri of αi

10: replace each Xi in rule’s bodies by Xib
ri

11: if val(Xi) = ε then
12: remove Xi from the rules’ bodies

Lemma 30. After CutPrefSuff there are no crossing blocks. This algorithm and following
block compression can be performed in time O(|G| + (m + n) log(m + n)). Together they
introduce at most 4 new letters to each rule.

Proof. We first show the first claim of the lemma, i.e. that after CutPrefSuff there are no
letters with crossing blocks. This follows from the following observations:

1. When Xi is processed by CutPrefSuff, val(Xj) for j 6= i is not changed.

2. When CutPrefSuff considers Xi with a rule Xi → αi such that val(Xi) = a`wbr,
where w does not start with a and does not end with b and `, r > 0, then αi has an
explicit a` prefix and explicit br suffix. If val(Xi) = a` then αi = a`.

3. When CutPrefSuff replaces Xi with a`iXib
ri then afterwards the only letter to the

right of Xi in the rules is b, similarly, the only letter to the left is a.

4. After CutPrefSuff considered Xi, and Xi is to the right (left) of a then a is not the
first (last, respectively) letter of val(Xi).

As in Lemma 29, all properties follow by a simple induction on the number i of the
considered nonterminal.

We infer from these observations that after CutPrefSuff there are no crossing blocks
in G. Suppose for the sake of contradiction, that there are; let a be the letter that has
a crossing block. We consider only the case of (CP 1), i.e. when there is Xj such that
aXj occurs in some rule and val(Xj) begins with a. Note that by observation 2 when
CutPrefSuff considered Xj then it replaced it with b`Xjc

r for some letters b and c. By
observation 3 the letter to the left of Xj in the rule for Xi is not changed by CutPrefSuff
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afterwards (except that it can be popped when considering some other nonterminal) hence
b = a. Lastly, by observation 4 the first letter of val(Xj) is not b = a, contradiction.

CutPrefSuff is performed in O(|G|) time: we represent block a` as a pair (a, `), then
the length of the a-prefix (b-suffix) is calculated simply by reading the rule until a different
letter is read (note that the lengths of the blocks fit in one machine word). Since there
are at most 4 symbols introduced by CutPrefSuff to the rule, this takes O(|G| + n + m)
time. The replacement of Xi by a`iXib

ri is done at most twice inside one rule and so takes
in total O(n+m) time.

Note that right after CutPrefSuff it might be that there are neighbouring blocks of the
same letter in the rules of G. However, we can easily replace such neighbouring blocks by
one block of appropriate length in one reading of G, in time O(|G|).

Concerning the compression of the blocks of letters: we read the description of X .
Whenever we spot a maximal block a` for some letter a, we add a triple (a, `, p) to the
list, where p is the pointer to this occurrence of the block in X . Notice, that as there are
no crossing blocks, the nonterminals (and end or rules) count for termination of maximal
blocks.

After reading the whole X we sort these pairs lexicographically, O(n log n) time. Now,
for a fixed letter a, we use the pointers to localise a’s blocks in the rules and we replace
each of its maximal block of length ` > 1 by a fresh letter. Since the blocks of a are sorted
according to their length, all blocks of the same length are consecutive on the list, and
replacing them by the same letter is easily done.

Since we already know that there are no letters with crossing block, this procedure
implements the block compression.

Now we can infer the linear bound on the kept SLP.

Lemma 31. During the recompression for SLPs, |X | = O(n).

The proof is straightforward: we show that the size of the words that were in a rule
at the beginning of the phase shorten by a constant factor (in this phase). On the other
hand, only Pop and CutPrefSuff introduce new letters to the rules and it can be estimated,
that in total they introduced O(1) letters to a rule in each phase. Thus, bound O(1) on
each rules’ length holds.

THis yields a running time for checking the equivalence of SLPs of O(nb logN log n).
In order to replace the running time byO(nb logN) it is enough to ensure that compression
of blocks runs in (amortised) linear time.

7.3 Faster block compression
Length representation The intuition is as follows: while the a blocks can have expo-
nential length, most of them do not differ much, as they are obtained by concatenating
letters a that occur explicitly in the grammar. Such concatenations can in total increase
the lengths of a blocks by |A|. Still, there are blocks of exponential length: these ‘long’
blocks are created only when two blocks coming from two different non-terminals are
concatenated. However, there are only n concatenations of nonterminals (one per pro-
duction), and so the total number of ‘long’ blocks ‘should be’ at most n. Of course, the
two mentioned ways of obtaining blocks can mix, and our representation takes this into
the account: we represent each block as a concatenation of two blocks: ‘long’ one and
‘short’ one:
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• the ‘long’ corresponds to a block obtained as a concatenation of two nonterminals,
such a long block is common for many blocks of letters;

• the ‘short’ one corresponds to concatenations of letters occurring explicitly in A,
this length is associated with the given block alone.

More formally: we store a list of common lengths, i.e. the lengths of common long
blocks of letters. Each block-length ` is represented as a sum c + o, where c is one
of the common lengths and o (offset) is a number associated with `. Internally, ` is
represented as a number o and a pointer to c. One of the common lengths is 0. In the
intermediate construction some blocks can be represented without the common length,
which is different than having a common length 0. The construction will guarantee that
each offset is at most |A|.

Creating a common length

During the blocks compression: each prefix and suffix popped from nonterminals inside
the rule is represented as a common length and an offset in the following way (we add
to them the common length 0 if they are represented without a common length). Then
we calculate the lengths of blocks inside the rule for Xi: the explicit letter inside the rule
simply increase the offset, the blocks that are formed solely from explicit letters do not
have a common length. If any length of the block is represented as a sum of two common
lengths (and perhaps some offset), we create a new common length for it.

Before proceeding, let us note on how large the offsets may be and how many of them
are.

Lemma 32. There are at most n+ 1 common lengths. There are at most |X |+ n offsets
in total and largest offset is at most |X |.

Proof. One common length is 0. Each other common length is created inside a rule for a
nonterminal. Furthermore, at most one common length can be created inside a single rule:
for a new common length c to be created there have to be two nonterminals Xj and Xk

inside a rule before popping and the block ac is created between those two nonterminals.
Creation of an offset corresponds to an explicit letter in A, so there are at most |A|

offsets created.
An offset is created or increased, when an explicit letter a (not in a compressed form)

is concatenated to the block of as. One letter is used once for this purpose and there is
no other way to increase an offset, so the maximal of them is at most |A|.

Comparing lengths

Since we intend to sort the lengths, we need to compare the lengths of two numbers
represented as common lengths with offsets, say o + c and o′ + c′. Since the common
lengths are so large, we expect that we can compare them lexicographically, i.e.

o+ c ≥ o′ + c′ ⇐⇒

c > c′, or
c = c′ ∧ o ≥ o′ .

(2)

Furthermore (2) allows a simple way of sorting the lengths of maximal blocks:

• we first sort the common lengths (by their values)
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• then for each common length we (separately) sort the offsets assigned to this common
length.

While (2) need not to be initially true, we can apply a couple of patches that make it
true. Before that however, we need the common lengths to be sorted. We sort them using
RadixSort and treating each common length as a series of bits. Although this looks more
expensive, it allows a nice amortised analysis as demonstrated later, see Lemma 36.

Lemma 33. Let c1, c2, . . . , ck be the common lengths. We can sort them in O(k +∑k
i=1 log(ci)).

The sorting is done by a standard implementation of RadixSort that sorts the numbers
of different lengths.

The problem with (2) is that even though ci and cj are so large, it can still happen
that |ci − cj| is small. We fix this naively: first we remove some common lengths so
that ci+1 − ci > |A|. A simple greedy algorithm does the job in linear time. Since
common lengths are removed, we need to change the representations of lengths: when o
was assigned to removed c consider the ci and ci+1 that remained in the sequence and
ci < c < ci+1. We reassign ` = c+ o to either ci or ci+1: if o+ c ≥ ci+1 then we reassign it
to ci+1 and otherwise to ci. It can be shown that in this way all offsets are at most 2|A|
and that (2) holds afterwards.

Lemma 34. Given a sorted list of common lengths c1 ≤ c2 ≤ · · · ≤ ck we can in
O(∑k

i=1 log(ci) +k) time choose its sublist and reassign offsets (preserving the represented
lengths) such that all offsets are at most 2|A| and (2) holds.

Proof. We include c0 = 0 for simplicity of presentation.
Firstly, we calculate the differences ∆ between consecutive cs and store those that are

at most |A|. This can be done in O(∑k
i=1 log(ci) + k) time: for two consecutive ci+1 and

ci we calculate their difference in time at most O(log ci+1 + 1).
Given a sorted list c0 ≤ c1 ≤ c2 ≤ · · · ≤ ck of common lengths and their differences

∆1,∆i, . . . we choose its subsequence 0 = c′0 ≤ c′1 ≤ c′2 ≤ · · · ≤ c′k′ such that the distance
between any two consecutive common lengths in it is at least |A|, i.e. c′i+1 − c′i ≤ |GA|.
This is done naively: we choose c0 = 0 and then go through the list. Having last chosen
c we look for the smallest common length c′ such that c′ − c > |A| and choose this c′ as
the next element. The condition c′ − c > |A| is verified by summing up appropriate ∆s.
Since there are k common lengths in the beginning and adding defined ∆s can be done
in O(1) time, this can be done in O(k) time. As the last step, we also update the ∆s, so
that they still show the difference between consecutive common lengths.

For any removed c such that ci < c < ci+1 we reassign offsets assigned to c as described
above: for o assigned to c, if c+o ≥ ci+1 (which can be equivalently stated as ci+1−c ≤ o)
then we reassign o to ci+1, otherwise to ci. As o ≤ |A|, this condition can be verified using
∆s alone.

When o is reassigned to ci then c − ci ≤ |A| (as c was removed) and if to ci+1 then
ci+1 − c ≤ o ≤ |A|. Thus, in any case the new offset o′ can be calculated using ∆s and
o, so in constant time. As there are O(|A|) offsets, see Lemma 32, all reassigning takes
O(|A|) time in total.

Let o′ be the offset after the reassignment. Then

• o′ ≤ 2|A|: since o ≤ |A| and the only way to increase it is to reassign it to ci. Since
c is removed, it holds that c− ci ≤ |G|. Hence o′ = o+ (c− ci) ≤ |A|+ |A|.
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• When oi is assigned to ci then oi+ ci < ci+1: indeed, if oi was reassigned from c > ci
then by definition ci + oi = c+ o < ci+1; if oi was originally assigned to ci or it was
reassigned from ci−1 then oi < |G| and so ci + oi ≤ ci + |A| < ci+1.

Note that the second item above implies (2). Hence the claim of the Lemma holds.

Now, since (2) holds, in order to sort all lengths it is enough to sort the offsets within
groups. We do it simultaneously for all groups: offset oj assigned to common length ci
is represented as (i, oj), we sort these pairs lexicographically, using RadixSort. Since the
offsets are at most 2|A| and there are at most |A| of them and there are at most O(n)
common lengths (see Lemma 32 for all those three estimations) RadixSort sorts them in
O(|A|) time.

Lemma 35. When common lengths whose bitvectors are sorted and satisfy (2), sorting
all lengths of blocks takes O(|A|) time.

It is left to bound the time needed to identify and sort the common lengths. Due to
Lemma 33 and Lemma 34 this cost is O(k+∑k

i=1 log(ci)), where c1, . . . , ck are all common
lengths. Hence we can assign O(1 + log(c)) cost to a common length c and redirect this
cost towards the rule, in which c was created. The O(1) cost for maintaining the common
length 0 is redirected towards the rule for X1. We estimate the total such cost over the
whole run.

Lemma 36. For a single rule, the cost redirected from common lengths towards this rule
during the whole run is O(logN).

Proof. First of all, we can consider O(log(c)) instead of O(1 + log(c)): the 1 is added
O(1) times per phase and there are O(logN) many phases. Secondly, the cost associated
with the common length 0 is O(1) per phase, so O(logN) in total. As said, we associate
it with the rule for X1.

Each other common length c > 0 (of some a block) is created inside a rule for some Xi,
let this rule be Xi → uXjvXkw (by definition two nonterminals in a rule are needed for
a creation of a new common length). Then val(Xj) right-popped an a-suffix and val(Xk)
left-popped an a-prefix, moreover, v ∈ a∗.

If the creation of the common length c removes a nonterminal from the rule for Xi

then this happens at most twice for this rule and the associated cost is O(logN).
So consider the case in which no nonterminal is removed from the rule during the

creation of a new common length c of an a-block. Consider all such creations of powers
in a rule for Xi. Let the consecutive letters, whose blocks were compressed, be a(1), a(2),
. . . , a(`) and the corresponding blocks’ lengths c1, c2, . . . , c` (the c` repetitions of a(`) are
replaced by a(`+1)). Observe, that a(i+1) does not need to be a(i)

ci
, as there might have

been some other compression in between.
Define weight: for a letter it is the length of the represented string in the original

instance. Consider the weight of the strings between Xj and Xk. Clearly, after the i-th
blocks compression it is exactly ci · w(a(i)). We show that

w(a(i+1)) ≥ ci w(a(i)) . (3)

Right after the i-th blocks compression the string between Xj and Xk is simply a(i)
ci
.

After some operations, this string consists of ci+1 letters a(i+1). All operations do not
remove the symbols from the string between two nonterminals in a rule (removing of
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leading aR or ending aL from t cannot affect letters between nonterminals). Recall that
we can think of the recompression as building of an SLP for p and t. In particular, one of
the letters a(i+1) derives a(i)

ci
(which is the letter that replaced the block of ci letters a(i)).

Since in the derivation the weight of the right and left hand sides are equal, it holds that

w(a(i+1)) ≥ w(a(i)
ci

) = ci · w(a(i)) .

Thus w(a(`)) ≥ ∏`−1
i=1 ci. Recall that we consider only the cost of letters that occur in

the pattern. Hence, a(`) (or some heavier letter) occurs in the pattern, and soM ≥ w(a(`))
Hence,

log(N) ≥ log
(∏̀
i=1

ci

)
=
∑̀
i=1

log ci.

8 Approximation of the smallest SLP using recom-
pression

We have already given a procedure that turns an explicitly given string into an SLP, see
Algorithm 1, and proved during classes that it runs in linear time (with some assumptions
on the computational model). We now show that it also yields a good approximation ratio.

To bound the cost of representation of letters introduced during the construction of
the grammar, we start with the smallest grammar G generating (the input) t and then
modify the grammar so that it generates t (i.e. the current string kept by texttoSLP) after
each of the compression steps. Then the cost of representing the introduced letters is
paid by various credits assigned to G. Hence, instead of the actual representation cost,
which is difficult to estimate, we calculate the total value of issued credit. Note that this
is entirely a mental experiment for the purpose of the analysis, as G is not stored or even
known to the algorithm. We just perform some changes on it depending on the texttoSLP
actions.

Pair compression corresponds to a ‘production’

c→ ab (4a)

and similarly replacing a` with a` corresponds to a ‘production’

a` → a` . (4b)

8.1 Intuition and road map
8.1.1 Modifying the grammar

The modification on G are the standard one: when we perform the block compression
on the text, we (as a mental experiment) uncross all blocks and then perform the block
compression on G. Similarly, when we perform the pair compression (according to appro-
priate partition) we first uncross all pairs from this partition and then perform the pair
compression (according to this partition).

The crucial part of the analysis is the modification of G according to the compression
performed on t. The terms nonterminal, rules, etc. always address the optimal grammar
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G (or its transformed version). To avoid confusion, we do not use terms ‘production’
and ‘nonterminal’ for a that replaced some substring in t (even though this is formally
a nonterminal of the constructed grammar). Still, when a new ‘letter’ a is introduced to
t we need to estimate the length of the ‘productions’ in the constructed grammar that
are needed for a (note that we can of course use all letters previously used in t). The
‘productions’ introduced for a is called a representation of a letter a, the sum of lengths
of those ‘productions’ is a cost of representation of a letter a (or simply: representation
cost). in production (4a) then the representation cost is 2 (as we have only one rule
c → ab) and in a rule (4b) we have a cost `; the latter cost can be significantly reduced,
for instance for a12 we can have a representation cost of 8 instead of 12, when we use a
subgrammar a2 → aa, a3 → a2a, a6 → a3a3 and a12 → a6a6.

8.1.2 Block compression

So far we have not explained, how exactly we represent the letters a`.

Lemma 37. Given a list 1 < `1 < `2 < · · · < `k we can represent letters a`1 , a`2 , . . . , a`k
that replace blocks a`1 , a`2 , . . . , a`k with a cost

O
(

k∑
i=1

[1 + log(`i − `i−1)]
)

,

where `0 = 0.

Proof. Firstly observe that without loss of generality we may assume that the list `1, `2, . . . , `k
is given to us in a sorted way, as it can be easily obtained from the sorted list of occurrences
of blocks. For simplicity define `0 = 0 and let ` = maxki=1(`i − `i−1).

In the following, we shall define rules for certain new letters am, each of them ‘derives’
am (in other words, am represents am). For each 1 ≤ i ≤ log ` introduce a new letter a2i ,
defined as a2i → a2i−1a2i−1 , where a1 simply denotes a. Clearly a2i represents a2i and the
representation cost summed over all i ≤ ` is 2 log ` = O(log `).

Now introduce new letters a`i−`i−1 for each i > 0, which shall represent a`i−`i−1 . They
are represented using the binary expansion, i.e. by concatenation of at most 1 + log(`i −
`i−1) from among the letters a1, a2, a4, . . . , a2blog(`i−`i−1)c . This has a representation cost
O(∑k

i=1[1 + log(`i − `i−1)]).
Lastly, each a`i is represented as a`i → a`i−`i−1a`i−1 , which has a total representation

cost O(k).
Summing up O(log `), O(∑k

i=1[1 + log(`i − `i−1)]) and O(k) we obtain O(∑k
i=1[1 +

log(`i − `i−1)]).

8.1.3 Paying the representation cost: credit

With each explicit letter we associate two units of credit and pay most of the cost of
representing the letters introduced during texttoSLP with these credits. More formally:
when the algorithm modifies G and in the process it creates an occurrence of a letter, we
issue (or pay) 2 new credits. On the other hand, if we do a compression step in G, then we
remove some occurrences of letters. The credit associated with these occurrences is then
released and can be used to pay for the representation cost of the new letters introduced
by the compression step as well as for the credit for the newly introduced letters (so that
the algorithm does not issue new credit). For pair compression the released credit indeed
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suffices to pay both the credit of the new letters occurrences and their representation cost,
but for chain compression the released credit does not suffice, as it is not enough to pay
the representation cost. Here we need some extra amount that is estimated separately
later on in Section 8.3. In the end, the total cost is the sum of credit that was issued
during the modifications of G plus the value that we estimate separately in Section 8.3.

8.1.4 Additional cost

The additional cost of representing letters during the block compression is estimated
separately. In most cases, the cost of creating blocks can be cover by released credit, the
only exception is when two long blocks of a are joined together. This can happen only
between nonterminals in some rule of G and then the additional cost is charged towards
this rule. Then we show that one rule has only O(logN) cost charged to it: if we charge∑
i log `i cost to a rule, then it originally derived a word of length at least ∏i `i. This is

described in detail in Section 8.3.

8.2 Estimation of credit
We now analyse the credit during the pair compression and the amount of credit that is
issued during uncrossing.

Lemma 38. During pair compression (for non-crossing pairs) the new letters introduced
to G and their representation costs are covered by the released credit.

This is obvious: each occurrence of an explicit pair in the grammar has 4 units of
credit, after the compression they have 2 units of credit and the 2 released credit is used
for the representation cost.

Lemma 39. Pair uncrossing introduces 2m credit, where m is the number of occurrences
of nonterminals in G.

We introduce at most two letters per nonterminal
The case of block compression is a little more delicate.

Lemma 40. Uncrossing of blocks followed by blocks compression introduces 2m credit,
where m is the number of occurrences of nonterminals in G.

While we can pop many letters, all of them are compressed into a single one during
the blocks compression.

Lemma 41. The total amount of issued credit is O(g log n).

There is a linear amount of credit issued per phase and there areO(log n) many phases.
This ends the analysis for pair compression.

8.3 Calculating the cost of representing letters in block com-
pression

The issued credit is enough to pay the 2 credit for occurrences of letters introduced during
texttoSLP and the released credit is enough to pay the credit of the letters introduced
during the pair compression and their representation cost. However, credit alone cannot
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cover the representation cost of letters replacing blocks. The appropriate analysis is
presented in this section. The overall plan is as follows: firstly, we define a scheme of
representing the letters based on the grammar G and the way G is changed by BlockComp
(the G-based representation). Then for such a representation schema, we show that the
cost of representation isO(g logN). Lastly, it is proved that the actual cost of representing
the letters by texttoSLP (the texttoSLP-based representation) is smaller than the G-based
one, hence it is also O(g logN).

8.3.1 G-based representation

The intuition is as follows: while the a blocks can have exponential length, most of them
do not differ much, as in most cases the new blocks are obtained by concatenating letters
a that occur explicitly in the grammar and in such a case the released credit can be
used to pay for the representation cost. This does not apply when the new block is
obtained by concatenating two different blocks of a (popped from nonterminals) inside a
rule. However, this cannot happen too often: when blocks of length p1, p2, . . . , p` are
compressed (at the cost of O

(∑`
i=1 (1 + log pi)

)
= O(log(∏`

i=1 pi)), as each pi ≥ 2), the
length of the corresponding text in the input text is ∏`

i=1 pi, which is at most N . Thus
O
(∑`

i=1(1 + log pi)
)

= O(log∏`
i=1 pi) = O(logN) cost per nonterminal is scored.

Getting back to the representation of letters: we create a new letter for each a block in
the rule Xi → αi after uncrossing of blocks popped prefixes and suffixes from X1, . . . , Xi−1
but before it popped letters fromXi. (We add the artificial empty block ε to streamline the
later description and analysis.) Such a block is a power if it is obtained by concatenation
of two a-blocks popped from nonterminals inside a rule (and perhaps some other explicit
letters a), note that this power may be then popped from a rule (as it may be a prefix
or suffix in this rule). This implies that in the rule Xi → uXjvXkw the popped suffix of
Xj and popped prefix of Xk are blocks of the same letter, say a, and furthermore v ∈ a∗.
Note that it might be that one (or both) of Xj and Xk were removed in the process (in
this case the power can be popped from a rule as well). For each block a` that is not
a power we may uniquely identify another block ak (perhaps ε, not necessarily a power)
such that a` was obtained by concatenating `− k explicit letters to ak in some rule.

Lemma 42. For each block a` represented in the G-based representation that is not a
power there is block ak (perhaps k = 0) such that ak is also represented in G-based repre-
sentation and a` was obtained in a rule by concatenating `− k explicit letters that existed
in the rule to ak.

Note that the block ak is not necessarily unique: it might be that there are several a`
blocks in G which are obtained as different concatenations of ak and `−k explicit letters.

Proof. Let a` be created in the rule for Xi, after popping prefixes and suffixes from
X1, . . . , Xi−1. Consider, how many popped prefixes and suffixes take part in this a`.

If two, then it is a power, contradiction.
If one, then let the popped prefix (or suffix) be ak. Since it was popped, say from Xj,

then ak was a maximal block in Xj before popping, so it is represented as well. Then in
the rule for Xi the a` is obtained by concatenating ` − k letters a to ak. None of those
letters come from popped prefixes and suffixes, so they are all explicit letters that were
present in this rule.
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If there are none popped prefixes and suffixes that are part of this a`, then all its
letters are explicit letters from the rule for Xi, and we treat it as a concatenation of k
explicit letters to ε.

We represent the blocks as follows:

1. for a block a` that is a power we represent a` using the binary expansion, which
costs O(1 + log `);

2. for a block a` that is obtained by concatenating `− k explicit letters to a block ak
(see Lemma 42) we represent a` as ak a · · · a︸ ︷︷ ︸

`−k times

, which has a representation cost of

`− k+ 1, this cost is covered by the 2(`− k) ≥ `− k+ 1 credit released by the `− k
explicit letters a. Note that the credit released by those letters was not used for any
other purpose. (Furthermore recall that the 2 units of credit per occurrence of a`
in the rules of grammar are already covered by the credit issued by BlockComp.)

We refer to cost in 1 as the cost of representing powers and redirect this cost to the
nonterminal in whose rule this power is created. The cost in 2, as marked there, is
covered by released credit.

8.3.2 Cost of G-based representation

We now estimate the cost of representing powers. The idea is that if nonterminal Xi is
charged the cost of representing powers of length p1, p2, . . . , p`, which have representation
cost O(∑`

i=1 1 + log pi) = O(log(∏`
i=1 pi)), then in the input this nonterminal generated

a text of length at least p1 · p2 · · · p` ≤ N and so the total cost of representing powers is
O(logN) (per nonterminal). This is formalised in the lemma below.

Lemma 43. The total cost of representing powers by G-based representation charged
towards a single rule is O(logN).

This is shown in the same way as in Lemma 36.

Corollary 44. The cost of G-based representation is O(g + g logN).

Proof. Concerning the cost of representing powers, by Lemma 43 we redirect at most
O(logN) against each of the m ≤ g rules of G. The cost of representing non-powers
is covered by the released credit; the initial value of credit is at most 2g and at most
O(g logN) credit is issued during the whole run of texttoSLP, which ends the proof.

8.3.3 Comparing the G-based representation cost and texttoSLP-based repre-
sentation cost

We now show that the cost of texttoSLP-based representation is at most as high as G-
based one. We first represent G-based representation cost using a weighted graph GG,
such that the G-based representation is (up to a constant factor) w(GG), i.e. the sum of
weights of edges of GG.

Lemma 45. The cost of G-based representation of all blocks is Θ(w(GG)), where nodes
of GG are labelled with blocks represented in the G-based representation and edge from a`

to ak, where ` > k, has weight ` − k or 1 + log(` − k) (in this case additionally k = 0).
Each node (other than a and ε) has at least one outgoing edge.
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The former corresponds to the representation cost covered by the released credit while
the latter to the cost of representing powers.

Proof. We give a construction of the graph GG.
Fix the letter a and consider any of the blocks a` that is represented by G, we put

a node a` in GG. Note that a single a` may be represented in many ways: different
occurrences of a` are replaced with a` and may be represented in different ways (or even
twice in the same way), this means that GG may have more than one outgoing edge per
node.

• when a` is a power, we create an edge from the node labelled with a` to ε, the weight
is 1 + log ` (recall that this is the cost of representing this power);

• when a` is represented as a concatenation of `− k letters to ak, we create and edge
from the node a` to ak, the weight is `−k (this is the cost of representing this block;
it was paid by the credit on the `− k explicit letters a).

Then the sum of the weight of the created graph is a cost of representing the blocks using
the G-based representation (up to a constant factor).

Similarly, the cost of texttoSLP-based representation has a graph representation GtexttoSLP.

Lemma 46. The cost of texttoSLP-representation for blocks of a letter a is Θ(w(GtexttoSLP)),
where the nodes of GtexttoSLP are labelled with blocks represented by texttoSLP-representation
and it has an edge from a` to ak if and only if ` and k are two consecutive lengths of a-
blocks. Such an edge has weight 1 + log(`− k).

Proof. Observe that this is a straightforward consequence of the way the blocks are rep-
resented: Lemma 37 guarantees that when blocks a`1 , a`2 , . . . , a`k (where 1 < `1 < `2 <
· · · < `k) are represented the texttoSLP-representation cost is O(∑k

i=1[1 + log(`i − `i−1)]),
so we can assign cost 1 + log(`i − `i−1) to a`i (and make it the weight on the edge to the
previous block).

We now show that GG can be transformed to GtexttoSLP without increasing the sum of
weights of the edges. This is done by simple redirection of edges and changing their cost.

Lemma 47. GG can be transformed to GtexttoSLP without increasing the sum of weights of
the edges.

Proof. Fix a letter a, we show how to transform the subgraph of GG induced by nodes
labelled with blocks of a to the corresponding subgraph of GtexttoSLP, without increasing
the sum of weights.

Firstly, let us sort the nodes according to the increasing length of the blocks. For each
node a`, if it has many edges, we delete all except one and then we redirect this edge to
a`’s direct predecessor (say ak) and label it with a cost 1+log(`−k). This cannot increase
the sum of weights of edges:

• deleting does not increase the sum of weights;

• if a` has an edge to ε with weight 1 + log ` then 1 + log ` ≥ 1 + log(`− k);

• otherwise it had an edge to some k′ ≤ k with a weight `− k′. Then 1 + log(`− k) ≤
`− k ≤ `− k′, as claimed (note that 1 + log x ≤ x for x ≥ 1).
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Some blocks labelling nodes in GG perhaps do not label the nodes in GtexttoSLP. For such
a block a` we remove its node a` and redirect its unique incoming edge to its predecessor,
say a`′ , changing the weight appropriately. Since 1 + log(x) + 1 + log(y) ≥ 1 + log(x+ y)
when x, y ≥ 1, we do not increase the total weight.

It is left to observe that if a node labelled with a` exists in GtexttoSLP then it also exists
in GG, i.e. all blocks represented in texttoSLP occur in t. After uncrossing of blocks there
are no crossing blocks. So any maximal block in t (i.e. one represented by texttoSLP-based
representation) is also a maximal block a` in some rule (after uncrossing of blocks), say
in Xi. But then this block is present in Xi also just before uncrossing of blocks on Xi and
so it is represented by G-based representation.

In this way we obtained a graph corresponding to the texttoSLP-based representation.

Corollary 48. The total cost of texttoSLP-representation is O(g log n).

Proof. By Lemma 47 it is enough to show this for the G-based representation, which holds
by Corollary 44

9 Equality testing: similar approach
An approach that somehow paved the way to recompression was introduced by Mehlhorn,
Sundar, and Uhrig [41] in their work on data structures for equality testing of dynamic
strings.

In this setting, we want to create a data structure that allows the following operations.

Makesequence(s, a) Creates a sequence consisting of one letter a

Equal(s1, s2) tests the equality of strings s1 and s2

Concatenate(s1, s2) creates a new sequence, the concatenation of s1 and s2, and inserts
it into the structure;

Split(s, i) Splits the sequence s at position i and inserts two resulting sequences into the
data structure

All operations preserve previous strings, i.e. Concatenate and Split do not remove the
original sequences from the data structure (so the operations are persistent).

Note that the SLP equivalence can be easily tested using such a data structure; in
fact, this works for equivalence of composition systems.

Using their data structure (with a modified approach by Alstrup, Brodal, and Rauhe
[2]) we obtain the following running times

Theorem 49. There exists an implementation of the data structure that supports the
above operations in times:

(Where: n is the length of the strings on which we operate, m is the number of so-far
performed operations, N is the bound on the size of the numbers on which we operate)

Makesequence O(log min(N,m))

Equal O(1)
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Concatenate, Split O(log n logm log∗N)

With appropriate implementation, this data structure also supports the calculation of
the LCP of two given strings in O(log n) time. This is not covered in the lecture.

The main idea is to create a signature for each string in the data structure. The
signatures are build in phases, and the i-th signature is used to produce the i+ 1st. Thus
we can see the whole process as building an SLP for the sequences, with the additional
assumption, that we want the SLPs to be equal for the same strings, even they are
obtained in different way.

The signature is built using two alternating operations:

• block encoding: the first one replaces each block a` with (a, `) (treated as one
symbol)

• the second groups the letters into segments of length between 2 and 4 and then
replaces the segments with new symbols

In this way signature building can be seen as iterative deterministic hashing. The impor-
tant property is that a signatures are different for different texts.

Another property is the locality whether a letter begins or ends a fragments depends
only on O(log∗N) neighbours. In this way the update algorithms for concatenate and
split need to perform only local changes on each of O(log n) levels. Furthermore, they
have to handle O(log ∗N) elements on each level.

This is based on the following marking algorithm

Lemma 50. For any string of numbers (whose two consecutive elements are different)
with values in {0, . . . , N} there is a function that assigns to each element 0 or 1 such that

• the assignment depends only on ∆ = log∗N + 11 neighbouring elements in the
sequence;

• no two consecutive elements are assigned 1

• there is at least one 1 assigned to each three consecutive elements.

Clearly such an assignment can be used for denoting fragments: we end each fragment
at first 1.

9.1 How to calculate assignment
This is based on [6, 18].

Informally it is done as follows. We first compute a valid logN -coloring. Afterwards
we replace the elements in the list by their colors, consider the set of colors to be the new
universe, and iterate the coloring procedure. After O(log∗N) iterations we get a valid
six-coloring which we then reduce by a different procedure to a three-coloring which is
then used to generate the assignment.

Identify each ai (and its color) with its binary representation (which has O(logN)
bits). The bits are numbered from zero and the 0-th element is always assigned 0. In
each iteration every element ai is assigned a new color by concatenating the number of
the bit, where the old color of ai−1 and ai differ and the value of this bit. (For the a0 we
always assign 0. )
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Lemma 51. This procedure produces a valid 6-coloring and has O(log∗N) many itera-
tions.

It is easy to check that indeed this produces a valid coloring and that finally we end
up with a 6-coloring. (Exercise)

For the number of phases note that in each phase colors are reduced from k to 2 log k+1,
so the process terminates after O(log∗ n) many phases.

In particular, the final colour of the node depends only on its O(log∗N) many neigh-
bours.

To go from 6 coloring to 3 coloring we replace each color 3, 4, 5 by the smallest among
0, 1, 2 that is not assigned to its neighbours. Then we make the assignment of 0 and 1 by
assigning 1 iff the color is a local maximum. It is easy to check that it has the desired
properties.

9.2 Storing
The signatures are stored in an SLP-like structure. Conceptually, for a string s we store its
signature and treat each letter in the signature as a nonterminal of an SLP, in particular,
we put appropriate rule for generation of the text. We then store higher and higher
signatures, until a single symbol is obtained.

Comparison of two texts is done by comparing the top symbols of their signatures
(and the height of the signatures). For convenience, for each nonterminal of the signature
we store also the length of the represented text.

9.3 Update
String is easy. We consider the Split, Concatenation is done similarly.

To split a signature, we go in the SLP to appropriate position, we store O(log∗N)
elements from each side of the path on each level, when this is the assignement, or the
length of the a-prefix/suffix, when the level calculates the blocks compression. Since the
signatures are computed locally, this is enough to recalculate the signature. (Exercise)

We need some additional structure (say, a dictionary), to search for existing signatures.
One such operation takes O(logm) time, as there are at most m log∗N signatures on each
level (exercise).

9.4 Comments
This can be improved in a non-trivial way to pattern searching. Furthermore, we can
ensure that we store the texts in alphabetic order and can compute the LCP for two
elements in the sequence in O(log n) time.

10 Compressed pattern matching: Combinatorial ap-
proach

In this section, the position is between two consecutive letters in a word, a cut in a
rule A → BC is a position corresponding to the end of val(B) and beginning of val(C).
Overlapping a position/cut is defined as earlier.
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The presented algorithm is in fact a little stronger: we will compute occurrences of a
pattern given by an SLP P within the text given by the SLP P . This is based on [36].

The nonterminals of the P and T are P1, . . . , Pm and T1, . . . , Tn. The size of the
problem is n+m. The lengths of val(P) and val(T ) are M,N respectively.

10.1 AP table
Lemma 52 (Basic Lemma). All occurrences of val(P) in val(T ) overlapping any given
position form a single arithmetical progression.

Proof. Exercise.

The AP-table (table of arithmetical progressions) is defined as follows: AP [i, j], where
1 ≤ i ≤ m, 1 ≤ j ≤ n, encodes the arithmetic progression of occurrences of val(Pi) in
val(Tj) that overlap the cut of val(Tj). Such encoding uses three numbers: the starting
position (with respect to the beginning of val(Tj)), the step of the arithmetic progression
and the number of elements in this arithmetic progression. Note that this arithmetic
progression can be empty, in which case we represent it appropriately.

Not that AP can be used to calculate all occurrences of val(P) in val(T ): fix such an
occurrence. By going down the derivation tree we see that we will find Tj such val(P)
occurs in val(Tj) overlapping a cut. Moreover, for a fixed occurrence this can happen for
at most three different Tjs, which can be easily identified: this happens only when in a
rule Tj → Tj′Tj′′ the occurrence overlaps a cut but is wholly within one of Tj′ , Tj′′ .

Filling AP [1, j] and AP [i, 1] is easy. Then we fill them in lexicographic order on [i, j].
Let Pi = PrPs, we consider the case, when | val(Pr)| ≥ val(Ps), the other one is

symmetric. Let γ be the cut between Pr and Ps in Pi.
We shall use a local search procedure LSP (i, j, [α . . β]), which gives the positions of

occurrences of Pi in Tj that are fully contained in val(Tj)[α . . β].

• It can use AP [i . . k] for k ≤ j.

• Assumes that |β − α| ≤ 3| val(Pi)|

• Runs in time O(j)

• gives at most two arithmetic progressions as an output, all posistions in one are
stictly before positions in the other. Both claims require some proof.

We shall use O(1) local searches.

10.1.1 Filling AP using LSP

We first find occurrences of Pr (which is a bigger part), to this end we use LSP (r, j, [γ −
| val(Pi)|, γ + | val(Pr)|). Note that as | val(Pr)| ≥ | val(Ps)| we have that | val(Pi)| ≤
2| val(Pr)|, so the assumption of LSP is satisfied.

We shall now look for occurrences of Ps that extend those of Pr. As those are given
by at most two arithmetic progressions, we focus on one only.

We look at endings of occurrences of Pr. They are continental, if they end at most
|Ps| from the last ending in this arithmetic progression and seaside otherwise.

For the continental endings note that the corresponding occurrences of Ps are all within
shifted occurrences of Pr, so due to periodicity either all continental occurrences of Pr
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extend by Ps or none. Thus we check one, using one local search. Note that this can be
done easier, but we do not care.

For the seaside endings, let δ be the last ending of the Pr in the sequence. Then
we can use the LSP (s, j, [δ − | val(Ps)|, δ + | val(Ps)|]). Thus we obtain 2 arithmetic
progressions representing the occurrences of Ps. We can intersect them with the arithmetic
progression representing endings of Pr in constant time (exercise), which is again an
arithmetic progression.

As a last step we merge the obtained arithmetic progressions. Note that we know that
they form an arithmetic progression by Lemma 52.

10.2 Local search procedure
We proceed in almost naive manner. For LSP (i, j, [α . . β]) If |α−β| < | val(Pi)|, then we
return empty set. then we look at AP [i, j] and intersect the obtained arithmetic progres-
sion with [α . . β]. Let Tj = TrTs, then we make the recursive calls, making appropriate
offsets; note that we simply store the list of obtained arithmetic progressions, offsetted to
the original positions.

It is easy to check, that the total recursion time is O(j) (exercise).
Lastly, we merge the resulting arithmetic progressions. It is easy to check that two

such arithmetic progressions either are disjoint or have at most the first/last element
in common. Thus we can merge them in constant time per item. The bound on two
arithmetic progression follows from Lemma 52 (exercise).

11 Quadratic word equations
Since in general the satisfiability of word equations is NP-hard, it is natural to try to find a
smaller subclass of this problem, which is decidable in P. Limiting the number of possible
variables or the number of their occurrences are such candidates. In case of quadratic
equations it is easy to give a (non-deterministic) linear-space algorithm, which preceded
a general PSPACE algorithm.

Take any equation, it is of the form x · · · = y · · · or x · · · = a · · · (otherwise we can
delete the same symbols from the equation or reject altogether). We make a nondeter-
ministic guess: if S(x) = ε, then we remove this variable. If not, then we by symmetry we
may assume that S(x) = a · · · or S(x) = S(y) · · · . Thus we make a substitution x← ax
or x← yx. In both cases we again reduce the equation. It is easy to see that the lengths
of the equations did not increase since it is a quadratic equation, we introduced at most
two new symbols, but at the same time removed exactly two due to reduction.

This procedure can be easily written down as a graph with nodes labelled with possible
(systems of equations) and edges between them representing the possible steps.

It remains unknown, whether quadratic equations are in NP. This is known in case of
equations in free groups, but the argument is heavy in terms of geometry, so it will not
be presented here.

12 Word equations: limited number of variables
As of today, the case of word equations with 3 variables remains unknown: it is not known
to be NP-hard, nor it is known to be within NP. (It is known to be within NP in some
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restricted cases [51]).
On the other hand, it was shown by Charatonik and Pacholski [3] that indeed, when

only two variables are allowed (though with arbitrarily many occurrences), the satisfia-
bility can be verified in deterministic polynomial time. The degree of the polynomial was
very high, though. This was improved over the years and the best known algorithm is
by Dąbrowski and Plandowski [13] and it runs in O(n5) and returns a description of all
solutions.

12.0.1 One variable

Clearly, the case of equations with only one variable is in P. Constructing a cubic algorithm
is almost trivial, small improvements are needed to guarantee a quadratic running time.
First non-trivial bound was given by Obono, Goralcik and Maksimenko, who devised
an O(n log n) algorithm [44]. This was improved by Dąbrowksi and Plandowski [14] to
O(n+ #X log n), where #X is the number of occurrences of the variable in the equation.
Furthermore they showed that there are at most O(log n) distinct solutions and at most
one infinite family of solutions. Intuitively, the O(#X log n) summand in the running
time comes from the time needed to find and test these O(log n) solutions.

This work was not completely model-independent, as it assumed that the alphabet Σ
is finite or that it can be identified with numbers. A more general solution was presented
by Laine and Plandowski [27], who improved the bound on the number of solutions to
O(log #X) (plus the infinite family) and gave an O(n log #X) algorithm that runs in a
pointer machine model (i.e. letters can be only compared and no arithmetical operations
on them are allowed); roughly one candidate for the solution is found and tested in linear
time. Note that there is a conjecture that one variable word equations have O(1) solutions
(plus the infinite family), in fact, an equation with 3 solutions outside the infinite family
is not known.

We present a specialisation of the recompression algorithm for word equation for the
one-variable case and show that it has the running time O(n log #X). This running time
can be improved to linear, at the expense of heavy usage of stringology data structures
and combinatorial analysis.

12.1 One-variable equations
Without loss of generality in a word equation A = B one of A and B begins with a
variable and the other with a letter:

• if they both begins with the same symbol (be it letter or nonterminal), we can
remove this symbol from them, without affecting the set of solutions;

• if they begin with different letters, this equation clearly has no solution.

The same applies to the last symbols of A and B. Thus, in the following we assume that
the equation is of the form

A0XA1 . . . AnA−1XAnA = XB1 . . . BnB−1XBnB , (5)

where Ai, Bi ∈ Σ∗ and nA (nB) denote the number ofX occurrences inA (B, respectively).
Note that exactly one of AnA , BnB is empty and A0 is non-empty. If this condition is
violated for any reason, we greedily repair it by cutting identical letters (or variables)
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from both sides of the equation. We say that A0 is the first word of the equation and
the non-empty of AnA and BnB is the last word. We additionally assume that none of
words Ai, Bj is empty. We later (after Lemma 4) justify why this is indeed without loss
of generality.

Note that if S(X) 6= ε, then using (5) we can always determine the first (a) and last
(b) letter of S(X) in O(1) time. In fact, we can determine the length of the a-prefix and
b-suffix of S(X).
Lemma 53. For every solution S of a word equation such that S(X) 6= ε the first letter
of S(X) is the first letter of A0 and the last the last letter of AnA or BnB (whichever is
non-empty).

If A0 ∈ a+ then S(X) ∈ a+ for each solution S of A = B.
If the first letter of A0 is a and A0 /∈ a+ then there is at most one solution S(X) ∈ a+,

existence of such a solution can be tested (and its length returned) in O(|A| + |B|) time.
Furthermore, for S(X) /∈ a+ the lengths of the a-prefixes of S(X) and A0 are the same.

Two comments are in place:
• Symmetric version of Lemma 53 holds for the suffix of S(X).

• It is later shown that finding all solutions from a+ can be done in linear time, see
Lemma 61.

A simple proof is left as an exercise.
By TestSimpleSolution(a) we denote a procedure, described in Lemma 53, that for

A0 /∈ a∗ establishes the unique possible solution S(X) = a`, tests it and returns ` if this
indeed is a solution.

12.2 Representation of solutions
Consider any solution S of A = B. We claim that S(X) is uniquely determined by its
length and so when describing solution of A = B it is enough to give their lengths.
Lemma 54. Each solution S of equation of the form (5) is of the form S(X) = (A0)kA,
where A is a prefix of A0 and k ≥ 0. In particular, it is uniquely defined by its length.
Proof. If |S(X)| ≤ |A0| then S(X) is a prefix of A0. When |S(X)| > |A0| then S(A) begins
with A0S(X) while S(B) begins with S(X) and thus S(X) has a period A0. Consequently,
it is of the form Ak0A, where A is a prefix of A0.

Weight

Each letter in the current instance of our algorithm OneVarWordEq represents some string
(in a compressed form) of the input equation, we store its weight which is the length of
such a string. Furthermore, when we replace X with a`X (or Xa`) we keep track of the
sum of weights of all letters removed so far from X. In this way, for each solution of the
current equation we know what is the length of the corresponding solution of the original
equation (it is the sum of weights of letters removed so far from X and the weight of
the current solution). Therefore, in the following, we will not explain how we recreate
the solutions of the original equation from the solution of the current one. Concerning
the running time needed to calculate the length of the original solution: our algorithm
OneVarWordEq reports only solutions of the form a`, so we just need to multiply ` with
the weight of a and add the weights of the removed suffix and prefix.

35



12.2.1 Preserving solutions

All subprocedures of the presented algorithm should preserve solutions, i.e. there should
be a one-to-one correspondence between solution before and after the application of the
subprocedure. However, when we replace X with a`X (or Xbr), some solutions may be
lost in the process and so they should be reported. We formalise these notions.
Definition 55 (Preserving solutions). A subprocedure preserves solutions when given an
equation A = B it returns A′ = B′ such that for some strings u and v (calculated by the
subprocedure)
• some solutions of A = B are reported by the subprocedure;

• for each unreported solution S of A = B there is a solution S ′ of A′ = B′, where
S(X) = uS ′(X)v and S(A) = uS ′(A′)v;

• for each solution S ′ of A′ = B′ the S(X) = uS ′(X)v is an unreported solution of
A = B and additionally S(A) = uS ′(A′)v.

The intuitive meaning of these conditions is that during transformation of the equation,
either we report a solution or the new equation has a corresponding solution (and no new
‘extra’ solutions).

By hc→ab(w) we denote the string obtained from w by replacing each c by ab, which
corresponds to the inverse of pair compression. We say that a subprocedure implements
pair compression for ab, if it satisfies the conditions from Definition 55, but with S(X) =
u hc→ab(S ′(X))v and S(A) = u hc→ab(S ′(A′))v replacing S(X) = uS ′(X)v and S(A) =
uS ′(A′)v.

Similarly, by h{a`→a`}`>1(w) we denote the string w with letters a` replaced with blocks
a`, for each ` > 1; note that this requires that we know, which letters ‘are’ a` and what
is the value of `, but this is always clear from the context. A notion of implementing
blocks compression for a letter a is defined similarly as the notion of implementing pair
compression. The intuitive meaning of both those notions is the same as in case of
preserving solutions: we not loose, nor gain any solutions.

12.3 Specialisation of precodures
We now specialise the general algorithms to our specific setting. Pair compression and
block compression work exactly as before. However, during popping we need to addition-
ally verify some solutions, which may be lost.

Algorithm 9 Pop(a, b)
1: if b is the first letter of S(X) then
2: if TestSimpleSolution(b) returns 1 then . S(X) = b is a solution
3: report solution S(X) = b

4: replace each X in A = B by bX
. Implicitly change S(X) = bw to S(X) = w

5: if a is the last letter of S(X) then
6: if TestSimpleSolution(a) returns 1 then . S(X) = a is a solution
7: report solution S(X) = a

8: replace each X in A = B by Xa
. Implicitly change S(X) = w′a to S(X) = w′
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Lemma 56. Pop(a, b) preserves solutions and after its application the pair ab is non-
crossing.

The only new part is the preservation of solutions. But this easily follows from
Lemma 53.

Thus first uncrossing a pair ab and then compressing it as a noncrossing pair imple-
ments the pair compression.

There is one issue: the number of non-crossing pairs can be large, however, a simple
preprocessing, which basically applies Pop, is enough to reduce the number of crossing
pairs to 2.

Algorithm 10 PreProc Ensures that there are at most 2 crossing pairs
1: let a, b be the first and last letter of S(X)
2: run Pop(a, b)

Lemma 57. PreProc preserves solution and after its application there are at most two
crossing pairs.

Proof. It is enough to show that there are at most 2 crossing pairs, as the rest follows
from Lemma 4. Let a and b be the first and last letters of S(X), and a′, b′ such letters
after the application of PreProc. Then each X is preceded with a and succeeded with b
in A′ = B′. So the only crossing pairs are aa′ and b′b (note that this might be the same
pair or part of a letter-block, i.e. a = a′ or b = b′).

Note that in order to claim that the lengths of a-prefix of S(X) and A0 are the same,
see Lemma 53, we need to assume that S(X) is a not block of letters. This is fine though,
as this condition holds when we apply Algorithm 11.

Algorithm 11 CutPrefSuff Cutting prefixes and suffixes; assumes that A0 is not a block
of letters
Require: A0 is not a block of letters, the non-empty of AnA , BnB is not a block of letters
1: let a be the first letter of S(X)
2: report solution found by TestSimpleSolution(a) . Excludes S(X) ∈ a+ from further

considerations.
3: let ` > 0 be the length of the a-prefix of A0

. By Lemma 53 S(X) has the same a-prefix
4: replace each X in A = B by a`X . a` is stored in a compressed form,

. implicitly change S(X) = a`w to S(X) = w
5: let b be the last letter of S(X)
6: report solution found by TestSimpleSolution(b) . Exclude S(X) ∈ b+ from further

considerations.
7: let r > 0 be the length of the b-suffix of the non-empty of AnA , BnB

. By Lemma 53 S(X) has the same b-suffix
8: replace each X in A = B by Xbr . br is stored in a compressed form,

. implicitly change S(X) = wbr to S(X) = w

Lemma 58. Let a be the first letter of the first word and b the last of the last word. If
the first word is not a block of as and the last not a block of bs then CutPrefSuff preserves
solutions and after its application there are no crossing blocks of letters.
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Thus we can implement the block compression by first uncrossing all letters and then
compressing them all.

12.4 The algorithm
The following algorithm OneVarWordEq is basically a specialisation of the general algo-
rithm for testing the satisfiability of word equations [23] and is built up from procedures
presented in the previous section.

Algorithm 12 OneVarWordEq Reports solutions of a given one-variable word equation
1: while the first block and the last block are not blocks of a letter do
2: Pairs ← pairs occurring in S(A) = S(B)
3: BlockComp . Compress blocks, in O(|A|+ |B|) time.
4: PreProc . There are only two crossing pairs, see Lemma 57
5: Crossing ← list of crossing pairs from Pairs . There are two such pairs
6: Non-Crossing ← list of non-crossing pairs from Pairs
7: for each ab ∈ Non-Crossing do

. Compress non-crossing pairs, in time O(|A|+ |B)|
8: PairCompNCr(a, b)
9: for ab ∈ Crossing do . Compress the 2 crossing pairs, in time O(|A|+ |B)|
10: PairComp(a, b)
11: TestSolution . Test solutions from a∗, see Lemma 61

We say that a word Ai (Bi) is short if it consists of at most 100 letters and long
otherwise. To avoid usage of strange constants and its multiplicities, we shall use K = 100
to denote this value and we shall usually say that K = O(1).

Lemma 59. Consider two consecutive letters a, b at the beginning of the phase in S(A)
for any solution S. At least one of those letters is compressed in this phase.

Proof. Consider whether a = b or not:

• a = b: In this case they are compressed using BlockComp.

• a 6= b: In this case ab is a pair occurring in the equation at the beginning of the
phase and so it was listed in Pairs in line 2 and as such we try to compress it, either
in line 8 or in line 10. This occurrence cannot be compressed only when one of the
letters a, b was already compressed, in some other pair or by BlockComp. In either
case we are done.

Lemma 60. Consider the length of the (A, i)-word (or (B, j)-word). If it is long then its
length is reduced by 1/4 in this phase. If it is short then after the phase it still is. The
length of each unreported solution is reduced by at least 1/4 in a phase.

Additionally, if the first (last) word is short and has at least 2 letters then its length
is shortened by at least 1 in a phase.

Proof. We shall first deal with the words and then comment how this argument extends
to the solutions. Consider two consecutive letters a, b in any word at the beginning of a
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phase. By Lemma 59 at least one of those letters is compressed in this phase. Hence each
uncompressed letter in a word (except perhaps the last letter) can be associated with the
two letters to the right that are compressed. This means that in a word of length k during
the phase at least 2(k−1)

3 letters are compressed i.e. its length is reduced by at least k−1
3

letters.
On the other hand, letters are introduced into words by popping them from variables.

Let symbol denote a single letter or block a` that is popped into a word. We investigate,
how many symbols are introduced in this way in one phase. At most one symbol is popped
to the left and one to the right by BlockComp in line 3, the same holds for PreProc in
line 4. Moreover, one symbol is popped to the left and one to the right in line 10; since
this line is executed twice, this yields 8 symbols in total. Note that the symbols popped
by BlockComp are replaced by single letters, so the claim in fact holds for letters as well.

So, consider any word Ai ∈ Σ∗ (the proof for Bj is the same), at the beginning of the
phase and let A′i be the corresponding word at the end of the phase. There were at most
8 symbols introduced into A′i (some of them might be compressed later). On the other
hand, by Lemma 59, at least |Ai|−1

3 letters were removed Ai due to compression. Hence

|A′i| ≤ |Ai| −
|Ai| − 1

3 + 8 ≤ 2|Ai|
3 + 81

3 .

It is easy to check that when Ai is short, i.e. |Ai| ≤ K = 100, then A′i is short as well and
when Ai is long, i.e. |Ai| > K then |A′i| ≤ 3

4 |Ai|.
It is left to show that the first word shortens by at least one letter in each phase.

Consider that if a letter a is left-popped from X then we created B0 and in order to
preserve (5) the first letters of B0 and A0 are removed. Thus, A0 gained one letter on the
right and lost one on the left, so its length stayed the same. Furthermore the right-popping
does not affect the first word at all (as X is not to its left); the same analysis applies to
cutting the prefixes and suffixes. Hence the length of the first word is never increased
by popping letters. Moreover, if at least one compression (be it block compression or
pair compression) is performed inside the first word, its length drops. So consider the
first word at the end of the phase let it be A0. Note that there is no letter representing
a compressed pair or block in A0: consider for the sake of contradiction the first such
letter that occurred in the first word. It could not occur through a compression inside
the first word (as we assumed that it did not happen), cutting prefixes does not introduce
compressed letters, nor does popping letters. So in A0 there are no compressed letters.
But this cannot happen.

Now, consider a solution S(X). We know that S(X) is either a prefix of A0 or of
the form A`0A, where A is a prefix of A0, see Lemma 54. In the former case, S(X) is
compressed as a substring of A0. In the latter observe that argument follows in the same
way, as long as we try to compress every pair of letters in S(X). So consider such a pair
ab. If it is inside A0 then we are done. Otherwise, a is the last letter of A0 and b the first.
Then this pair occurs also on the crossing between A0 and X in A, i.e. ab is one of the
crossing pairs. In particular, we try to compress it. So, the claim of the lemma holds for
S(X) as well.
Lemma 61. For a ∈ Σ we can report all solutions in which S(X) = a` for some natural
` in O(|A| + |B|) time. There is either exactly one ` for which S(X) = a` is a solution
or S(X) = a` is a solution for each ` or there is no solution of this form.

Note that we do not assume that the first or last word is a block of as.
A proof is left as an exercise.
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Running time

Concerning the running time, we first show that one phase runs in linear time, which
follows by standard approach, and then that in total the running time is O(n+#X log n).
To this end we assign in a fixed phase to each (A, i)-word and (B, j)-word cost proportional
to their lengths in this phase. For a fixed (A, i)-word the sum of costs assigned while it
was long forms a geometric sequence, so sums up to at most constant more than the initial
length of (A, i)-word; on the other hand the cost assigned when (A, i)-word is short is
O(1) per phase and there are O(log n) phases.

Lemma 62. One phase of OneVarWordEq can be performed in O(|A|+ |B|) time.

This is shown in the same way as in the case of recompression for SLPs.
The amortisation is much easier when we know that both the first and last words are

long. This assumption is not restrictive, as as soon as one of them becomes short, the
remaining running time of OneVarWordEq is linear.

Lemma 63. As soon as first or last word becomes short, the rest of the running time of
OneVarWordEq is O(n).

Proof. One phase takesO(|A|+|B|) time by Lemma 62 (this is at mostO(n) by Lemma 60)
and as Lemma 60 guarantees that both the first word and the last word are shortened
by at least one letter in a phase, there will be at most K = O(1) many phases. Lastly,
Lemma 61 shows that TestSolution also runs in O(n).

So it remains to estimate the running time until one of the last or first word becomes
short.

Lemma 64. The running time of OneVarWordEq till one of first or last word becomes
short is O(n+ (nA + nB) log n).

Proof. By Lemma 62 the time of one iteration of OneVarWordEq is O(|A| + |B|). We
distribute the cost among the A words and B words: we charge β|Ai| to (A, i)-word and
β|Bj| to (B, j)-word, for appropriate positive β. Fix (A, i)-word, we separately estimate
how much was charged to it when it was a long and short word.

• long: Let ni be the initial length of (A, i)-word. Then by Lemma 60 the length in
the (k + 1)-th phase it at most (3

4)kni and so these costs are at most βni + 3
4βni +

(3
4)2βni + . . . ≤ 4βni.

• short: Since (A, i)-wordis short, its length is at most K, so we charge at most Kβ
to it. Notice, that there are O(log n) iterations of the loop in total, as first word is
of length at most n and it shortens by 3

4 in each iteration when it is long and we
calculate only the cost when it is long. Hence we charge in this way O(log n) times,
so in total O(log n).

Summing those costs over all phases over all words and phases yieldsO(n+(nA+nB) log n).
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13 Free groups

13.1 Free groups
Given a finite alphabet Σ define Σ−1 as {a−1 : a ∈ Σ}. We define a reduction aa−1 → ε.
Any word in (Σ ∪ Σ−1)∗ has a unique normal form under this reduction (in which there
is no factor aa−1); such words are called reduced or irreducible, for a word w this normal
form is called and denoted by IRR(w).

A free group over generators Σ consists of reduced words IRR((Σ ∪ Σ−1)∗) over (Σ ∪
Σ−1)∗. The multiplication of w and w′ ∈ IRR((Σ ∪ Σ−1)∗) is defined as

w · w′ = IRR(ww′) .

It is easy to check that this operation is well defined and that it defines a group.

13.2 Free monoids/semigroups with involution
In a similar way, we treat Σ∗ as a free monoid or free semigroup over the set of generators
Σ. In such a setting we talk about word equations in free monoids/semigroups.

An involution (defined for any monoid) is a bijection · : M 7→ M such that x = x,
xy = y x for each x, y ∈M . In case of a free monoid (Σ∪Σ−1)∗ the involution on a letter
a is defined as a−1, where (a−1)−1 = a. In case of groups, the inverse operator is also an
involution.

We shall also denote a free group with geenrators g1, g2, . . . , g` by F (g1, g2, . . . , g`).
Given two free groups G, athbbG′ by mathbbG ∗ G′ we denote the free groups with the
set of generators that is a disjoint union of generators of G and G′.

13.3 Word equation in free groups
We consider word equations in free groups. From algebraic perspective they are more
interesting than the semigroups. Makanin extended his results for word equations [38, 39].
We can naturally see a word equation over a free group as an ordinary word equation over
a free monoid (Σ∪Σ−1)∗, however, we may loose some solutions in this way: consider an
equation aX = bY . Naturally it has no solution as a word equation, but it does in a free
group: take X = a−1 and Y = b−1.

In general, the reduction is possible, assuming that we allow regular constraints and
involution in the equation.

13.4 Reduction: equations in groups to word equations
Firstly, each equation can be reduced to a form XY = Z or X = a by adding appropriate
amount of variables.

Given one such equation we can replace it by a system of equations

X = X ′R Y = R−1Y ′ X ′Y ′ = Z

Then any solution of the original equation gives a solution of the new system in which
X ′Y ′ is irreducible and any irreducible solution of the new system gives a solution of the
old one.
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So it is left to turn such a system of word equations in groups into an equisatisfiable
system in a free monoid with involution.

We take the equation as they are and regular constraints that say that there are no
factors aa−1 in any variable, for any a ∈ (Σ ∪ Σ′). Then we need to deal with the R−1:
for each such variable we introduce another equation R−1 = R.

It is easy to see that the new system has a solution (as a semigroup) iff the original
system had a solution.

Finally, note that the regular constraints about the irreducible form can be encoded
in a different way.

We shall later show how to solve equations (in a free semigroup) with regular con-
straints and involution.

14 Positive theory of free groups and free semigroups
with recognisable constraints

Given a free group G (the definition is similar in case of semigroups) a positive sentence
is of a form

Q1x1Q2x2 . . . Qkxkϕ(x1, x2, . . . , xk)
where each Qi is a quantifier and ϕ is a formula that uses only variables x1, x2, . . . , xk
and constants from G, atomic formulas are equations or constraints of a form µ(X) = g
and only ∧ and ∨ as used as connectives. A positive theory of a free group G consists
of positive sentences that hold in G. The corresponding decision problem asks to decide,
whether a given sentence belongs to a positive theory (of G).

It is an easy exercise to show that positive theory of a free semigroup is undecidable
(exercise). On the other hand, the positive theory of a free semigroup is decidable, as
shown by Makanin [39]. Below we show this result, in a variant given by Diekert and
Lohrey [10], which is somehow based on idea of Gurevich to use random words.

14.1 General comments
In essence, we proceed by a quantifier elimination: given a formula

∀1x1∃y1∃y2 . . . ∃ykϕ(x, y1, y2, . . . , yk, ~z) (6)

(note that ~z is a sequence of free variables) we construct a formula

∃∃y1∃y2 . . . ∃ykϕ′(k, y1, y2, . . . , yk, ~z) (7)
such that for each sequence of elements ~z the formula (6) holds if and only if (7) holds.
The element k is chosen in a special way and moreover we consider those formulas in
different free groups.

Processing the consecutive quantifiers leads to an existential formula (of perhaps large
size in a larger free group). Decidability of the existential formula will be shown on the
next lecture.

The main property of positive formulas is that they are preserved under homomor-
phisms: if a positive sentence ϕ(~(z)) (where ~(z) is a vector of elements) holds in some
structure A and ϕ : A 7→ B is a homomorphism, then ~ϕ(z) holds in B. This observation
is made precise at appropriate point.
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We shall extend our free semigroup by new elements: G ∗ {k} is a free group with
generators of G and k (so this is a group generated by Σ ∪ {k}). In such a case we need
to also extend µ, it is enough to define it on k. The notation µkh means µ extended by
defining µ(k) = h. We shall use this notation also for several elements.

14.2 Quantifier elimination
Let us a fix a formula

Φ(~Z) = ∀X1∃Y1 · · · ∀Xm∃Ymϕ(X1, . . . , Xm, Y1, . . . , Ym, ~Z). (8)

Theorem 65. For all ~z the formula (8) holds in G if and only if

∃Y1 ∈ G∗F (k1)∃Y2 ∈ G∗F (k1, k2) · · · ∃Ym ∈ G∗F (k1, k2, . . . , km)ϕ(k1, . . . , km, Y1, . . . , Ym, ~z).
(9)

holds in G ∗ F (k1, k2, . . . , km).

The idea is that the universally quantified variables act like “independent constants”.
The true reason for this is that since our formula holds for “any x”, it means that it

holds for random word (in appropriate sense) x. But such a random word has very little
interference with other words (it provably has only a couple of letters that reduce) So
in some sense it “is” a constant. Still, we need to allow the following variables to “use”
this new constant, thus we allow Yi to use {k1, k2, . . . , ki}. Consider a simple example
∀X∃Y XY = 1. Then when we replace X with k we get ∃Y kY = 1 which is satisfiable
for y = k−1.

The proof is done by induction on the quantifiers.
By assumption

∀X2∃Y2 · · · ∀Xm∃Ymϕ(x1, X2, . . . , Xm, y1, Y2, . . . , Ym, ~Z).

(note that x1 and y1 are free variables, i.e. we can take any elements for them) holds in
G if and only if

∃Y2 ∈ G ∗ F (k2) · · · ∃YmG ∗ F (k2, . . . , km)ϕ(x1, k2, . . . , km, y1, . . . , Ym, ~z).

holds in G ∗ F (k2, . . . , kn).
For simplicity, denote by Gi the G ∗ F (k2, k3, . . . , ki) (note that G = G1)
As x1, y1 is a free variable there, we can take the quantification over all x1, y1 ∈ G and

get
∀X1∃Y1∀X2∃Y2 · · · ∀Xm∃Ymϕ(X1, X2, . . . , Xm, Y1, . . . , Ym, ~Z).

if and only if

∀X1 ∈ G∃Y1 ∈ G1∃Y2 ∈ G2 . . . ∃Ym ∈ Gmϕ(k1, . . . , km, Y1, . . . , Ym, ~z), (10)

In the following we show its equivalence to (9).

Lemma 66. For ϕ positive if ~z satisfies (9) then it satisfies (10)

Proof. We use the already mentioned fact that positive sentences are preserved by homo-
morphisms.

Take any x ∈ G. Take a homomorphism h(k1) = x and define it as an identity on
other elements. Then the homomorphism applied to ϕ(k1, . . . , km, y1, . . . , ym, ~z) yields
ϕ(x, . . . , km, ϕ(y1), . . . , ϕ(ym), ~z) and we can take ϕ(yi) as a witness for Yi.
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For the proof in the other direction we shall also use the reduction to the monoid.
Note that a reduction described in the previous chapter reduces the problem of equations
in free groups to free semigroups. Denote by M,Mi the free monoid (with involution)
corresponding to G,Gi. Then the formula

ϕ(k1, . . . , km, Y1, . . . , Ym, ~z)

is rewritten into formula

∃~yϕ′(k1, . . . , km, Y1, . . . , Ym, ~z, ~Y )

where the new variables ~Y are used to appropriately brake down the equations.
Our technical claim is that

Lemma 67. If

∀X1 ∈ IRR(M)∃Y1 ∈ IRR(M1)∃Y2 ∈ IRR(M2) . . . ∃Ym ∈ IRR(Mm)∃~Y ∈ IRR(Mm)
ϕ′(k1, . . . , km, Y1, . . . , Ym, ~z, ~Y ),

then there exist two words s1, s2 ∈ IRR(M) such that

∃Y1 ∈ IRR(M1 ∗ {k1, k1}∗)∃Y2 ∈ IRR(M2 ∗ {k1, k1}∗) . . . ∃Ym ∈ IRR(Mm ∗ {k1, k1}∗)
∃~Y ∈ IRR(Mm ∗ {k1, k1}∗)ϕ(s1k1s2, . . . , km, Y1, . . . , Ym, ~z, ~Y ),

We shall first show, how we can deduce our mail claim from that. Suppose that (8)
holds, i.e.

∀X1∃Y1 · · · ∀Xm∃Ymϕ(X1, . . . , Xm, Y1, . . . , Ym, ~Z)

then by the reduction to the free monoid also

∀X1 ∈ IRR(M)∃Y1 ∈ IRR(M1)∃Y2 ∈ IRR(M2) . . . ∃Ym ∈ IRR(Mm)∃~Y ∈ IRR(Mm)
ϕ′(k1, . . . , km, Y1, . . . , Ym, ~z, ~Y ),

holds. Thus by the lemma also

∃Y1 ∈ IRR(M1 ∗ {k1, k1}∗)∃Y2 ∈ IRR(M2 ∗ {k1, k1}∗) . . . ∃Ym ∈ IRR(Mm ∗ {k1, k1}∗)
∃~Y ∈ IRR(Mm{k1, k1}∗)ϕ′(s1k1s2, . . . , km, Y1, . . . , Ym, ~z, ~Y ),

holds. So we can lift it back to the group setting, i.e. there are s1, s2 ∈ G such that

∃Y1 ∈ G1∗F (k1)∃Y2 ∈ G2∗F (k1) . . . ∃Ym ∈ Gm∗F (k1)ϕ(s1k1s2, . . . , km, Y1, . . . , Ym, ~z),

consider an isomorphism defined by h(k) = s−1
1 ks−1

2 . Since it is an isomorphism, we can
apply it on above equation. The only affected is the k1 constant, so we get the following
is equivalent:

∃Y1 ∈ G1 ∗ F (k1)∃Y2 ∈ G2 ∗ F (k1) . . . ∃Ym ∈ Gm ∗ F (k1)ϕ(k1, . . . , km, Y1, . . . , Ym, ~z, ~Y ),
(11)

But this is our intended claim.
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14.3 Proof of Lemma 67
It is left to show the proof of Lemma 67.

Take two different constants a, b and fix some word ` of length at least 2 that use
both constants. Fix λ ≥ 2d + 1, where d is the number of equations. Consider a set
R = {r0, r1, . . . , rλ} ⊆ {a, b}m, where m is some large constant (to be established later).
Later we will consider a string

s = r0`r1` . . . rλ−1`rλ

Roughly, this is a string that we use for ∀X quantifier.
We require that strings in R have enough randomness: each word w of length at least

(|ri| − `)/2 occurs in at most one of strings r0, r1, . . . , rλ, r0, r1, . . . , rλ and it has at most
one occurrence is such a string.

Using Kolmogorov complexity/Probabilistic method it is easy to show that such set
of strings exists, for large enough m (exercise).

The true application of enough randomness is that

Lemma 68. If r ∈ R ∪R occurs in ri`ri+1 then this is either a prefix or suffix of ri`ri+1
(so r = ri or r = ri+1).

For the proof it is enough to try to place r within ri`ri+1, and see that it will have an
overlap with ri or ri+1 of length at least (|r| − `)/2 , which is a contradiction.

Now, since m is large enough, we can also assume that it is longer than twice any
constant that occurs in the equations.

Consider rewriting systems P1, . . . , Pλ, defined as

Pi = {(ri−1`ri, ri−1k1ri), (ri`ri−1, rik1ri−1)}

From Lemma 68 it easily follows that each of this rewriting systems is confluent and so has
a unique normal form, denote by κi(w) the unique normal form of w under the rewriting
system Pi.

We say that t contains the cut of (u, v) if there is an occurrence of t in uv that is not
contained in u nor in v.

Lemma 69. Given a pair of strings (u, v) there are at most two different ri`ri+1 that
contain their cut.

Proof. Otherwise there are three. So consider the first of those occurrences and the last.
They overlap with at least one letter. Then the middle occurrence overlaps with at least
half of its length with the first one or last one, so some r occurs in ri`ri+1, which cannot
be.

Lemma 70. Let {xjyj = zj}dj=1 be all nontrivial equations. The there is i such that for
each j

κi(xj)κi(yj) = κi(zj)

Proof. For a fixed equation there are at most 2 different ri`ri+1 that contain a cut between
xj and yj. So there is one ri`ri+1 that does not contain any cut. Hence when we calculate
the normal form, each rewriting on xjyj is done separately on xj and yj, which show the
claim.
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Since the rewriting systems introduce a fresh constant that is not rewritten, the

κi(xj)κi(yj) = κi(zj) implies xjyj = zj

holds always.
Hence this yields the proof of Lemma 67 we take s as the string substituted for x

and all the witnesses. We then take the appropriate rewriting system and rewrite all the
constants. By Lemma 70 x is replaced by κi(x) and each y is replaced with κi(y), so all
true equations still hold (there may be some more true equations, but this is fine as the
sentence is positive). Note that x is now replaced with a fixed string that has only one
occurrence of k1. And ys are witnesses from the allowed sets.

15 Solving equations in free groups

15.1 Recognisable/Regular sets
As a first step, we would like to define the notion of a regular language (or set) in a more
algebraic setting, so that it could be also generalised to the free groups.

Consider Σ∗, think of it as a free semigroup. A regular language is defined using
an automaton N , let it have n states Q. Then the transition function naturally defines
(Boolean) transition matrices, whose rows and columns are indexed by Q: for a letter a
the has mp,q = 1 iff we can go from p to q using letter a. Note that such a transition
matrix can be defined for each word w ∈ Σ∗ and so we have a natural homomorphism
from Σ∗ to M, that is, the set of Boolean matrices of size n× n.

A regular language can be defined using this homomorphism as well: note that a word
is accepted if its transition matrix leads from starting state to final state. In other words,
there is a finite amount of matrices, which are accepting, and the rest is rejecting. Using
the homomorphism, there is a finite subset M ′ such that R = ϕ−1(M ′).

This approach can be now lifted to groups: a set R in a free group F is regular,
if there is a homomorphism ϕ from F to Boolean matrices M with a subset M ′ such
that R = ϕ−1(M ′). Note, that since we work in a group setting, we require, that the
homomorphism respect the inversion, i.e. each element ϕ(a) is invertible, as Boolean
matrix. We would like to extend the notion of regular sets also to the case of free group.

If we consider a monoid with involution, then we usually assume that the recognisable
constraints are given by a homomorphism that also respects this involution. The involu-
tion can be the inverse on the Boolean matrices (which is the case for free groups), but
could any other operation, for instance — the transpose. But could any other operation
that satisfies the needed properties.

We usually denote the homomorphism to matrices by ρ and talk about the transition
of a letter.

15.2 Regular constraints
In the most convenient case, we specify the regular constraints with a series of conditions of
a formX ∈ R, X /∈ R′. Each such conditions is potentially given by a different automaton.
When we move to the matrix setting, creating one matrix for all such conditions essentially
corresponds to the creation of one automaton for the appropriate Boolean combination
of such conditions, which is expensive. Instead, we can think that ρ assigns a tuple of
matrices, rather than just one. This allows to save space.

46



Secondly, the list of conditions for X: X ∈ Ri, X 6∈ R′i can be viewed as a restriction
of ρ(S(X)) to a couple of legal transitions. In our algorithm we think that the constraints
are given by specifying the actual transition for S(X). From computational point of
view this is not restricting, as we can initially non-deterministically guess the appropriate
transition from a set of transitions.

15.3 Main issue
As planned, we reduce solving of equations in free groups to free semigroup with involution
and recognisable constraint. It turns out that the main issue is the bounding of the
alphabet used in the solution. We shall deal with this problem at the end, as it distorts
a little the flow of the argument. At the moment, imagine that we begin with the given
alphabet and whenever we make a compression, we add the new letter into the alphabet.
Note that this means that we can arrive at the same equation with different alphabets
(which may mean that the shortest solution is of different length). It is not possible to
simply remove those letters from the alphabet and from the equation, as they may be
needed for the the regular constraints.

Keeping such a large alphabet is a problem, as we cannot give a standard PSPACE
argument that an equation cannot repeat.

15.4 Goal
Our goal is to modify our approach for word equations so that it works also for free
monoids with involution and regular constraints. In essence, we proceed in a similar way,
so only the differences will be described.

Firstly, now a substitution S is a solution if its satisfies the equation and for each
variable ρ(S(X)) = ρ(X), i.e. also the constraints are satisfied. Due to involution, we also
require that S(X) = S(X).

We want to guarantee that
If an equation is satisfiable then after the appropriate compression/uncrossing the new

equation also is. If the new equation is satisfiable, then also the original one was. (in fact,
in both cases there should be some correspondence of the solutions).

15.5 Needed modifications
15.5.1 Constraints

Whenever we pop letters, we need to guess new values for variables, so that the total
value is the same. For instance, when we replace X with aX ′ then it should hold that
ρ(aX ′) = ρ(X). The value for X ′ is guessed and verified. We also need to guess when we
remove the variable, in which case we need to have ρ(X) = ρ(ε).

15.5.2 Involution

When we replace X with wXw′ then we also need to replace XbywXw′ = w′ Xw.
When we compress ab to c then we also need to compress ab to c. Firstly, this affects

the notion of a crossing pair (ab may be crossing due to ba. Concerning the replacement,
this is easy, as long as ab and ab do not overlap, which can happen only when a = a or
b = b. There are different possible approaches now. We present one, in which we forbid
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the creation of self-involuting letters, which boils down to forbidding to compression of
aa as a pair.

15.5.3 Pair compression

It is also easy to see that we can compress several pairs in parallel, as well as they are
disjoint. Thus our partition are of a form (A,A), which are good enough, in the sense
that they also cover a constant fraction of letters. (Recall that we do not compress aa.

15.5.4 Blocks and Quasiblocks compression

With such a restriction the blocks compression works as intended. We could also do the
variant with only compression of two letters and using other variables for representing
a-blocks, but here we need to be careful: while we can move the extra a to the left, for a
we then need to move the to the right. This is fine, as a 6= a

There is a problem with (aa)k, as we do not compress it at all. We do this similarly to
blocks compression: we replace (aa)k with ckck. Note that technically ck “represents” a
self-involuting string, but we “forgot” about this. But this is fine, as ckck is self-involuting.

As a result, aaa is still not compressible, but this is the longest incompressible string
and so we still get a PSPACE algorithm, with a constant-larger space consumption.

15.6 Letters
As already noted, we cannot assume that there is a solution over the letters that are in
the equation. This is because the letters that are crossed out have non-trivial transitions
and removing them changes the total transition of a substitution for a variable.

The easiest solution is the extend the initial alphabet so that it has one letter for
each possible transition (not that in this way the alphabet may become exponential) and
considering solutions over the letters that are in the equation and in the initial alphabet
(Exercise).

We follow a slightly more involved approach, which is much more useful, when we
want to describe the set of all solutions of a word equation.

The idea is that if there is a letter in the substitution for a variable that is not in the
equation not it is a letter from the original equation, then in some sense it was a mistake
to compress this letter in the first place. But each letter in any equation corresponds to
some string of letters in the original equation. To track the meaning of constants outside
the current equation, we additionally require that a solution (over an alphabet Σ′) supplies
some homomorphism α : Σ′ 7→ A∗, which is constant on A and compatible with ρ, in the
sense that ρ(b) = ρ(α(b)) for all letters b. Thus, we change the notion of a solution: from
now on it is a pair (S, α). In particular, given an equation (U, V ) the α(S(U)) corresponds
to a solution of the original equation. Note, that α is a homomorphism with respect to
the involution, i.e. we assume that α(a) = α(a).

It is easy to define a new α after a compression operation: when w is replaced wit hc
then we simply denote α(c) = α(w) (note, that it may be that for two different letters we
get that α(c) = α(c′), but this is not a problem, as we never assume that α(c) 6= α(c′)). In
particular, if (α, S) is a solution of an equation U = V then after the compression/popping
the new equation U ′ = V ′ has a solution (α′, S ′) such that α(S(U)) = α′(S ′(U ′)) (for
appropriate non-deterministic choices).
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A solution is simple if it uses only letters from the equation and input alphabet.
Given a non-simple solution (S, α) we can replace all constants c /∈ Σ (where Σ is the
alphabet of the equation) in all S(X) by α(c) (note, that as ρ(c) = ρ(α(c)), the ρ(X)
is preserved in this way). This process is called a simplification of a solution and the
obtained substitution S ′ is a simplification of S. It is easy to show that S ′ is a solution
and that α(S ′(U)) = α(S(U)), so in some sense both S and S ′ represent the same solution
of the original equation.

However, replacing single letters in substitution by long words contradicts the very
idea of the method, which only shortens the solutions. We need to devise some more
precise measure that can be used instead of length of the solution.

A weight of a solution (S, α) of an an equation (U, V ) is

w(S, α) = |U |+ |V |+
∑
X∈Ω
|UV |X |α(S(X))| , (12)

It is easy to see that all compression and popping operations decrease the weight (if
something changes in the equation) or keep it constant, when nothing changes. Further-
more, the simplification preserves the weight, see Lemma 71. Thus weight can be used to
show the termination of the algorithm.

Lemma 71. Suppose that (S, α) is a solution of the equation (U, V ). Then the simplifi-
cation (S ′, α) of (S, α) is also a solution of (U, V ), α(S ′(U)) = α(S(U)) and w(S ′, α) =
w(S, α).

Proof. Let Σ be the alphabet of the equation and Σ′ the alphabet of the solution S.
Consider any constant b ∈ Σ′ \Σ. As it does not occur in the equation, all its occurrences
in S(U) and S(V ) come from the variables, i.e. from some S(X). Then replacing all
occurrences of b in each S(X) by the same string w preserves the equality of S(U) = S(V ),
thus S ′ is also a solution. Since we replace some constants b with α(b) (and α ◦ α = α),
clearly α(S(X)) = α(S ′(X)) for each variable, in particular, the weight contributed by
each variable occurrence does not change. Furthermore, as ρ(c) = ρ(α(c)) we have that
ρ(S(X)) = ρ(S ′(X)). Thus, α(S ′(U)) = α(S(U)) and w(S ′, α) = w(S, α), as claimed.

Lemma 72. For any subprocedure, if it transforms a satisfiable equation (U, V ) to a sat-
isfiable equation (U ′, V ′) 6= (U, V ) then the corresponding solution of (U ′, V ′) has smaller
weight than the solution of (U, V ).

Proof. Note that in (12) the parts corresponding to the substitutions for variables do not
change. But if anything changes in the equation, some constants were compressed and so
the weight drops.

This gives the termination argument of our algorithm. We proceed within PSPACE,
keeping some solution, after the compression operation we replace the corresponding so-
lution by its simplification. The weight decreases after the first operation and does not
change after the second. Thus we end up in a trivial equation.

16 Representation of all solutions
As we want to describe the set of all solutions, ideally there should be a one-to-one corre-
spondence between the solutions before and after the application of used subprocedures.
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However, as those subprocedures are non-deterministic and the output depends on the
non-deterministic choices, the situation becomes a little more involved. What we want to
guarantee is that no solution is ‘lost’ in the process and no solution is ‘gained’: given a
solution for some non-deterministic choices we transform the equation into another one,
which has a ‘corresponding’ solution and we know a way to transform this solution back
into the original equation. Furthermore, when we transform back in this way any solution
of the new equation, we obtain a solution of the original equation, i.e. we do not gain
solutions.

For technical reasons it is more convenient to assume that solutions assign ε to each
variable that is not present in the equation and 6= ε to all other variables. (Note that this
causes some slight problems, when we have constraints on variables not present in the
equation, but this is not a big issue). Such substitutions are called non-empty.

By an operator we denote a function that transforms substitutions (for variables).
All our operators have simple description: S ′(X) is usually obtained from S(X) by mor-
phisms, appending/prepending constants, etc. In particular, they have a polynomial
description. We usually denote them by ϕ and their applications by ϕ[S].

Definition 73 (Transforming the solution). Given a (nondeterministic) procedure we say
that it transforms the equation (U, V ) with a solution (S, α) if

• Based on the nondeterministic choices and equation (U, V ) we can define an operator
ϕ, called the corresponding inverse operator.

• For some nondeterministic choices the procedure returns an equation (U ′, V ′) with a
nonempty solution (S ′, α′) such that ϕ[S ′] = S. Furthermore, α(S(U)) = α′(S ′(U))
and w(S ′, α′) ≤ w(S, α) and if (U, V ) 6= (U ′, V ′) then this inequality is in fact strict.
In such a case we also say that this procedure transforms (U, V ) with (S, α) to
(U ′, V ′) with (S ′, α′).

• For every equation (U ′, V ′) that can be returned by this procedure applied on (U, V )
and any of its solution (S ′, α′) and for every operator ϕ ∈ Φ the (ϕ[S ′], α0) is a
solution of (U, V ) for some homomorphism α0 : B 7→ A+ compatible with ρ, where
B is the alphabet of ϕ[S ′](U).

If a procedure transforms every equation with every nonempty solution then we say that
it transforms solutions.

Example 1. Consider a procedure that can replace X with aX (for any constant a) and Y
by bY (also for any constant b). Then it transforms the equation X = Y with a solution
S(X) = cc, S(Y ) = cc and any α: The inverse operator ϕ prepends a to S(X) and b to
S(Y ), where a and b are constants that were introduced by the procedure. If (S ′, α′) is
a solution of the obtained equation then (ϕ[S ′], α′) is a solution of the original equation;
note that when a 6= b then the obtained equation does not have solutions at all, but this
is fine with the definition. Moreover, for the nondeterministic choice in which we pop c
from both X and Y , the obtained equation has a solution S ′(X) = S ′(Y ) = c, for which
S = ϕ[S ′].

On the other hand, this procedure does not transform solutions: a solution S(X) =
S(Y ) = c cannot be transformed, as we do not allow empty solutions. We can modify
the procedure, though: it can either replace X with aX or with a, similarly for Y . In
our case X = Y with S(X) = S(Y ) = c is transformed into c = c with a solution
S(X) = S(Y ) = ε. It is easy to see that this modified procedure transforms solutions.
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It is easy to see that our compression/uncrossing operation do transform the solutions,
but there is a slight problem with the blocks compression: when we pop a` then the inverse
operator depends on `. Instead, we shall use the variant, in which we only compress aa
in blocks compression.

Lemma 74. Each subprocedure of uncrossing + appropriate compression transforms the
solutions.

The proof follows by easy case inspection.
We use the variant of the recompression algorithm in which we keep an O(n2) equation

but at each step choose exactly one compression operation to be performed.

Lemma 75. Suppose that (U0, V0) is an equation of size O(n2) and |U0| > 1 or |V0| > 1,
let it have a solution (S0, α0). Then for some nondeterministic choices and appropriate
uncrossing and compression the returned equation (U1, V1) and the inverse operator ϕ
satisfy

• (U1, V1) is of size O(n2)

• (U0, V0) with (S0, α0) is transformed to (U1, V1) with (S ′1, α1), ϕ is the corresponding
inverse operator and (S1, α1) is a simplification of (S ′1, α1).

Now we can use this Lemma to build the graph representation of all solutions: for
the input equation (U, V ) we construct a directed graph G which has nodes labelled with
equations of size O(n2). Then for such node, say labelled with (U0, V0), such that |U0| > 1
or |V0| > 1 we use Lemma 75 to list all equations (U1, V1) such that (U0, V0), (U1, V1) satisfy
the claim of Lemma 75 for some solution of (U0, V0). For each such equation we put the
edge (U0, V0) → (U1, V1) and annotate it with the appropriate operator ϕ. We lastly
remove the nodes that are not reachable from the starting node and those that do not
have a path to an ending node.

In this way we obtain a finite description of all solution of a word equation with
involution and recognisable constraints.

Theorem 76. There exists effectively a PSPACE algorithm working as follows.
Input. A word equation with regular constraints over a free monoid with involution.
Output. A finite graph representation of all solutions of the equation.

17 Terms and Unification

17.1 Labelled trees
We deal with rooted, ordered trees, usually denoted with letters t or s. Nodes are labelled
with elements from a ranked alphabet Σ, i.e. each letter a ∈ Σ has a fixed arity ar(f); those
elements are usually called letters. A tree (term) is well-formed if a node labelled with f
has exactly ar(f) children; we consider only well-formed trees, which can be equivalently
seen as ground terms over Σ. In this setting Σ is usually called a signature and its elements
function symbols.
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17.2 What the variables represent
For trees (terms) usually the notion of equations is not used and instead we talk about
the unification.

It is natural to ask, what the variables should represent. In the basic scenario, each
variable x ∈ X represents a (well-formed) tree. In such a case the corresponding unifica-
tion problem is called (first-order) term unification.

Definition 77. In (first order) term unification we are given a collection of equations
ei

?= fi, where each side is a Σ ∪ X labelled tree, where all elements of X have arity 0.
A solution is a mapping from X to a set of well-formed Σ-labelled trees that turns

each formal equation into an equality; application of a solution to e simple replaces x with
S(x).

It is easy to show that this problem is in P.

Theorem 78. The satisfiability of an instance of first order term unification is in P. In
fact it can be solved in linear time.

A simple proof is left as an exercise.
As a philosophical note: the unification problem here is solved in a top-down fashion.

17.3 Patterns
We consider not necessarily well-formed fragments of trees. Thus we want to define ‘trees
with holes’ that represent missing arguments. Let Y = {•, •1, •2, . . .} be an infinite set
of symbols of arity 0, we think of each of them as a place of a missing argument. Its
elements are collectively called parameters. A pattern is a tree over a signature Σ ∪ Y,
where each element of Y is treated as a constant. A pattern is linear, if each parameter
occurs at most once in a pattern; linear patterns are also called ground contexts. The
usual convention is that the used parameters are •1, •2, . . . , •k, or •, when there is only
1 parameter; for linear patterns we usually assume that the occurrences (according to
preorder traversal of the pattern ) of the parameters in the pattern is •1, •2, . . . , •k. We
often refer to parameter nodes and non-parameter nodes to refer to nodes labelled with
parameters and non-parameters, respectively. A pattern using r parameters is called
r-pattern.

17.4 Second order unification
In second order unification we allow second order variables, denoted by capital letters
X, Y, . . . and coming from a set V . Each such a variable X has arity ar(X). A second
order term is a term built with Σ ∪ V . A second order unification consists of a sequence
of equations of second-order terms. A substitution Sassigns to each variable X a pattern
S(X) whose parameters are from •1, •2, . . . , •ar(X); note that some parameters may be
unused.

We define S(t) for a second order term in a natural way:

• S(f)(t1, . . . , tk) = f(S(t1), . . . , S(tk)) when f ∈ Σ

• S(X)(t1, . . . , tk) = (S(X))[•1/S(t1), . . . , •k/S(tk)]
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where (S(X))[•1/S(t1), . . . , •k/S(tk)] means the term S(X) with each parameter •i re-
placed with S(ti).

A substitution is a solution if it turns each formal equality into tree equality of terms.

18 Linear Monadic Second Order Unification
We begin with a problem which is somehow in between second order unification and word
equations.

In linear monadic second order unification we require that the substitutions for a
variable are linear (so each parameter is used at most once) and we work over signature
of letters of arity at most 1. So comparing to word equations, we have letters and one
extra nullary symbol that is always at the end (we shall denote it by “.” and ignore it).
The variables do not represent words, but rather λ-functions, in the sense that X is now
a function λx.wx, where we require that w is built solely of symbols and possibly x used
once. The difference is that X can ignore its argument and simply terminate the hole
term.
Example 2.

Xa. = Y b.

There is a valid solution X = λx.a. and Y = λy.a.. Note that there are also other
solutions.

It is easy to see that if an equation U = V is satisfiable as a word equation then it is
satisfiable as linear monadic second order unification, but not the other way around.

One other difference is that our encoding into one equation no longer works as a
substitution may drop some other substitutions.

Since there are more solutions, intuitively it should be easier to solve such an equation.
In some sense this is the case: this problem is in NP.

Theorem 79. Satisfiability of a a linear monadic second order unification is in NP.

Our approach is as previously, i.e. we will apply the local compression rules and keep
the size of the instance small. The additional twist is that whenever possible we shall
try to replace the left-most variables with closed functions, i.e. the ones that ignore their
argument.

We begin with stating that our subprocedures for word equations indeed work in this
setting. We need a twist, though: Pop and CutPrefSuff are also allowed to replace a
variable by a “.”.

Lemma 80. Pop, CutPrefSuff, BlockCompNCr, PairCompNCr are sound and complete.

The proof for compression operations is the same as for word equations, for popping
operations some analysis is needed, as we may pop to the right from a variable that should
be replaced with a closed function. This is not a problem, though.

Additionally, the exponential bound on the exponent of periodicity holds also in case
of linear monadic second order unification.

Lemma 81. Let S be the length-minimal solution of linear monadic second order unifi-
cation and let wk be a substring of S(X). Then k ≤ 2cn for some constant c, where n is
the sum of length of the equations.
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Proof. Take the solution S and the variables that forget their arguments in this substitu-
tion. Modify the equations according to those variables: if a side of an equation is αXβ,
where X forgets the argument, we replace it with αX.. Then we obtain a system, in which
no variable forgets its argument and this is equivalent to system of words equations. In
particular, wk has k ≤ 2cn for appropriate n.

Hence, at any point we can ensure, in non-deterministic polynomial time, that the
size of the instance is at most cn2 for a suitable c: if not then we run compression and
uncrossing until it is reduced to cn2.

Simplifying assumptions Without loss of generality we can assume that:

• for each equation at least one of its sides begin with a variable;

• for each equation both of its sides contain a variable.

What may be surprising, is that removing letters from the left-sides of the equations
is fine but removing variables is not. We consider only the case of left sides, as we are
only interested in that.

Lemma 82. The systems {Ui = Vi}i∈I ∪ {aU = aV } and {Ui = Vi}i∈I ∪ {U = V } are
equisatisfiable for a letter a.

The systems {Ui = Vi}i∈I ∪ {XU = XV } and {Ui = Vi}i∈I ∪ {U = V } are in general
not equisatisfiable for a variable X.

Both proofs are left as exercises.
Our algorithm shall eliminate one variable using polynomially many steps, each of

those steps increases the size of the instance by O(n). This guarantees that the whole
algorithm runs in NP: after the removal the instance is of polynomial size. In polynomially
many steps we reduce it to size O(n2) and then iterate again, with less variables.

Removing a variable
We now describe how to eliminate one variable.

Definition 83. For a system of equations define a dependence graph. Its set of vertices
are labelled with variables and we create an edge X w−→ Y for each equation XU = wY V .

Note that if there is an equation XU = Y V then we add edges X ε−→ Y and Y ε−→ X.

Lemma 84. If there is an edge from X
w−→ Y then for each solution S of this system

S(X) either

1. is a prefix of w;

2. has a prefix w

In particular, if X w−→ Y and X w′−→ Y ′ then either

• w is a prefix of w′ or

• w′ is a prefix of w or
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• S(X) is a prefix of w′ and w.

The proof is obvious.

Corollary 85. If there are two edges from X labelled with nonempty words then they
have the same first letter or S(X) = ε for each solution S.

Let us investigate, what happens with the dependence graph, when we left-pop a from
X. Then for every edge X w−→ Y we change the label to X a−1w−−−→ Y and for every edge
Y

w−→ Y we change the label to wa (not that if there is an edge X w−→ X then both effects
apply and so we have the word a−1wa and so for w = ε we are left with an epsilon).

Define a relation on the variables: X < Y if there is a path from X to Y whose
labels concatenate to a non-empty word. Also, define the relation of equivalence: X ∼ Y
if there is a path from X to Y whose all edges are labelled with ε. As such edges are
bi-directional, this is an equivalence relation.

Lemma 86. If X is a minimal element of <, so are all its equivalent variables.

Lemma 87. If X ∼ Y then in each solution either one of them is ε or they begin with
the same letter.

Proof. The proof is obvious for X ε−→ Y , the rest follows by an easy induction on the
length of path consisting of ε-edges.

The algorithm

We can now move to the algorithm. We look at the dependence graph, as long as the
relation < is acyclic, we find a minimal element (say X) and left-pop a from each Y ∼ X.
Note that in this way no letters are introduced on the edges: ε edges are preserved (as
we either pop from both their ends or from none), we take a from some edges and we do
not add a to any edge: all edges incoming to X are ε edges and so all those variables are
equivalent to X.

We change the < order in this way, as new ε edges may have been introduced: for
instance, when X aw−→ Y and X a−→ Z then after left-popping a from X we have X ε−→ Z.
In particular, we may have introduce new cycles in < relation: in the example above it
could be that there is an edge from Y to Z, so after popping there is a cycle from Z to
Z with a non-empty label.

Such left-popping reduces the total length of edges, so it is linear in the input size.
When we finish with popping, either there is no edge with nonempty label, so all vari-

ables are equivalent and the equation is satisfiable, as we can substitute . for everything,
or there is a cycle from X to X that defines a nonempty label.

In the second case we take the shortest (in terms of number of edges) such cycle, let it
be from X to X and let the word on it be wX . Note that |wX | = O(n): the cycle cannot
have repeating nodes, so also there are no repeating edges, so each label is used at most
once and their concatenation is not longer than the input.

We want to apply pair compression which reduces wX to a sequence of the form ak.
This is always possible: unless wX is of desired form, it has two different consecutive
labels, say ab. Then we make that ab compression and we proceed; there are linearly
many such compressions.

We consider the effect of popping and pair compression on the dependence graph and
our chosen cycle from X to X.
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Note that popping does not affect the concatenation of labels on the cycle, unless one
variable is removed (and we stop, when one variable is removed).

For the compression, we use a variant in which we left-pop b from each variable that
begins with b. We claim that in this way after the uncrossing each ab that is on the cycle
is on one label on the cycle: suppose that an edge ends with a and there is a sequence
of ε edges and an edge that begins with b. But then all those variables connected with ε
edges have the same first letter: b. So we should have popped from them all and a should
not be the last label (note that we use a 6= b here), contradiction. Hence the compression
is performed on the ab in the labels.

Thus after the compression we have a cycle from X to X labelled with powers of a
only. We claim that in each solution of this system of equations there is at least one
variable Y on this cycle which has a substitution S(Y ) = a`(•) (that is, it does not forget
the argument).

Suppose that this is not the case. As each variable on this cycle has a first letter
a, every one of them has a substitution S(Y ) = a`Y bY . . ., where bY is a letter or a
terminating symbol. Clearly, for equivalent variables the length ` and letter b has to be
the same (this is clear when there is an edge from X to Y , i.e. when X · · · = Y · · · , as in
this case we assume that S(X) and S(Y ) are not sequences of a, so the first non-a symbol
on both sides need to match. The rest follows by induction).

So take a variable Y on the cycle, which has the longest a-prefix and incoming edge
labelled with non-empty word. This corresponds to an equation Z · · · = a . . . aY · · · . But
the a-prefix of the left-hand side is shorter than the right-hand side, contradiction.

So we can choose one variable, which has a substitution a`. Guess exponential `,
replace Y with this value and make the blocks compression (for this compression we
completely disregard the dependence graph, which is now not needed at all).

19 General second order unification
In general, the second order unification is undecidable

Theorem 88. Second order unification is undecidable.

We encode the Satisfiability of Diophantine equations. The signature consists of con-
stants c, c′, unary symbol a and binary symbol g.

We encode a number n as a pattern an(•); we use n to denote an(•). Thus each second
order variable N has an equation

a(N(c)) = N(a(c))

It is easy to check that each solution of such an equation is of the form an(•).
Without loss of generality each Diophantine equation is of a form m+n = p, m ·n = p

or n = 1. The first is easily encodable as

M(N(c)) = P (c)

the last as
N(c) = a(c)

It remains to describe how to encode multiplication.
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Note that we can encode sequences of terms using g: a sequence t1, t2, . . . , tk is encoded
as [t1, t2, . . . , tk] which is g(t1, g(t2, · · · g(tk−1,tk))).

We introduce an auxiliary second-order variable G(•1, •2, •3).
The equations in question are

G(c, c′, [[P (c), N(c′)], c]) = [[c, c′], G(M(c), 1(c′), c)]
G(c′, c, [[P (c′), N(c)], c]) = [[c′, c], G(M(c′), 1(c), c)]

We claim that they hold for M,N,P if and only if mn = p.
The intended solution is as follows: define tk = [m · k•1, k•2]. Then the substitution

for G is
[t0, t1, t2, . . . , tn−1, •3]

while the substitution for N is n, for M is m and for P is p, where nm = p. We check
that his is a solution only of the first equation, the second one is similar.

G(c, c′, [[P (c), N(c′)], c]) = [[0(c), 0(c′)], [m(c), 1(c′)], . . . , [m · (n− 1)(c), (n− 1)(c′)], [p(c), n(c′)], c]]

On the other hand, the value of the right hand side is

[[c, c′], G(M(c), 1(c′), c)] =
[[c, c′], [0(m)(c), 0(1)(c′)], [m(m)(c), 1(1)(c′)], . . . , [(n− 1)m(m)(c), n− 1(1)(c′)], c]

Using a simple fact that l(`′) = `+ `′ we get

= [[c, c′], [m(c), 1(c′)], [2m(c), 2(c′)], . . . , [nm(c), n(c′)], c]

So both sides are equal.
We proceed in the other direction. Suppose that N,M,P,G are such that they satosfy

the equations

G(c, c′, [[P (c), N(c′)], c]) = [[c, c′], G(M(c), 1(c′), c)]
G(c′, c, [[P (c′), N(c)], c]) = [[c′, c], G(M(c′), 1(c), c)]

Note that we know that N = n, M = m and P = p. We want to show that nm = p.
Clearly G is a list. We compare the elements of those list one by one and use the

fact hat the equation “offset” those values by 1 position in the list. Furthermore, the two
equations swithc places of c and c′ so we cannot have anything “constant”, everythin need
to come from parameters. By

G(c, c′, [[P (c), N(c′)], c]) = [[c, c′], G(M(c), 1(c′), c)]

we conclude that

G = [[c, c′] . . .] or G = [[•1, •2] . . .] or G = [•3 ]

The first option is not possible due to the second equation, the third is a terminating
condition that we consider later on. So let the second option hold, i.e.

G = [[•1, •2] . . .]
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We apply this to the right-hand side of the first equation and conclude that the value is

[[•1, •2], [M(c), 1(c′)] . . .]

Looking at the left-hand side we try to conclude what is the second element of the list.
Again, due to c— c′ symmetry this has to be [M(•1), 1(•2)] or •3. We iterate this process,
obtaining that

G = [t0, t1, t2, . . .]
Since it is finite, at some point we need to choose that the last element is •3. But then G
is already of the form we considered before and it is easy to conclude that since this is a
solution, then nm = p, as desired.

20 Context Unification

20.1 Introduction
20.1.1 Context unification

Solving equations, whether they are over groups, fields, semigroups, terms or any other
objects, was always a central point in mathematics and the corresponding decision prob-
lems received a lot of attention in the theoretical computer science community. Solving
equations can be equally seen as unification problem, as we are to unify two objects (with
some variables).

Context unification is one of prominent problems of this kind, let us first introduce
the objects we will work on. Given a signature, i.e. a set of function symbols of given
arities, we define a ground context in a usual way, i.e. as well formed term. A ground
context is a ground term with exactly one occurrence of a special constant that represents
a missing argument; one should think of it as a ‘hole’ or a variable to be instantiated by a
ground term later on. Ground contexts can be applied to ground terms, which results in
a replacement of the special constant by the given ground term; similarly we can define
a composition of two ground contexts, which is again a ground context. Hence we can
built terms using ground contexts, treating them as function symbols of arity 1.

In context unification problem we are given a signature, a set of term variables (which
shall denote ground terms) and a set of context variables (which shall denote ground
contexts). Using those variables we can built terms: we simply treat each context variable
as a function symbol of arity one and each term variable as a constant. A context equation
is an equation between two such terms and a solution of a context equation assigns to each
context variable a ground context (over the given input signature) and to each variable
a ground term (over the same signature) such that both sides of the equation evaluate
to the same (ground) term. The context unification is the decision problem, whether a
context equation has a solution; the name comes from the fact that an equation can be
equally seen as an unification: in some sense we unify the two contexts on the sides of the
equation.

Context unification was introduced by Comon [7, 8] (who also coined the name) and
independently by Schmidt-Schauß [53]. It found usage in analysis of rewrite systems
with membership constraints [7, 8], analysis of natural language [43, 42], distributive
unification [54], bi-rewriting systems [30].

In a broader sense, context unification is a special case of second-order unification, in
which the argument of the second-order variable X can be used unbounded number of
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times in the substitution term for X (also, there may be many parameters for a second
order variable, this is however not an essential difference). On the other hand, when
the underlying signature is restricted to the case when only unary function symbols and
constants are allowed, the context equation is in fact a word equation (in this well-known
problem we are given an equation u = v, where u and v are strings of letters and variables
and we are to substitute the variables with strings so that this formal equation is turned
into a true equality of strings). The second order unification is known to be undecid-
able [19] (even in very restricted cases [15, 29, 31]), however, the proofs do not apply to
the case of context unification as they essentially use the fact that the argument may
be used many times in the substitution term. On the other hand, the satisfiability of
word equations is known to be decidable (in PSPACE [46]) and up to recently there were
essentially only three different algorithms for this problem [37, 48, 46]; whether these
algorithms generalise to context unification remains an open question. Hence context
unification is both upper and lower-bounded by two well-studied problems.

The problem gained considerable attention in the term rewriting community [49],
mainly for two reasons: on one hand it is the only known natural problem which is
subsumed by second order unification (which is undecidable) and subsumes word equations
(which are decidable) and on the other hand it has several ties to other problems, see
Section 20.1.2. There was a large body of work focused on context unification and several
partial results were obtained:

• a fragment in which any occurrence of the same context variable is always applied
to the same term is decidable [8];

• stratified context unification, in which for any occurrence of a fixed second-order
variable X the string of second-order variables from this occurrence to the root of
the containing term is the same, is decidable [55] (this problem is even known to be
NP-complete [35]);

• a fragment in which every variable and context variable occurs at most twice (such
equations are usually called quadratic) is decidable [29];

• a fragment in which there are only two context variables is decidable [58];

• the notion of exponent of periodicity, which is crucial in algorithms for solving word
equations, is generalised to context unification and so is the exponential bound on
it [57];

• context unification reduces to its fragment in which the signature contains only one
binary symbol and constants [33];

• context unification with one context variable is known to be in NP [16] and some of
its fragments are in P [17]. It remains an open question, whether the whole problem
is in P.

Note that in most cases the corresponding variants of the general second order unification
remain undecidable, which gave hope that context unification is indeed decidable.

20.1.2 Extensions and connections to other problems

The context unification was shown to be equivalent to ‘equality up to constraint’ prob-
lem [43] (which is a common generalisation of equality constraints, subtree constraints
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and one-step rewriting constraints). In fact one-step rewriting constraints, which is
a problem extensively studied on its own, are equivalent to stratified context unifica-
tion [42]. It is known that the first-order theory of one-step rewriting constraints is unde-
cidable [62, 40, 64]. The case of general context unification was improved by Vorobyov,
who showed that its ∀ ∃8-equational theory is Π0

1-hard [65].
Some fragments of second order unification are known to reduce to context unification:

the bounded second order unification assumes that the number of occurrences of the argu-
ment of the second-order variable in the substitution term is bounded by a constant; note
that it can be zero and this is the crucial difference with context unification; cf. monadic
second order unification, which can be seen as a similar variant of word equations, which
is known to be NP-complete [34]. This fragment on one hand easily reduces to context
unification and on the other hand it is known to be decidable [56] (in fact its generali-
sation to higher-order unification is decidable as well [59] and it is known that bounded
second order unification is NP-complete [35]). In particular, the work presented here im-
ply the decidability of bounded second order unification, but the obtained computational
complexity is worse.

The context unification can be also extended by allowing some additional constraints
on variables and context variables, a natural one allows the usage of the tree-regular con-
straints (i.e. we assume that the substitution for the variables and context variable come
from a certain regular set of trees). It is known that such an extension is equivalent to
the linear second order unification [32], defined by Levy [29]: in essence, the linear second
order unification allows bounding variables on different levels of the function, which makes
direct translations to context unification infeasible, however, usage of regular constraints
gives enough additional power to actually encode such more complicated bounding. Note
that the reductions are not polynomial and the equivalence is stated only on the decid-
ability level.

The usage of regular constraints is very popular in case of word equations, in particular
it is used in generalisations of the algorithm for word equation to the group case and
essentially all known algorithms for this problem can be generalised to word equations
with regular constraints [60, 11, 12].

20.1.3 Context unification and word equations

A word can be seen as a term over signature containing only unary symbols (plus some
constant at the bottom) and vice versa. Thus the two compression operations for word
equations generalise naturally to subterms containing only unary function symbols. Hence
the recompression for terms uses the two already mentioned operations (which are appli-
cable only to function symbols of arity one 1) but it also introduces another local compres-
sion rule, designed specifically for terms: we replace a term f(t1, . . . , ti−1, c, ti+1, . . . , tm)
(where c is a constant) with f ′(t1, . . . , ti−1, ti+1, . . . , tm), where f ′ is a fresh function sym-
bol (i.e. not used the context equation, it can however be in Σ). While such a compression
introduces new function symbols, it does not increase the maximal arity of functions in
the signature, which proves to be important (as the space consumption depends on this
maximal arity). This new rule requires also a generalisation of the variable replacements

1Note that by work of Levy [33] it is enough to consider context unification with constants and a
single binary symbol. However, our algorithm will transforms the input instance and it can introduce
unary symbols. So even if the input has no unary letters, we cannot guarantee that the current context
equation stored by the algorithm also does not have such letters. Moreover, it remains unknown, whether
such an approach can used in presence of regular constraints or for describing set of all solutions.
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(x by ax or xb): when X denotes a context, we sometimes replace it with a(X), where
a is a unary letter, or X(f(x1, x2, . . . , xi−1, •, xi, . . . , xm)), where x1, x2, . . . , xm are new
variables denoting full terms and ‘•’ denotes the place in which we apply the argument.

As in the case of word equations, the key observation is that while the variable re-
placements increase the size of the context equation (proportionally to the number of
occurrences of variables in the context equation), the replacement rules guarantee that
the size of the context equation is decreased by a constant factor (for proper nondeter-
ministic choices). Those two effects cancel each out and the size of the context equation
remains polynomial.
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20.2 Compression of trees
20.2.1 Patterns

We want to replace (linear) patterns of a tree with new letters. In this section the pattern
is by default a linear pattern.

We often refer to parameter nodes and non-parameter nodes to refer to nodes labelled
with parameters and non-parameters, respectively. A pattern p occurs (at a node v) in
a tree t if p can be obtained by taking a subtree t′ of t rooted at v and replacing some
of subtrees of t′ by appropriate parameters. This is also called an occurrence of p in t. A
pattern p is a subpattern of t if p occurs in t.

Given a tree t, its r-subpattern p occurrence and a pattern p′ we can naturally replace
p with p′: we delete the part of t corresponding to p with removed parameters and plug p′
with removed parameters instead and reattach all the subtrees in the same order; as the
number of parameters is the same, this is well-defined. We can perform several replace-
ments at the same time, as long as occurrences of patterns do not share non-parameter
nodes. In this terminology, our algorithm will replace occurrences of subpatterns of t in
t.

We focus on some specific patterns: A chain is a pattern that consists only of unary
letters. We consider chains consisting only of two different unary letters, called pairs,
and a-chains, which consists solely of letters a. A chain t′ that is a subpattern of t is a
chain subpattern of t, an occurrence of a chain subpattern a` is a-maximal if it cannot be
extended by a nor up nor down. A pattern of a form f(•1, •2, . . . , •i−1, c, •i, . . . , •ar(f)−1)
is denoted by (f, i, c) for short.

We treat chains as strings and write them in the string notation (in particular, we
drop the parameters) and ‘concatenate’ them, i.e. for two chains s(•) and s′(•) we write
them as s, s′ and ss′ denotes the chain obtained by replacing the parameter in s by s′.
We use those conventions also for 1-patterns.

20.2.2 Local compression of trees

We perform three types of subpattern compression on a tree t:

a-chain compression For a unary letter a we replace each a-maximal chain subpattern
a` for ` > 1 by a new unary letter a`.

ab compression For two unary letters a and b we replace each subpattern ab with a new
unary letter c.

(f, i, c) compression For a constant c and letter f of arity ar(f) = m ≥ i ≥ 1, we replace
each subpattern (f, i, c), i.e. f(•1, •2, . . . , •i−1, c, •i, . . . , •m−1) with f ′(•1, •2, . . . , •i−1, •i, . . . , •m−1)
where f ′ is a fresh letter of arity m − 1 added to Σ (intuitively: the constant c on
i-th place is ‘absorbed’ by its father labelled with f).

They are all collectively called subpattern compression. When we want to specify the
type but not the actual subpattern compressed, we use the names pair compression, chain
compression and leaf compression. These operations are also called TreePattComp(ab, t),
TreePattComp(a, t) and TreePattComp((f, i, c), t).

Observe that the a-chain compression and ab compression are direct translations of
the operations used in the recompression-based algorithm for word equations [23]. To be
more precise, both those compressions affect only chains, return chains as well, and when
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a chain is treated as a string the result of those compressions corresponds to the result of
the corresponding operation on strings. On the other hand, the leaf compression is a new
operation that is designed specifically to deal with trees.

In the next sections the following observation, which bounds the maximal arity of the
letters introduced during the compression steps, proves useful.
Lemma 89. If the maximal degree of nodes in t is k then in t′ that is obtained after
subpattern
Proof. Observe that the chain compression replaces chain of unary nodes with a single
unary node. Similarly, pair compression replaces chains of length two with single unary
letters. Lastly, leaf compression can only reduce the arity of a node (or keep it the
same).

20.3 Context unification
In this section we define context unification problem and the notions necessary to state
it. The presentation here is slightly different than the usual one, c.f. [58], as we use the
‘pattern’ terminology rather than ‘context’ one (which is more general). Our terminology
is less standard for context unification, but more popular in tree-compression approach.
The differences are just in naming conventions and at appropriate places we also mention
the alternative names of used concepts.

By V we denote an infinite set of context variablesX, Y , Z, . . . . We also use individual
term variables x, y, z, . . . taken from Ω. When we do not want to distinguish between a
context variable or term variable, we call it variable and denote by a small greek letter,
like α.
Definition 90. The terms over Σ, Ω, V are ground terms with alphabet Σ ∪ Ω ∪ V in
which we extend ar to Ω ∪ V by ar(X) = 1 and ar(x) = 0 for each X ∈ V and x ∈ Ω.

A context equation is an equation of the form u = v where both u and v are terms.
We call the letters from Σ that occur in a context equation the explicit letters and talk

about explicit occurrences of letters in a context equation. Since X represents a pattern,
we write it in the string notation.

We are interested in the solutions of the context equations, i.e. substitutions that
replace variables with ground terms and context variables with ground contexts, such
that a formal equality u = v is turned into a true equality of ground terms. More
formally:
Definition 91. A substitution is a mapping S that assigns a 1-pattern S(X) to each
context variable X ∈ V and a ground term S(x) to each variable x ∈ Ω. The mapping S
is naturally extended to arbitrary terms as follows:
• S(a) := a for each constant a ∈ Σ;

• S(f(t1, . . . , tn)) := f(S(t1), . . . , S(tm)) for an m-ary f ∈ Σ;

• S(X(t)) := S(X)(S(t)) for X ∈ Ω.
A substitution S is a solution of the context equation u = v if S(u) = S(v). The size
of a solution S of an equation u = v is |S(u)|, which is simply the total number of
nodes in S(u). A solution is size-minimal, if for every other solution S ′ it holds that
|S(u)| ≤ |S ′(u)|. A solution S is non-empty if S(X) is not a parameter for each X ∈ Ω
from the context equation u = v.

63



The 1-patterns substituted for context variables are also called ground contexts in the
literature (hence the name context variable) and the parameter is also called ‘a hole’ of a
context.

In the following, we are interested only in non-empty solutions. Notice that this is not
restricting, as for the input instance we can guess, which context variables have empty
substitution in the solution and remove them.

For a ground term S(u) and an occurrence of a letter a in it we say that this occurrence
comes from u it is was obtained as S(a) in Definition 91 and that it comes from X (or x)
if it was obtained from S(X) (or S(x), respectively) in Definition 91.
Example 3. Consider a signature Σ = {f, c, c′} with ar(f) = 2 and ar(c) = ar(c′) = 0
and an equation X(c) = Y (c′) over it. It has a solution (which is easily seen to be size-
minimal) S(X) = f(•, c′) and S(Y ) = f(c, •) and in fact each solution needs to use f ,
which does not occur in the context equation. Furthermore, if we consider this equation
over a signature that does not have any letter of arity greater than 1 then the equation is
not satisfiable.

Restrictions on signature It is easy to observe that if Σ has no constant then there
is no solution (as no term can be formed). Moreover, if Σ contains only letters of arity 0
and 1 then the input equation u = v is essentially a word equation, with a tweak at the
end

• if u, v end with different constants then we reject;

• if u, v end with the same variable then we remove it;

• if u (v) ends with a variable then we replace it with a fresh context variable, if it
ends with a constant then we remove this constant.

It is easy to see that this procedure returns an equivalent word equation, and satisfiability
of word equations is known to be in PSPACE [47, 23], also when regular constraints are
allowed [11, 12].

Thus, in the following we always assume that the signature contains a constant and a
letter of arity at least 2.

20.4 Compressions on the equation
We first do not consider problems that arise due to the growing signature: when we
perform a subpattern compression we simply add the appropriate letter to the signature
and consider the solutions over this new signature. We resolve this technical problem
after stating the correctness of the algorithm, in Section 20.9.5.

A very general class of operations is sound:

Lemma 92. The following operations are sound:

1. Replacing all occurrences of a variable α with tα throughout the u = v, where t is a
1-pattern or a term.

2. Replacing all occurrences of a context variable X with Xf(x1, x2, . . . , xi−1, •, xi+1, . . . , xar(f))
throughout the u = v where x1, . . . , xar(f) are fresh term variables and ar(f) ≥ 1.
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3. Replacing all occurrences of a context variable X (variable x) with a 1-pattern p
(term t, respectively).

4. subpattern compression performed on u = v.

Proof. The proof follows a simple principle: if the obtained equation u′ = v′ has a solution
S ′ then we can define a solution S of the original context equation by reversing the
performed operation.

In 1, if S ′ is a solution of the new equation then S(α) = S ′(t)S ′(α) is a solution.
Similarly, in 2, if S ′ is a solution of the new equation then S(X) = S ′(X)(f(S ′(x1)),

S ′(x2), . . ., S ′(xi−1), •, S ′(xi+1), . . . , S ′(xar(f)))) is a solution of the original equation.
In 3 if S ′ is a solution of the new equation, we define S in the same way, but set

S(α) = t.
In 4, consider first the leaf compression. Let f ′ denote the letter that replaced f

with child c at positions i during the (f, i, c) compression. Let S ′ be a solution of
the new equation, we define a solution S: if S ′(α) contains the occurrences of a let-
ter f ′, then we replace the whole subterm f ′(t1, t2, . . . , ti−1, ti+1, . . . , tk) in S ′(α) with
f(t1, . . . , ti−1, c, ti+1, . . . , tk). For pair compression, if the letter c that replaced ab occurs
in S(α)then we replace it with a pair ab. Similarly, for chain compression S is obtained
from S ′ by replacing each occurrence of a letter a` with a chain a` (for all ` ≥ 2).

It is easy to see that in each of those cases the defined substituion is a valid solution
of the original equation.

The notion of explicit/implicit/crossing subpattern is generalised from word equtions
to context unification in a natural way.

Definition 93. For an equation u = v and a substitution S we say that an occurrence
of a subpattern p in S(u) (or S(v)) is

explicit with respect to S all non-parameter letters in this occurrence come from ex-
plicit letters in u = v;

implicit with respect to S all non-parameter letters in this occurrence come from S(α)for
a single occurrence of a variable α;

crossing with respect to S otherwise.

We say that ab (a; (f, i, c)) is a crossing pair (has a crossing chain; is a crossing father-
i-leaf subpattern) with respect to S if it has at least one crossing occurrence (there is a
crossing occurrence of an a` chain; has at least one crossing occurrence) with respect to S.
Otherwise ab (a, (f, i, c)) is a non-crossing pair (has no crossing chain; is a non-crossing
father-i-leaf subpattern) with respect to S.

Similarly as in case of word equations, the compression of non-crossing subpatterns is
simply performed on the equation.

Lemma 94. PattCompNCr is sound.
If u = v has a solution S such that one of the following holds:

• ab is non-crossing with respect to S

• a has no crossing chains with respect to S
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• (f, i, c) is non-crossing with respect to S

then the corresponding algorithm PattCompNCr(ab, ‘U = V’) or PattCompNCr(a, ‘U = V’)
or PattCompNCr((f, i, c), ‘U = V’) is complete. To be more precise, the returned equa-
tion u′ = v′ has a solution S ′ such that S ′(u′) = TreePattComp(ab, S(u)) (or S ′(u′) =
TreePattComp(a, S(u)) or S ′(u′) = TreePattComp((f, i, c), S(u)), depending on the chosen
compression). This solution is over a signature expanded by letters representing introduced
during the subpattern compression.

Proof. By Lemma 92 PattCompNCr is sound.
Concerning the completeness, we give the proof in the case of pair compression, it is

the same also in the case of chain compression and leaf compression.
Suppose that u = v has a solution S such that a, b is non-crossing with respect

to S. We define a substitution S ′ for the obtained equation u′ = v′ such that S ′(u′) =
TreePattComp(ab, S(u)) and symmetrically S ′(v′) = TreePattComp(ab, S(v)). Since S(u) =
S(v) this shows that S ′ is indeed a solution of u′ = v′ and so the second claim of the lemma
holds.

The definition is straightforward: S ′(α) is obtained by performing the a, b compression
on S(α)formally S ′(α) = TreePattComp(ab, S(α)).

Consider an occurrence of a pattern ab in S(u) and where this chain subpattern comes
from:

they both come from explicit letters Then PattCompNCr(ab, ‘U = V’) will perform
the ab compression on them, i.e. replace them with a letter c.

they both come from S(X) or S(x) Then this occurrence of ab is replaced by the def-
inition of S ′.

one of them comes from an explicit letter and one from S(X) or S(x) But then
ab is crossing with respect to S, contradicting the assumption.

As the argument applies to every occurrence of chain subpattern ab, this shows that
S ′(u′) = TreePattComp(ab, S(u)). As already said, the proof in case of chain compression
and leaf compression is the same, which ends the proof of the lemma.

20.5 Uncrossing
The uncrossing of pairs and chains is done similalry as in the case of word equations, so
let us move to the uncrossing of father-i-leaf pairs.

20.6 Uncrossing father-leaf subpattern
We now show how to uncross a father-i-leaf subpattern (f, i, c). As a first step, we give
a more operational characterisation of the crossing father-i-leaf subpatterns. It is easy to
observe that father-i-leaf subpattern (f, i, c) is crossing (with respect to a non-empty S)
if and only if one of the following holds for some context variables X and y

(CFL 1) f with an i-th son y occurs in u = v and S(y) = c or

(CFL 2) Xc occurs in u = v and the last letter of S(X) is f and • is its i-th child or
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(CFL 3) Xy occurs in u = v, S(y) = c and f is the last letter of S(X) and • is its i-th
child.

Lemma 95. Let S be non-empty. Then (f, i, c) is a crossing father-i-leaf subpattern if
and only if one of (CFL1)–(CFL3) holds, for some context variables X and term variable
y.

As in the case of pairs and chains, the proof follows by a simple case inspection.
The modifications needed to uncross the father-leaf subpattern are in fact the only

new uncrossing operations, when compared with the recompression technique for strings,
however, they are similar to the one in the case of uncrossing a pair: We want to ‘pop-up’
c and ‘pop-down’ f . The former operation is trivial, but the details of the latter are not,
let us present the intuition.

• In (CFL1) we pop up the letter c from x, which in this case means that we replace
each x with c = S(x). Since x is no longer in the context equation, we can restrict
the solution so that it does not assign any value to x.

• In (CFL2) we pop down the letter f : let S(X) = sf(t1, . . . , ti−1, •, ti, . . . , tm−1),
where s is a 1-pattern and each ti is a ground term and ar(f) = m. Then we replace
each X with Xf(x1, x2, . . . , xi−1, •, xi, . . . , xm−1), where x1, . . . , xm−1 are fresh vari-
ables. In this way we implicitly modify the solution S(X) = s(f(t1, t2, . . . , ti−1, •, ti, . . . , tm−1))
to S ′(X) = s and add S ′(xj) = tj for j = 1, . . . ,m−1. If S ′(X) is empty, we remove
X from the equation.

• The third case (CFL3) is a combination of (CFL1)–(CFL2), in which we need to
pop-down from X and pop up from y.

Algorithm 13 Uncross((f, i, c), ‘U = V’)
1: for x ∈ Ω do
2: if S(x) = c then . Guess
3: replace each x in u = v by c . S is no longer defined on x
4: let m← ar(f)
5: for X ∈ V do
6: if f is the last letter of S(X), • is its i-th child and Xc is a subpattern in u = v

then . Guess
7: replace each X in u = v by X(f(x1, x2, . . . , xi−1, •, xi+1, . . . , xm))

. Implicitly change S(X) = sf(t1, t2, . . . , ti−1, •, ti, . . . , tm−1) to S(X) = s
. Add new variables x1, . . . , xm−1 to Ω and extend S by setting S(xj) = tj

8: if S(X) is empty then . Guess
9: remove X from the equation: replace each X(t) in the equation by t

10: for new variables x ∈ Ω do
11: if S(x) = c then . Guess
12: replace each x in u = v by c . S is no longer defined on x

There is a subtle difference between uncrossing a pair a, b and uncrossing father-i-leaf
subpaterns: for a pair popping down letter a is unconditional while the corresponding
popping down of f fromX is done only when it is really needed: i.e. we want to make some
(f, i, c) compression, f is the last letter of S(X), its i-th child is • and some occurrence

67



of X is applied on c. This assumption turns out to be crucial to bound the number of
introduced variables, see Lemma 103.

Lemma 96. Let ar(f) ≥ i ≥ 1 and ar(c) = 0, then Uncross((f, i, c), ‘U = V’) is sound.
It is complete, to be more precise, if u = v has a non-empty solution S then for

appropriate non-deterministic choices the returned equation u′ = v′ has a non-empty
solution S ′ such that S ′(u′) = S(u) and there is no crossing father-i-leaf subpattern (f, i, c)
with respect to S ′.

Proof. The proof is similar as in the case of Lemma ??, however, some details are different
so it is supplied.

By iterative application of Lemma 92 we obtain that Uncross((f, i, c), ‘U = V’) is sound.
Concerning the second part of the lemma, we proceed as in Lemma ??: let Uncross((f, i, c), ‘U = V’)

always make the non-deterministic choices according to the S: we replace x with c when
S(x) = c and when we pop down f(x1, . . . , xi−1, •, xi, . . . , xm−1) from X then indeed f is
the last letter of S(X) and • labels the i-th child of f . We define the new substitution S ′:

• The values on old variables do not change, i.e. S ′(x) = S(x) for each variable x
present in the context equation both before and after Uncross.

• For a context variable X from which we did not pop a letter we set S ′(X) = S(X).

• For X from which Uncross popped down f(x1, . . . , xi−1, •, xi, . . . , xm−1) let S(X) =
sf(t1, . . . , ti−1, •, ti, . . . , tm−1) (such a representation is possible as Uncross guesses
according to S). Then we define S ′(X) = s and S ′(xj) = tj for j = 1, . . . , i− 1, i+
1, . . . ,m. Note that when s is a parameter then X is removed from the equation.

• For x that popped-up a constant we do not need to define S(x) as it is no longer in
the context equation.

It is easy to verify that indeed in each case the defined S ′ is a solution of the obtained
equation u′ = v′ and S ′(u′) = S(u), as claimed.

So suppose that there is a crossing father-i-leaf subpattern (f, i, c) with respect to the
S ′, i.e. one of the (CFL1)–(CFL3) holds. Note that in (CFL1) and (CFL3) there is a
variable y such that S ′(y) = c, however, by our assumption that Uncross always makes
the choice according to the S each such a variable y was replaced with c in the context
equation in line 3 or line 12. So it remains to consider the (CFL2).

So let X be as in (CFL2), i.e. the last letter of S ′(X) is f , the • is its ith child and
Xc is a subpattern in u = v. Consider, whether X popped down a letter or not:

X popped a letter down Then for each occurrence of subpattern Xt in the context
equation, the first letter of t is always some g such that ar(g) ≥ 1 (as there was
no way to change this), this is a contradiction with the assumption that Xc is a
subpattern in the equation.

X did not pop a letter down Consider the occurrence of a subpattern Xc. Then c
was there when we decided not to pop down a letter from X in line 6. Then
Pop((f, i, c), ‘U = V’) should have popped the last letter of f from X, as in line 6
we were supposed to guess according to S, contradiction.
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20.7 Uncrossing patterns
We can state a general lemma about uncrossing.

Lemma 97. Uncross is sound and complete; to be more precise, for a pattern p if u = v
has a non-empty solution S then for appropriate non-deterministic choices the returned
equation u′ = v′ has a non-empty solution S ′ such that S ′(u′) = S(u) and p is a non-
crossing subpattern with respect to S ′.

20.8 The algorithm
Now we are ready to describe the whole algorithm for testing the satisfiability of context
equations.

As a preprocessing, we investigate the input signature Σ: let k ≥ 2 be the maximal
arity of letters in the equation. Let Σ′, called trimmed signature, be the signature consist-
ing of each letter present in the equation and additionally one letter of each arity at most
k that is not present in the equation (take letters from the input signature, when possible,
take fresh letters otherwise). We use the trimmed signature instead of the original one,
that is, we consider the input equation over this signature; in particular, we use the notion
of trimmed signature only when we emphasize it. Note that this allows bounding k, even
if the original signature was infinite.

We first present a simplified variant of the algorithm ContextEqSatSimp, which at each
step extends the signature by the letters created during the compression steps. Many
properties are easier to explain for such simplification. Only afterwards it is explained
how to ensure that the size of the signature is bounded; for such algorithm ContextEqSat
we can show termination.

Algorithm 14 PreProc(‘U = V’,Σ) Preprocessing of the signature
1: Σ′ ← letters in u = v
2: let k ← maximal arity of letters in Σ′
3: for i← 0 . . k do
4: if Σ′ does not have a letter of arity i then
5: fi ← a letter of arity i . Choose letter from Σ′ or Σ, when possible
6: Σ′ ← Σ′ ∪ fi
7: return Σ′

In its main part ContextEqSatSimp iterates the following operation it identifies a pat-
tern to compress, i.e. it chooses to perform one of the compressions: ab compression, a-
chain compression or (f, i, c) compression, where a, b, c, f are letters of appropriate arity.
It then guesses, whether this pattern is crossing or not. If so, it performs the appropriate
uncrossing. Then it performs the compression and adds the new letter (or letters, for
chains compression) to Σ.

The extended algorithm ContextEqSat works in the same way, except that at the
beginning of each iteration it removes from the signature the letters that are neither from
the original (trimmed) signature neither are present in the current context equation; such
a signature is called equation’s signature.

The properties of ContextEqSatSimp and ContextEqSat are summarised below
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Algorithm 15 ContextEqSatSimp(‘U = V’,Σ) Checking the satisfiability of a context
equation u = v

1: Σ← PreProc(‘U = V’,Σ)
2: while |u| > 1 or |v| > 1 do
3: choose a subpattern to compress, all letters in Σ
4: if a-chain compression was chosen then
5: if a has crossing chains then . Guess
6: CutPrefSuff(a, ‘U = V’)
7: PattCompNCr(a, ‘U = V’)
8: add letters representing compressed subpatterns to Σ
9: if ab compression was chosen then . Proceed similarly
10: if (f, i, c) compression was chosen then . Proceed similarly
11: Solve the problem naively . With sides of size 1, the problem is trivial

Theorem 98. ContextEqSatSimp and ContextEqSat store an equation of length O(n2k2),
where n is the size of the input equation and k the maximal arity of symbols from the
input signature. They non-deterministically solve context equation, in the sense that:

• if the input equation is not-satisfiable then they never return ‘YES’;

• if the input equation is satisfiable then for some nondeterministic choices in O(n3k3 logN)
phases it returns ‘YES’, where N is the size of size-minimal solution.

Clearly, those algorithms are sound, as a composition of sound procedures.
As a corollary we get an upper bound on the computational complexity of context

unification.

Theorem 99. Context unification is in PSPACE.

The proofs of both theorems are postponed.

20.9 Analysis of the algorithm
The analysis focus on several points. Firstly, we show that we can trim the input signa-
ture, see Section 20.9.1, without affecting the satisfiability. Then we briefly mention the
bounds on the exponent of periodicity, which helps to bound the space usage of the chain
compression, see Section 20.9.2. Then, in Section 20.9.3 we give a bound on the number
of occurrences of variables in the equation and show some consequences of that. As our
main task, we investigate the space consumption of our algorithm, see Section 20.9.4.
Lastly, we show that we can in fact work with solutions over the equation’s signature, i.e.
those containing only letters present in the (trimmed) input signature and letters in the
current equation. In particular we do not need to store letters introduced as a result of
compressions. This is done in Section 20.9.5.

20.9.1 Input signature

Trimming of signature does not affect the satisfiability and the needed space.
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Lemma 100. Consider a context equation u = v over a signature Σ that contains a
constant and a letter of arity at least 2. Let Σ′ be the trimmed signature. Then u = v
has a solution over Σ if and only if it has a solution over Σ′. Furthermore, the size of the
instance and of the smallest solution increase at most twice.

Proof. Suppose that there is a solution S over Σ. We define S ′ over Σ′; for simplicity,
denote by fi a letter in Σ of arity i, for each i = 0, 1, . . . , k. Fix a letter g in Σ \ Σ′,
consider its arity.

i = ar(g) ≤ k We replace each g in each S(α)by fi, obtaining S ′. Since g does not occur
in the equation, each g in S(u) and S(v) comes either from some S(α)and so it was
replace with fi and so S ′(u) = S ′(v).

i = ar(g) > k We replace each term g(t1, t2, . . . , ti) by f2(t1, (f2(t2, (. . . (f2(tm−1, tm)) . . .))));
note that f2 is available, as k ≥ 2. Again, as g does not occur in the equation, each
of its occurrences in S(u) and S(v) comes from some S(α)and those were replaced
in the same way, so S ′ is a solution of u = v.

Iterating over all g ∈ Σ′ \ Σ in S(u) yields a new solution, which is over Σ′. Concerning
the size, note that for `-ary function symbol we introduce at most ` new letters. The sum
of arities of all occurrences of letters in S(u) is |S(u)| − 1, thus we at most double the
solution and the size of the size-minimal solution. Concerning the size of the instance,
the equation is unchanged but we need to store additional letters. We introduce at most
k new letters and the equations has a letter of arity k, so has size at least k. So we at
most double the size of the instance. a similar argument

In the other direction, suppose that there is a solution over Σ′. Let us construct
solution over Σ: let c′ be a constant in Σ and f ′ a function of arity k in Σ. Then we
replace each c in S(x) and S(X) by c′ and each f(t1, t2, t2, . . . , tm), where m ≤ k by
f ′(t1, t2, . . . , tm, c, . . . , c). In the same way as above we can show that indeed such a
substitution is a solution of the equation.

We additionally show a simple observation that the maximal arity of letters in the
signature considered by ContextEqSatSimp does not change. Thus, in the following, we
shall just use ‘k’ to denote this value.
Lemma 101. During ContextEqSatSimp (ContextEqSat) the maximal arity of letters in
the signature does not change.

Proof. Let k be the initial value of maximal arity of letters in the equations’ signature,
which is the same as for the input (trimmed) signature. Clearly, it cannot decrease, as
all letters of the input signature are counted in.

It cannot increase either: all letters, on which we perform compression, have arity at
most k and the compression operations do not increase the arity of letters.

20.9.2 Exponent of periodicity

The following lemma shows that the size of the a-chains can be limited in case of size-
minimal solutions.
Lemma 102 (Exponent of periodicity bound [57]). Let S be a size-minimal solution
of a context equation u = v (for a signature Σ). Suppose that S(X) (or S(x)) can be
written as tsmt′, where t, s, t′ are 1-patterns (or t′ is a ground term, respectively). Then
m = 2O(|u|+|v|).
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We use Lemma 102 only for the case when s is a unary letter, for which the proof
simplifies significantly and is essentially the same as in the case of word equations [23]
(which is a simplification of the general bound on the exponent of periodicity by Kościelski
and Pacholski [26]).

Note that bound applies to every signature: given an equation, we can change the
signature and the bound remains the same.

20.9.3 Occurrences of variables

In contrast to the recompression-based algorithm for word equations, ContextEqSat in-
troduces new variables and their occurrences to the equation (when Uncross pops down
a letter of arity greater than 1). At first it seems like a large issue, as the number of
letters introduced to the equation in one phase depends on the number of term variables.
However, we are able to bound the number of such term variables at any time by n(k−1);
recall that k is the maximal arity of letters in the signature, this is the place in which we
essentially use that k is bounded. To this end, we need some definitions: we say that a
variable xi is owned by a context variable X if xi occurred in the equation when X popped
a letter down. A particular occurrence of xi in the equation is owned by the occurrence
of the context variable that introduced it. When a context variable X is removed from
the equation the term variables it owns get disowned (and particular occurrences of those
term variable are also disowned).

We show that each context variable owns at most k − 1 term variables. Using this
claim we can bound (in terms of n and k) the number of occurrences of term variables in
the equation and the number of letters popped during the uncrossing.

Lemma 103. Every context variable X present in u = v owns at most k − 1 term
variables. Furthermore, if n1 is the initial number of context variables, then the total
number of owned and disowned term variables is n1(k − 1). In particular, there are at
most n(k − 1) occurrences of term variables in u = v.

Note that the upper bound on the number of term variables does not depend on the
non-deterministic choices of ContextEqSat.

Proof. Given an occurrence of a subterm Xt we say that this occurrence of X dominates
the occurrences of term variables in t.

We show by induction two technical claims:

1. For every occurrence of a variable X the multiset of term variables, whose occur-
rences it owns, is the same.

2. Each occurrence of X dominates its owned occurrences of term variables.

The subclaim 1 is trivial: at the beginning, there are no owned term variables.
When we introduce new X-owned term variables, we replace each X with the same
Xf(x1, . . . , xi−1, •, xi, . . . , xm−1), in particular the set of X-owned term variables for each
occurrence of X is increased by {x1, . . . , xm−1}. When we remove occurrences of x, we
remove them all at the same time. Which ends the induction.

Concerning the subclaim 2, this vacuously holds for the input instance, which yields
the induction base. For the induction step, consider now the operation performed on
the context equation. Any subterm compression is performed only on letters, so it can-
not affect the domination. When we pop the letters from a variable x, we replace x
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with ax (or remove x altogether), so this also does not affect the domination. Simi-
larly, when we pop letters from context variables, we either replace X with aX or X
with Xf(x1, . . . , xi−1, •, xi, . . . , xm−1), in both cases the domination of the old variables is
not affected and in the last case the new variables x1, . . . , xm−1 owned by this particular
occurrence of X are indeed dominated by this occurrence of X.

Using those two subclaims we now show that if during Uncross X pops down a letter,
then X does not own any variables. Suppose that X pops down a letter. Then in U = V
there is a subtree Xc for a constant c. Suppose that X owned a variable x before popping
down the letter. Then by subclaim 1 the occurrence of X which is applied on c also
owns occurrence of x and by 2 this occurrence is dominated by its owning occurrence
of X, which is not possible, as this owning occurrence of X is part of the term Xc. As
a consequence, each occurrence of a context variable owns at most k − 1 occurrences of
variables.

Now, concerning the number of term variables: let the initial number of variables (not
owned nor disowned) and context variables be n0 and n1, where n0 + n1 ≤ n. Suppose
that at some point there are n′1 ≤ n1 context variables occurrences. Since we never
introduce context variables, there are at most n′1(k − 1) owned variables’ occurrences,
and at most (n1 − n′1)(k − 1) disowned ones. This yields a bound of n1(k − 1) on the
number of occurrences of variables that are owned or disowned. Additionally, there are n0
occurrences that are neither owned, nor disowned (those are the occurrences of variables
that were present in the input equation). In total

n′1(k − 1) + (n1 − n′1)(k − 1) + n0 = n1(k − 1) + n0 ≤ n(k − 1) ,

with the inequality following from k ≥ 2 and n0 + n1 ≤ n.

The bound on the number of occurrences of term variables allows a bound on the
number of different crossing subpatterns.

Lemma 104. For an equation u = v during ContextEqSat and its solution S there are at
most n(k + 1) different crossing subpatterns.

Proof. Let n1 and n0 be the initial number of context variables and variables, note that
n0+n1 ≤ n. By Lemma 103 the total number of variables in u = v is at most n0+n1(k−1)

Each context variable introduces at most two different crossing patters: one for its top
letter and one for its last letter. A variable can introduce at most one crossing subpattern.
So the number of such subpatterns is at most

2n1 + n0 + n1(k − 1) = n0 + n1(k + 1) ≤ n(k + 1) ,

as claimed.

As another consequence, we can also limit the number of new letters introduced during
the uncrossing.s

Lemma 105. Uncrossing and compression of a subpattern introduces at most n(2k + 1)
letters to the equation.

Proof. Consider first the pair compression. At most one letter is popped up and down
from each of the context variable, which gives 2n letters. Also, at most one letter is
popped up from each variable, and there are at most n(k − 1) variables, see Lemma 103,
this yields n(k − 1) new letters. In total: 2n+ n(k − 1) = n(k + 1) ≤ n(2k − 1).
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The analysis is the same for uncrossing a-chains, except that instead of one letter we
pop whole a-prefixes and a-suffixes. But they are immediately replaced with single letters,
so the same estimation holds.

For the father-i-leaf subpatterns, we only pop up unary letters from variables, which
gives n(k − 1) letters. We also pop down at most a single letter f from each context
variable, together with up to k− 1 new variables, which may be immediately after turned
into letters, which yields another nk letters. So, n(2k − 1) letters in total.

20.9.4 Size bounds

We can now show the crucial lemma: if a solution is satisfiable, then for some non-
deterministic choices the obtained equation is also satisfiable and its size does not grow.
We begin with showing the bound when the signature is not restricted and explain in the
next section, that those results hold also for simple signatures.

Lemma 106. Suppose that the equation u = v has a solution S (over a signature Γ)
for which there is a non-crossing subpattern with explicit occurrence in u = v. Then
after compressing this subpattern the obtained equation is satisfiable, is smaller and has
a smaller solution (over the signature Γ expanded by the letter replacing the compressed
subpatterns).

Proof. We perform the subpattern compression for appropriate subpattern. The obtained
equation is clearly smaller (as there is at least one occurrence of the compressed subpat-
tern). From Lemma 94 the obtained equation has a solution S ′ such that S ′(u′) is smaller
than S(u).

A similar statement can be shown also for uncrossing and compression of crossing
subpatterns.

Lemma 107. Suppose that the equation u = v has a solution S (over a signature Γ) for
which there is no non-crossing subpattern with explicit occurrence in u = v. Then there is a
crossing subpattern (with respect to S) such that for appropriate non-deterministic choices
after uncrossing and compressing it the equation has a smaller solution (over a signature Γ
expanded by the new letters that replaced the compressed subpatterns). Additionally, if the
equation has at least 48n2k2 letters then for those nondeterministic choices the obtained
equation has less letters.

Proof. Take any crossing subpattern. Uncross it. By Lemma 97 the obtained equation
has a solution of the same size, for which the subpattern is non-crossing. Compress this
subpattern. By Lemma 106 the obtained equation has smaller solution. Note that this
argument holds for the compression of any subpattern, as long as it has occurrences in
the solution; the claim on the signature follows also from Lemma 106.

Let us move to the second claim of the lemma.
If u = v has more than n2(2k+1)(k+1) occurrences of constants then it has the same

amount of occurrences of father-leaf subpatterns. As there are at most n(k + 1) different
crossing subpatterns, see Lemma 104, one of them has more than

n2(2k + 1)(k + 1)
n(k + 1) = n(2k + 1)
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occurrences. We uncross it and compress it. The uncrossing introduces at most n(2k+ 1)
new letters, see Lemma 105. On the other hand, at least n(2k+1)+1 letters are removed,
and so the equation gets smaller.

If u = v has at most n2(2k + 1)(k + 1) constants then it has at most

n2(2k + 1)(k + 1) + n(k − 1) < n2(4k)(k + 1)

symbols of arity 0 (the other n(k − 1) are the variables, see Lemma 103). Hence it also
has at most this amount of nodes of arity at least 2, so all remaining nodes have arity at
most 1 and at most n of them are context variables. So there are at least

n2(24k)(k + 1)− 2n2(4k)(k + 1)− n > n2(15k)(k + 1)

unary letters in the equation.
We can similarly estimate the amount of chains: each maximal chain ends with a node

of arity different than 1, so there are at most

n2(4k)(k + 1)︸ ︷︷ ︸
symbols of arity 0

+ n2(4k)(k + 1)︸ ︷︷ ︸
symbols of arity at least 2

+ n︸︷︷︸
context variables

< n2(9k)(k + 1)

different chains.
If a chain is not a single letter, then each of its letter is covered by an occurrence of

some a-maximal chain (of length greater than 1) or ab pair; by the assumption each ab
pair is a crossing pair and each a has a crossing blocks. On the other hand, by Lemma 104,
there are at most n(k + 1) different crossing subpatterns. So occurrences of one of those
subpatterns cover at least

n2(15k)(k + 1)− n2(9k)(k + 1)
n(k + 1) > 2n(2k + 1)

letters. We compress this subpattern. The rest of the analysis follows as in the case of
compression of father-i-leaf subpatterns, with one exception: when we pop the a-prefixes
and suffixes, we introduce perhaps very long chains to the equation. They are immediately
replaced with a single letter afterwards, so there is no problem with this. Moreover, any
as that are part of the compressed chain and were in the equation before popping are
compressed. So in total we introduce 1 letter and remove all explicit letters that are part
of the compressed chains.

A similar claim can be shown also for the size of the solution

Lemma 108. Suppose that the equation u = v has a solution S (over a signature Γ) for
which there is no non-crossing subpattern with explicit occurrence in u = v. Then there
is a crossing subpattern (with respect to S) such that for appropriate non-deterministic
choices after uncrossing and compressing it the equation is larger by at most n(2k+1) and
it has a solution of size at most

(
1− 1

6n(k+1)

)
|S(u)| (over a signature Γ plus the letters

replacing the compressed subpatterns).

Proof. The bound on the number of introduced letters follow from Lemma 105.
Let n0, n1 and n2 be the number of letters of arity 0, 1 and at least 2 in S(u). If

n0 ≥ |S(u)|
6 then there are at least |S(u)|

6 different occurrences of father-leaf patterns. By
Lemma 104 there are at most n(k + 1) different crossing subpatterns, see Lemma 104,
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and so one of them has at least |S(u)|
6n(k+1) occurrences. Its compression removes at least

|S(u)|
6n(k+1) letters from the equation. On the level of the equation we first need to uncross
this subpattern and then compress it, the rest of the analysis is as in Lemma 107.

So suppose that n0 <
|S(u)|

6 , so also n2 <
|S(u)|

6 and so n1 ≥ 2|S(u)|
3 . Except perhaps the

chains of length 1, each letter in a unary chain is covered by some ab pair or a-chain of
length greater than 2. Since each chain ends in a letter of arity other than 1, there are
at most n0 + n2 <

|S(u)|
3 chains and so at least |S(u)|

3 letters are covered. As there at most
n(k + 1) different crossing subpatterns, one of them covers at least |S(u)|

3n(k+1) letters and so
its compression removes at least |S(u)|

6n(k+1) letters from the solution. The rest of the analysis
follows as in the previous case.

We can now show the proof of the main theorem (Theorem 98) for the case of Con-
textEqSatSimp.

proof of Theorem 98 for ContextEqSatSimp . Suppose that we are given a satisfiable equa-
tion u = v. By Lemma 100 the equation is satisfiable also over the trimmed signature.

During the algorithm we ensure that the equation has at most 48n2k2 + n(2k + 1)
letters over the signature consisting of the trimmed signature and all letters introduced
during the ContextEqSatSimp.

During the algorithm, if there is a non-crossing subpattern for some length-minimal
solution, we choose it for compression (as a non-deterministic guess). This reduces the
number of letters in the equation, see Lemma 106, so there are at most 48n2k2 +n(2k+1)
such compressions in a row. Note that each consecutive equation has smaller minimal
solution, again by Lemma 106.

If there are only crossing pairs for the size-minimal solution (say S), then there are
two different behaviours, depending on the size of the equation. If the equation has
more than 48n2k2 letters then we choose a crossing subpattern (for S) for uncrossing and
compression according to Lemma 107. After uncrossing it and the compression the size
of the equation and size-minimal solution decrease, see Lemma 107.

If the equation has at most 48n2k2 letters then choose according to Lemma 108. Thus
the size of the size-minimal solution decreases by a fraction 1− 1

6n(k+1) and the size of the
equation increases by at most n(2k + 1).

In this way the number of letters in the equation is always at most 48n2k2+ n(2k +
1): we can only increase it by compressing pairs chosen according to Lemma 108 or
Lemma 107, in each case by at most n(2k+ 1) letters. However, if the equation has more
than 48n2k2 then we choose the latter and the Lemma 107 guarantees that the size of the
equation does not increase.

Concerning the number of phases: each compression according to Lemma 108 reduces
the size of the length-minimal solution by a fraction

(
1− 1

6n(k+1)

)
, so after 6n(k + 1)

such compressions the size of the length-minimal (simple) solution reduces by a constant
fraction, so there are only O(nk logN) such compressions, where N is the size of the
size-minimal solution. Consider now, how many other compression can there be between
two compressions according to Lemma 108? Each other compression reduces the size of
the equation by 1 and so there can be at most 48n2k2+ n(2k+ 1) of them in-between two
such compressions. So there are O(n3k3 logN) compression steps in total.
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20.9.5 Simple solutions

We now show that the ContextEqSat does not loose solutions by restricting itself to the
equations’ signature; moreover, the size of the size-minimal solution remains the same.

Lemma 109. Let k be the maximal arity of symbols in the trimmed signature. Consider
any equation obtained during ContextEqSat. If it has a solution S over a signature of
arity k then it has a solution S ′ over the equations’ signature; moreover, size of S ′ is not
larger then the size of S.

Proof. The proof follows a similar replacement schema as in the case of Lemma 100: take
any signature Γ′ and let Γ be the simple signature. If S(u) uses a letter g ∈ Γ′ \ Γ then
it must be used inside a substitution S(X). We can replace all occurrences of g with a
letter fi ∈ Γ′ of the same arity; this is possible as there is a letter of each arity up to k in
Γ and the ariyt of Γ′ is bounded by k. The obtained substitution is a solution and it has
the same size as S, yielding the claim.

This allows us to show that proof of Theorem 98 in case of ContextEqSat.

proof of Theorem 98 for ContextEqSat . The proof of the Theorem is the same as in the
case of ContextEqSatSimp, with one exception: we ensure that the kept solution is over
the equation’s signature. (Note that Lemma 106–108 apply to this setting). After a
compression (and perhaps the earlier uncrossing) we get an equation over a signature
extended by some letters, and a solution S ′ smaller than a solution S of the previous
equation. It could be that S ′ is not over equation’s signature, but by Lemma 89 it is over
a signature of maximal arity at most k and so from Lemma 109 there is a simple solution
whose size is at most the size of S ′, so in particular smaller than S.

The rest of the proof is identical, as we rely only on local choices of pair to compress
for some solution.

This allows us to show also the proof of Theorem 99.

proof of Theorem 99. By Theorem 98 the (non-deterministic) algorithm ContextEqSat
stores an equation of size O(n2k2), which is stored in polynomial space. The maximal
stored equation’s signature has size of the equation plus the size of the trimmed signature,
which is linear, see Lemma 100. The additional used space is proportional to the size of
the equation, except the space needed to store the lengths of the a-chains. But this is at
most polynomial, see Lemma 102. Thus the whole space usage is polynomial.

It cannot be that during the computation we reach the same equation (which neces-
sarily has the same equations’ signature): each performed compression operation shortens
the length of the length-minimal solution, see Lemma 106, 107 and 108. And the size of
the size-minimal solution is the same.

Hence after an appropriate number of steps during which we did not accept we can
reject the input.

Lastly, by Savitch Theorem the non-deterministic polynomial space algorithm can be
determinised, using at most quadratically more space.

77



References
[1] Anisa Al-Hafeedh, Maxime Crochemore, Lucian Ilie, Evguenia Kopylova, William F.

Smyth, German Tischler, and Munina Yusufu. A comparison of index-based Lempel-
Ziv LZ77 factorization algorithms. ACM Comput. Surv., 45(1):5, 2012.

[2] Stephen Alstrup, Gerth S. Brodal, and Theis Rauhe. Pattern matching
in dynamic texts. In SODA, pages 819–828, 2000. ISBN 0-89871-453-2.
doi:doi.acm.org/10.1145/338219.338645.

[3] Witold Charatonik and Leszek Pacholski. Word equations with two variables. In
Habib Abdulrab and Jean-Pierre Pécuchet, editors, IWWERT, volume 677 of LNCS,
pages 43–56. Springer, 1991. ISBN 3-540-56730-5. doi:10.1007/3-540-56730-5_30.

[4] Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prabhakaran, Amit
Sahai, and Abhi Shelat. The smallest grammar problem. IEEE Transactions on
Information Theory, 51(7):2554–2576, 2005. doi:10.1109/TIT.2005.850116.

[5] Gang Chen, Simon J. Puglisi, and William F. Smyth. Fast and practical algorithms
for computing all the runs in a string. In Bin Ma and Kaizhong Zhang, editors, CPM,
volume 4580 of LNCS, pages 307–315. Springer, 2007.

[6] Richard Cole and Uzi Vishkin. Deterministic coin tossing with applications to optimal
parallel list ranking. Information and Control, 70(1):32–53, 1986. doi:10.1016/S0019-
9958(86)80023-7. URL http://dx.doi.org/10.1016/S0019-9958(86)80023-7.

[7] Hubert Comon. Completion of rewrite systems with membership constraints. Part I:
Deduction rules. J. Symb. Comput., 25(4):397–419, 1998. doi:10.1006/jsco.1997.0185.

[8] Hubert Comon. Completion of rewrite systems with membership con-
straints. Part II: Constraint solving. J. Symb. Comput., 25(4):421–453, 1998.
doi:10.1006/jsco.1997.0186.

[9] Maxime Crochemore, Lucian Ilie, and William F. Smyth. A simple algorithm for
computing the Lempel Ziv factorization. In DCC, pages 482–488. IEEE Computer
Society, 2008.

[10] Volker Diekert and Markus Lohrey. Existential and positive theories of equations
in graph products. Theory Comput. Syst., 37(1):133–156, 2004. doi:10.1007/s00224-
003-1110-x. URL http://dx.doi.org/10.1007/s00224-003-1110-x.

[11] Volker Diekert, Claudio Gutiérrez, and Christian Hagenah. The existential theory of
equations with rational constraints in free groups is PSPACE-complete. Inf. Comput.,
202(2):105–140, 2005.

[12] Volker Diekert, Artur Jeż, and Wojciech Plandowski. Finding all solutions of equa-
tions in free groups and monoids with involution. In Edward A. Hirsch, Sergei O.
Kuznetsov, Jean-Éric Pin, and Nikolay K. Vereshchagin, editors, CSR, volume
8476 of LNCS, pages 1–15. Springer, 2014. doi:10.1007/978-3-319-06686-8_1. URL
http://dx.doi.org/10.1007/978-3-319-06686-8_1.

78

http://dx.doi.org/doi.acm.org/10.1145/338219.338645
http://dx.doi.org/10.1007/3-540-56730-5_30
http://dx.doi.org/10.1109/TIT.2005.850116
http://dx.doi.org/10.1016/S0019-9958(86)80023-7
http://dx.doi.org/10.1016/S0019-9958(86)80023-7
http://dx.doi.org/10.1016/S0019-9958(86)80023-7
http://dx.doi.org/10.1006/jsco.1997.0185
http://dx.doi.org/10.1006/jsco.1997.0186
http://dx.doi.org/10.1007/s00224-003-1110-x
http://dx.doi.org/10.1007/s00224-003-1110-x
http://dx.doi.org/10.1007/s00224-003-1110-x
http://dx.doi.org/10.1007/978-3-319-06686-8_1
http://dx.doi.org/10.1007/978-3-319-06686-8_1


[13] Robert Dąbrowski and Wojciech Plandowski. Solving two-variable word equations.
In Josep Díaz, Juhani Karhumäki, Arto Lepistö, and Donald Sannella, editors,
ICALP, volume 3142 of LNCS, pages 408–419. Springer, 2004. ISBN 3-540-22849-7.
doi:10.1007/978-3-540-27836-8_36.

[14] Robert Dąbrowski and Wojciech Plandowski. On word equations in one variable.
Algorithmica, 60(4):819–828, 2011. doi:10.1007/s00453-009-9375-3.

[15] William M. Farmer. Simple second-order languages for which unification is undecid-
able. Theor. Comput. Sci., 87(1):25–41, 1991. doi:10.1016/S0304-3975(06)80003-4.

[16] Adria Gascón, Guillem Godoy, Manfred Schmidt-Schauß, and Ashish Tiwari. Con-
text unification with one context variable. J. Symb. Comput., 45(2):173–193, 2010.
doi:10.1016/j.jsc.2008.10.005.

[17] Adria Gascón, Ashish Tiwari, and Manfred Schmidt-Schauß. One context unification
problems solvable in polynomial time. In LICS, pages 499–510. IEEE, 2015. ISBN
978-1-4799-8875-4. doi:10.1109/LICS.2015.53. URL http://dx.doi.org/10.1109/
LICS.2015.53.

[18] Andrew V. Goldberg, Serge A. Plotkin, and Gregory E. Shannon. Parallel
symmetry-breaking in sparse graphs. SIAM J. Discrete Math., 1(4):434–446, 1988.
doi:10.1137/0401044. URL http://dx.doi.org/10.1137/0401044.

[19] Warren D. Goldfarb. The undecidability of the second-order unification problem.
Theor. Comput. Sci., 13:225–230, 1981. doi:10.1016/0304-3975(81)90040-2.

[20] Keisuke Goto and Hideo Bannai. Simpler and faster Lempel Ziv factorization. In
Ali Bilgin, Michael W. Marcellin, Joan Serra-Sagristà, and James A. Storer, editors,
DCC, pages 133–142. IEEE, 2013. ISBN 978-1-4673-6037-1.

[21] Keisuke Goto and Hideo Bannai. Space efficient linear time Lempel-Ziv factor-
ization for small alphabets. In Ali Bilgin, Michael W. Marcellin, Joan Serra-
Sagristà, and James A. Storer, editors, DCC 2014, pages 163–172. IEEE, 2014.
doi:10.1109/DCC.2014.62. URL http://dx.doi.org/10.1109/DCC.2014.62.

[22] Artur Jeż. Approximation of grammar-based compression via recompression. The-
oretical Computer Science, 592:115–134, 2015. doi:10.1016/j.tcs.2015.05.027. URL
http://dx.doi.org/10.1016/j.tcs.2015.05.027.

[23] Artur Jeż. Recompression: a simple and powerful technique for word equations.
Journal of the ACM, 2015. ISSN 0004-5411/2015. doi:10.1145/2743014. URL http:
//dx.doi.org/10.1145/2743014.

[24] Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix array
construction. J. ACM, 53(6):918–936, 2006.

[25] Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. Linear time Lempel-Ziv
factorization: Simple, fast, small. In Johannes Fischer and Peter Sanders, editors,
CPM, volume 7922 of LNCS, pages 189–200. Springer, 2013. ISBN 978-3-642-38904-7,
978-3-642-38905-4.

79

http://dx.doi.org/10.1007/978-3-540-27836-8_36
http://dx.doi.org/10.1007/s00453-009-9375-3
http://dx.doi.org/10.1016/S0304-3975(06)80003-4
http://dx.doi.org/10.1016/j.jsc.2008.10.005
http://dx.doi.org/10.1109/LICS.2015.53
http://dx.doi.org/10.1109/LICS.2015.53
http://dx.doi.org/10.1109/LICS.2015.53
http://dx.doi.org/10.1137/0401044
http://dx.doi.org/10.1137/0401044
http://dx.doi.org/10.1016/0304-3975(81)90040-2
http://dx.doi.org/10.1109/DCC.2014.62
http://dx.doi.org/10.1109/DCC.2014.62
http://dx.doi.org/10.1016/j.tcs.2015.05.027
http://dx.doi.org/10.1016/j.tcs.2015.05.027
http://dx.doi.org/10.1145/2743014
http://dx.doi.org/10.1145/2743014
http://dx.doi.org/10.1145/2743014


[26] Antoni Kościelski and Leszek Pacholski. Complexity of Makanin’s algorithm. J.
ACM, 43(4):670–684, 1996.

[27] Markku Laine and Wojciech Plandowski. Word equations with one unknown. Int. J.
Found. Comput. Sci., 22(2):345–375, 2011. doi:10.1142/S0129054111008088.

[28] J. L. Lambert. Une borne pour les générateurs des solutions entières positives d’une
équation diophantienne linéaire. Compte-rendu de L’Académie des Sciences de Paris,
305(1):39–40, 1987.

[29] Jordi Levy. Linear second-order unification. In Harald Ganzinger, editor, RTA,
volume 1103 of LNCS, pages 332–346. Springer, 1996. ISBN 3-540-61464-8.
doi:10.1007/3-540-61464-8_63.

[30] Jordi Levy and Jaume Agustí-Cullell. Bi-rewrite systems. J. Symb. Comput., 22(3):
279–314, 1996. doi:10.1006/jsco.1996.0053.

[31] Jordi Levy and Margus Veanes. On the undecidability of second-order unification.
Inf. Comput., 159(1–2):125–150, 2000. doi:10.1006/inco.2000.2877.

[32] Jordi Levy and Mateu Villaret. Linear second-order unification and context
unification with tree-regular constraints. In Leo Bachmair, editor, RTA, vol-
ume 1833 of LNCS, pages 156–171. Springer, 2000. ISBN 3-540-67778-X.
doi:10.1007/10721975_11.

[33] Jordi Levy and Mateu Villaret. Currying second-order unification problems. In
Sophie Tison, editor, RTA, volume 2378 of LNCS, pages 326–339. Springer, 2002.
ISBN 3-540-43916-1. doi:10.1007/3-540-45610-4_23.

[34] Jordi Levy, Manfred Schmidt-Schauß, and Mateu Villaret. The complexity of
monadic second-order unification. SIAM J. Comput., 38(3):1113–1140, 2008.
doi:10.1137/050645403. URL http://dx.doi.org/10.1137/050645403.

[35] Jordi Levy, Manfred Schmidt-Schauß, and Mateu Villaret. On the complexity of
bounded second-order unification and stratified context unification. Logic Journal of
the IGPL, 19(6):763–789, 2011. doi:10.1093/jigpal/jzq010.

[36] Yury Lifshits. Processing compressed texts: A tractability border. In Bin Ma and
Kaizhong Zhang, editors, CPM, volume 4580 of LNCS, pages 228–240. Springer,
2007. ISBN 978-3-540-73436-9. doi:10.1007/978-3-540-73437-6_24.

[37] Gennadií Makanin. The problem of solvability of equations in a free semigroup.
Matematicheskii Sbornik, 2(103):147–236, 1977. (in Russian).

[38] Gennadií Makanin. Equations in a free group. Izv. Akad. Nauk SSR, Ser. Math. 46:
1199–1273, 1983. English transl. in Math. USSR Izv. 21 (1983).

[39] Gennadií Semyonovich Makanin. Decidability of the universal and positive theories
of a free group. Izv. Akad. Nauk SSSR, Ser. Mat. 48:735–749, 1984. In Russian;
English translation in: Math. USSR Izvestija, 25, 75–88, 1985.

[40] Jerzy Marcinkowski. Undecidability of the first order theory of one-step right ground
rewriting. In Hubert Comon, editor, RTA, volume 1232 of LNCS, pages 241–253.
Springer, 1997. doi:10.1007/3-540-62950-5_75.

80

http://dx.doi.org/10.1142/S0129054111008088
http://dx.doi.org/10.1007/3-540-61464-8_63
http://dx.doi.org/10.1006/jsco.1996.0053
http://dx.doi.org/10.1006/inco.2000.2877
http://dx.doi.org/10.1007/10721975_11
http://dx.doi.org/10.1007/3-540-45610-4_23
http://dx.doi.org/10.1137/050645403
http://dx.doi.org/10.1137/050645403
http://dx.doi.org/10.1093/jigpal/jzq010
http://dx.doi.org/10.1007/978-3-540-73437-6_24
http://dx.doi.org/10.1007/3-540-62950-5_75


[41] Kurt Mehlhorn, R. Sundar, and Christian Uhrig. Maintaining dynamic sequences
under equality tests in polylogarithmic time. Algorithmica, 17(2):183–198, 1997.
doi:10.1007/BF02522825.

[42] Joachim Niehren, Manfred Pinkal, and Peter Ruhrberg. A uniform approach to un-
derspecification and parallelism. In Philip R. Cohen and Wolfgang Wahlster, editors,
ACL, pages 410–417. Morgan Kaufmann Publishers / ACL, 1997.

[43] Joachim Niehren, Manfred Pinkal, and Peter Ruhrberg. On equality up-to constraints
over finite trees, context unification, and one-step rewriting. In William McCune,
editor, CADE, volume 1249 of LNCS, pages 34–48. Springer, 1997. ISBN 3-540-
63104-6. doi:10.1007/3-540-63104-6_4.

[44] S. Eyono Obono, Pavel Goralcik, and M. N. Maksimenko. Efficient solving of the
word equations in one variable. In Igor Prívara, Branislav Rovan, and Peter Ruzicka,
editors, MFCS, volume 841 of LNCS, pages 336–341. Springer, 1994. ISBN 3-540-
58338-6. doi:10.1007/3-540-58338-6_80.

[45] Enno Ohlebusch and Simon Gog. Lempel-Ziv factorization revisited. In Raffaele
Giancarlo and Giovanni Manzini, editors, CPM, volume 6661 of LNCS, pages 15–26.
Springer, 2011. ISBN 978-3-642-21457-8.

[46] Wojciech Plandowski. Satisfiability of word equations with constants is in NEXP-
TIME. In STOC, pages 721–725. ACM, 1999.

[47] Wojciech Plandowski. Satisfiability of word equations with constants is in PSPACE.
J. ACM, 51(3):483–496, 2004. doi:10.1145/990308.990312.

[48] Wojciech Plandowski and Wojciech Rytter. Application of Lempel-Ziv encodings
to the solution of word equations. In Kim Guldstrand Larsen, Sven Skyum, and
Glynn Winskel, editors, ICALP, volume 1443 of LNCS, pages 731–742. Springer,
1998. doi:10.1007/BFb0055097.

[49] RTA problem list. Problem 90. http://rtaloop.mancoosi.univ-paris-
diderot.fr/problems/90.html, 1990.

[50] Wojciech Rytter. Application of Lempel-Ziv factorization to the approximation
of grammar-based compression. Theor. Comput. Sci., 302(1-3):211–222, 2003.
doi:10.1016/S0304-3975(02)00777-6.

[51] Aleksi Saarela. On the complexity of Hmelevskii’s theorem and satisfiability of three
unknown equations. In Volker Diekert and Dirk Nowotka, editors, Developments
in Language Theory, volume 5583 of LNCS, pages 443–453. Springer, 2009. ISBN
978-3-642-02736-9. doi:10.1007/978-3-642-02737-6_36.

[52] Hiroshi Sakamoto. A fully linear-time approximation algorithm for
grammar-based compression. J. Discrete Algorithms, 3(2-4):416–430, 2005.
doi:10.1016/j.jda.2004.08.016.

[53] Manfred Schmidt-Schauß. Unification of stratified second-order terms. Internal Re-
port 12/94, Johann-Wolfgang-Goethe-Universität, 1994.

81

http://dx.doi.org/10.1007/BF02522825
http://dx.doi.org/10.1007/3-540-63104-6_4
http://dx.doi.org/10.1007/3-540-58338-6_80
http://dx.doi.org/10.1145/990308.990312
http://dx.doi.org/10.1007/BFb0055097
http://rtaloop.mancoosi.univ-paris-diderot.fr/problems/90.html
http://rtaloop.mancoosi.univ-paris-diderot.fr/problems/90.html
http://dx.doi.org/10.1016/S0304-3975(02)00777-6
http://dx.doi.org/10.1007/978-3-642-02737-6_36
http://dx.doi.org/10.1016/j.jda.2004.08.016


[54] Manfred Schmidt-Schauß. A decision algorithm for distributive unification. Theor.
Comput. Sci., 208(1–2):111–148, 1998. doi:10.1016/S0304-3975(98)00081-4.

[55] Manfred Schmidt-Schauß. A decision algorithm for stratified context unification. J.
Log. Comput., 12(6):929–953, 2002. doi:10.1093/logcom/12.6.929.

[56] Manfred Schmidt-Schauß. Decidability of bounded second order unification. Inf.
Comput., 188(2):143–178, 2004. doi:10.1016/j.ic.2003.08.002.

[57] Manfred Schmidt-Schauß and Klaus U. Schulz. On the exponent of periodicity of
minimal solutions of context equation. In RTA, volume 1379 of LNCS, pages 61–75.
Springer, 1998. ISBN 3-540-64301-X. doi:10.1007/BFb0052361.

[58] Manfred Schmidt-Schauß and Klaus U. Schulz. Solvability of context equations
with two context variables is decidable. J. Symb. Comput., 33(1):77–122, 2002.
doi:10.1006/jsco.2001.0438.

[59] Manfred Schmidt-Schauß and Klaus U. Schulz. Decidability of bounded higher-order
unification. J. Symb. Comput., 40(2):905–954, 2005. doi:10.1016/j.jsc.2005.01.005.

[60] Klaus U. Schulz. Makanin’s algorithm for word equations—two improvements and
a generalization. In Klaus U. Schulz, editor, IWWERT, volume 572 of LNCS, pages
85–150. Springer, 1990. ISBN 3-540-55124-7. doi:10.1007/3-540-55124-7_4.

[61] James A. Storer and Thomas G. Szymanski. The macro model for data compression.
In Richard J. Lipton, Walter A. Burkhard, Walter J. Savitch, Emily P. Friedman,
and Alfred V. Aho, editors, STOC, pages 30–39. ACM, 1978.

[62] Ralf Treinen. The first-order theory of linear one-step rewriting is undecidable. Theor.
Comput. Sci., 208(1–2):179–190, 1998. doi:10.1016/S0304-3975(98)00083-8.

[63] Joachim von zur Gathen and Malte Sieveking. A bound on solutions of linear integer
equations and inequalities. Proceedings of AMS, 72(1):155–158, 1978.

[64] Sergei G. Vorobyov. The first-order theory of one step rewriting in linear Noetherian
systems is undecidable. In Hubert Comon, editor, RTA, volume 1232 of LNCS, pages
254–268. Springer, 1997. ISBN 3-540-62950-5. doi:10.1007/3-540-62950-5_76.

[65] Sergei G. Vorobyov. ∀∃∗-equational theory of context unification is Π0
1-hard. In

Lubos Brim, Jozef Gruska, and Jirí Zlatuska, editors, MFCS, volume 1450 of LNCS,
pages 597–606. Springer, 1998. ISBN 3-540-64827-5. doi:10.1007/BFb0055810.

82

http://dx.doi.org/10.1016/S0304-3975(98)00081-4
http://dx.doi.org/10.1093/logcom/12.6.929
http://dx.doi.org/10.1016/j.ic.2003.08.002
http://dx.doi.org/10.1007/BFb0052361
http://dx.doi.org/10.1006/jsco.2001.0438
http://dx.doi.org/10.1016/j.jsc.2005.01.005
http://dx.doi.org/10.1007/3-540-55124-7_4
http://dx.doi.org/10.1016/S0304-3975(98)00083-8
http://dx.doi.org/10.1007/3-540-62950-5_76
http://dx.doi.org/10.1007/BFb0055810

	Introduction
	Satisfiability of word equations
	Exponent of periodicity
	Visible blocks and their lengths
	Arithmetic expressions
	System of integer equations
	Parametrised solutions
	Solutions of system of linear Diophantine equations
	Bound on -exponent of periodicity

	LZ77 and SLPs
	LZ77
	SLP
	Composition systems

	Short proof for small SLP representation of length-minimal solution
	Smallest grammar problem
	Basic notations
	AVL grammar
	From LZ77 to AVL grammar

	Generalising Recompression from word equations to SLPs
	Size
	Pair compression
	Faster block compression

	Approximation of the smallest SLP using recompression
	Intuition and road map
	Modifying the grammar
	Block compression
	Paying the representation cost: credit
	Additional cost

	Estimation of credit
	Calculating the cost of representing letters in block compression
	G-based representation
	Cost of G-based representation
	Comparing the G-based representation cost and texttoSLP-based representation cost


	Equality testing: similar approach
	How to calculate assignment
	Storing
	Update
	Comments

	Compressed pattern matching: Combinatorial approach
	AP table
	Filling AP using LSP

	Local search procedure

	Quadratic word equations
	Word equations: limited number of variables
	One variable
	One-variable equations
	Representation of solutions
	Preserving solutions

	Specialisation of precodures
	The algorithm

	Free groups
	Free groups
	Free monoids/semigroups with involution
	Word equation in free groups
	Reduction: equations in groups to word equations

	Positive theory of free groups and free semigroups with recognisable constraints
	General comments
	Quantifier elimination
	Proof of Lemma 67

	Solving equations in free groups
	Recognisable/Regular sets
	Regular constraints
	Main issue
	Goal
	Needed modifications
	Constraints
	Involution
	Pair compression
	Blocks and Quasiblocks compression

	Letters

	Representation of all solutions
	Terms and Unification
	Labelled trees
	What the variables represent
	Patterns
	Second order unification

	Linear Monadic Second Order Unification
	General second order unification
	Context Unification
	Introduction
	Context unification
	Extensions and connections to other problems
	Context unification and word equations

	Compression of trees
	Patterns
	Local compression of trees

	Context unification
	Compressions on the equation
	Uncrossing
	Uncrossing father-leaf subpattern
	Uncrossing patterns
	The algorithm
	Analysis of the algorithm
	Input signature
	Exponent of periodicity
	Occurrences of variables
	Size bounds
	Simple solutions



