
Complexity of Typechecking XML Views of

Relational Databases

Piotr Wieczorek⋆

Institute of Computer Science, University of Wroc law,
Joliot-Curie 15, PL-50-383 Wroc law, Poland

piotr.wieczorek@ii.uni.wroc.pl

Abstract. The typechecking problem for transformations of relational
data into tree data is the following: given a TreeQL program P (called
transformation), and a DTD d (called output type), decide whether for
every database instance D the result of the transformation P of D is
of a type consistent with d (see [2]). TreeQL programs with projection-
free conjunctive queries and DTDs with arbitrary regular expressions are
considered here.
A non-elementary upper bound for the typechecking problem is given
in [2] (although in a more general setting, where equality and negation
in projection-free conjunctive queries and additional universal integrity
constraints are allowed).
In this paper we show that the typechecking problem is in coNEXP-
TIME.
As an intermediate step we consider the following problem, which can
be formulated in a language independent of XML notions. Given a set of
triples of the form (ϕ, k, j), where ϕ is a projection-free conjunctive query
and k, j are natural numbers, decide whether there exists a database D

such that for each triple (ϕ, k, j) in the set, there exists a natural number
α, such that there are exactly k + j ∗ α tuples satisfying the query ϕ in
D. Our main technical contribution consists of a NEXPTIME algorithm
for the last problem.

1 Introduction

During the last years XML has become the standard in data exchange in the web.
Often the actual data resides in relational databases. In order to be published
such data should be transformed to XML. XML documents have their types —
a type is a tree language. There are many formalisms to define a type e.g. RE-
LAX NG, which can define the full class of regular tree languages or DTD/XML
Schema, which can define some fragments of this class. Typically, a community
agrees on a certain type and then all members of the community publish doc-
uments consistent with the type. Here comes the problem of typechecking for
transformations of relational data into tree data: for a given transformation, an

⋆ Partially supported by Polish Ministry of Science and Higher Education research
project N206022 31/3660, 2006/2009.

output type and a set of integrity constraints, decide whether every database
satisfying the integrity constraints is transformed to a tree consistent with the
output type. Thus the problem can be parameterized by:

– the class of transformations,
– the class of output tree languages,
– the class of integrity constraints.

Alon et al. [2] present a study of decidability and complexity of many versions
of the problem. As a formalism to define transformations the authors introduce
TreeQL programs. TreeQL is an abstraction of practical languages such as RXL
(SilkRoute [4]). A TreeQL program is a tree with each node labeled with a
symbol from a finite alphabet and with a logical formula, which in our paper is
always a projection-free conjunctive query. The result of a transformation of a
relational structure is a tree reflecting the structure of the program tree, such
that each node t of the program tree is substituted by as many nodes as there
are tuples in the database satisfying the formula being the label of t. The nodes
of the output tree inherit, as their labels, the symbols that label nodes of the
program tree. The output type is specified by a DTD — a formalism which puts
local restrictions on trees, that is, it restricts how the sequence of child labels of
a node looks like.

Decidability results in [2] include a coNEXPTIME upper bound on type-
checking TreeQL programs with conjunctive queries (with negation and equal-
ity), DTDs with star-free regular languages as the output types and the in-
tegrity constraints in FO(∃∗∀∗). When arbitrary regular expressions are allowed
in DTDs the authors show decidability of typechecking TreeQL programs with
projection-free conjunctive queries 1 (with negation and equality) and integrity
constraints in FO(∀∗). In the latter case, however, the complexity is prohibitively
high – the proof uses a combinatorial argument based on Ramsey’s Theorem
and yields a non-elementary upper bound. It was left as an open problem in [2]
whether the bound can be improved. We show that such an improvement is pos-
sible, at least for a restricted case. We show a coNEXPTIME upper bound on
the typechecking problem for DTDs with arbitrary regular expressions as the
output types and projection-free conjunctive queries in TreeQL programs, but
without integrity constraints.

Our approach is as follows. Inspired by the notion of the modulo property [2],
we perform the reduction of the complement of the typechecking problem to
the following problem. Given a set of triples of the form (ϕ, k, j), where ϕ is a
projection-free conjunctive query and k, j are natural numbers, decide whether
there exists a database D such that for each triple (ϕ, k, j) in the set, there
exists a natural number α, such that there are exactly k+ j ∗α tuples satisfying
the query ϕ in D. Notice, that a triple (ϕ, k, j) is a kind of a constraint on
a relational database. We call such constraints modulo constraints. Our main
technical contribution consists of a NEXPTIME algorithm for the problem of

1 If conjunctive queries with projections are allowed, the problem (even in our simple
setting) is not known to be decidable.

2

satisfiability of a set of modulo constraints. We use an elementary technique,
namely a direct construction of a counterexample database of exponential size
(by a counterexample database we mean such a database that is transformed to
a tree not in the output tree language).
Related work. Recently the problem of typechecking gained a lot of attention
in literature, especially in the context of typechecking XML-to-XML transfor-
mations, which, since relational structures can easily be encoded as XML trees,
is closely related to ours. In the context we are given input and output tree lan-
guages and a transformation and we are asked whether every tree in the input
tree language is transformed to a tree in the output language. The problem was
studied in [7], where the input and output types were regular tree languages
and transformations were expressed by k-pebble transducers. As long as the data
values in trees are not considered, the problem is decidable, however the com-
plexity is non-elementary. If the nodes in trees can be equipped with data values
from an infinite domain, in addition to the tags from a finite alphabet, then, as
it was shown in [3], the problem quickly gets undecidable and in the decidable
cases the complexity is rather high. In [5] and [6] Martens and Neven considered
transformations in a form of a single top-down traversal of the input tree, during
which every node can be replaced by a new tree or deleted. Such transformations
can be used for restructuring and filtering rather than for advanced querying,
but on the other hand, the obtained complexity results range from EXPTIME
to PTIME.
Outline of the paper. The rest of the paper is organized as follows. In Sect. 2
we give the necessary preliminaries. In a short Sect. 3 we state Theorem 1, which
is our main theorem, and formulate an intermediate result – the main lemma
needed for the proof of Theorem 1. In Sect. 4, which is the main technical part,
we prove the intermediate result. Finally, in Sect. 5 we use some of the ideas
from [2] and show how the intermediate result implies the main result.

2 Preliminaries

XML and XML Types. We abstract XML documents as ordered, unranked,
finite trees whose nodes are labeled with symbols from some finite alphabet Σ
(see Fig. 2). We denote the label of the node v by lab(v) and the root node of
the tree t by root(t). A Document Type Definition (DTD) is a way of defining a
tree language. A DTD d defines for each symbol σ ∈ Σ a regular language d(σ).
We say that a tree t is consistent with d if for every node v of t with children
v1, . . . , vn the word lab(v1) . . . lab(vn) is in the regular language d(lab(v)). If v
is a leaf, then the empty word ǫ has to be in d(lab(v)). The language of trees
consistent with a DTD d is denoted by L(d).
Databases and queries. Let S be a vocabulary consisting of relational sym-
bols. A database over S is a finite structure over S ([1]). We denote the do-
main of a structure A by dom(A). In the paper we consider also structures over
vocabularies containing constant symbols. A projection-free conjunctive query
(projection-free CQ) ϕ(x1, . . . , xn) is a conjunction of atomic formulas over vo-

3

cabulary S. By Vars(ϕ) we denote the set of variables of ϕ (note that all variables
in projection-free CQs are free). Let ϕ(x̄) be a projection-free CQ, A a database
and ā a tuple of elements in A. We define A |= ϕ(ā) in the usual way.
TreeQL and typechecking. The following definitions come from [2], but are
tailored for our setting.

Definition 1. 1. A TreeQL program is an ordered, unranked tree P with labels.
– the root is labeled with an element from alphabet Σ.
– every non-root element node is labeled with a pair (σ, ϕ), where σ ∈ Σ

and ϕ is a projection-free CQ. The formula in a node v is denoted by
formula(v).

– Vars(formula(v)) ⊆ Vars(formula(v′)), for all non-root nodes v and v′,
where v′ is a descendant of v.

2. Let A be a database and P a TreeQL program. A tree P (A) generated from
A is defined as follows:
– The root is (root(P), ∅).
– The non-root nodes consist of pairs (v, θ), where v is a non-root node

of P and θ is a substitution for variables Vars(formula(v)), such that
A |= ϕ[θ], for every formula ϕ labeling v or labeling an ancestor of v in
P .

– The edges in P (A) are ((v, θ), (v′, θ′)) such that v′ is a child of v in
P and θ′ is an extension of θ (i.e. θ′ agrees with θ on variables in the
formula in v).

– Sibling nodes in P (A) are ordered as follows: if v and v′ are siblings in P
and v occurs before v′, then all nodes (v, θ) occur before all nodes (v′, θ′)
in P (A). For a given v in P , the ordering of nodes (v, θ) and (v, θ′) is
irrelevant in our setting, so it is not considered here (see remark below).

– Finally, the label of a node (v, θ) is the Σ-label of v in P .

Remark. We use the following observation from [2]. If d is a DTD then d does
not distinguish among trees P (A) for distinct orderings of the nodes (v, θ) and
(v, θ′), for each v in P . As we consider DTDs as XML types, we abstract from
the ordering of such nodes.

Definition 2. A TreeQL program P typechecks with respect to an output type
d iff P (A) ⊆ L(d), for every database A.

Example 1. Consider a database A containing information about car owners,
with two relations PERSON(Id, FirstName, LastName) and CARS(Id, Car):

PERSON Id FirstName LastName
1 John Smith

2 John Doe

CARS Id Car
1 Ferrari

2 Porsche

2 Ferrari

2 Mini

In Fig. 1 we present a program R and a tree R(A) resulting from the trans-
formation of the database A by the program R. The tree R(A) is consistent with
the following DTD d: d(car_owners) = name∗, d(name) = car∗, d(car) = ǫ.

4

name, ϕ1(x, y, z) = PERSON(x, y, z)

car owners

car, ϕ2(x, y, z, w) = CARS(x, w)

(a) The program R.

car[.., w=Ferrari]

car[.., w=Porsche] car[.., w=Ferrari]

name[x=1, y=John, z=Smith] name[x=2, y=John, z=Doe]

car[.., w=Mini]

car owners

(b) The XML tree R(A) –the annotations of substi-
tutions (in brackets) are not part of the tree.

Fig. 1. A TreeQL query and its result (Example 1)

3 Our main result

Now we are able to formulate our main theorem.

Theorem 1 (Main Theorem). The problem of typechecking a TreeQL pro-
gram with projection-free conjunctive queries w.r.t. DTD with arbitrary regular
expressions is in coNEXPTIME.

The rest of the paper is devoted to the proof of Theorem 1.

Definition 3. A set of modulo constraints Γ is a finite set of triples of the form
(ϕ, k, j), where ϕ is a projection-free conjunctive query and k, j ∈ N. We say
that a database A satisfies a set of modulo constraints Γ (we write A |= Γ) iff
for each (ϕi, ki, ji) ∈ Γ there exists αi ∈ N such that:

|{t̄ | A |= ϕi(t̄)}| = ki + (αi ∗ ji)

Of course, we assume that 0 ∈ N, so in particular Γ can contain some triples
of the form (ϕ, k, 0).

Now, we formulate the intermediate result, which is the main technical con-
tribution of this paper.

Theorem 2 (Intermediate Result). Let Γ be a set of constraints with projection-
free conjunctive queries. The problem whether there exists a database A such that
A |= Γ is in NEXPTIME.

In Sect. 4 we prove the intermediate result, and in Sect. 5 we show how it
implies the main result.

4 Proof of the intermediate result

We use the following notation. Let Γ be a set of modulo constraints, then:
ΓCONST is the set of constant constraints: ΓCONST = {(ϕ, k, j) ∈ Γ | j = 0},
and ΓPROP is the set of proper constraints: ΓPROP = {(ϕ, k, j) ∈ Γ | j > 0}. Of

5

course, we have: Γ = ΓCONST ∪ ΓPROP. In the sequel, when talking about the
modulo constraints we sometimes omit the word modulo.

A canonical structure Cϕ for a projection-free CQ ϕ is defined as usually:
elements of Cϕ are variables and constants of ϕ and relations of Cϕ consist of
tuples of variables and constants from conjuncts of ϕ.
Outline of the proof. We present an algorithm, which for a satisfiable set
of (modulo) constraints Γ = ΓCONST ∪ ΓPROP constructs a witness database
B of exponential size w.r.t. the size of Γ . The general idea of the algorithm is
to guess a database ACONST satisfying ΓCONST and then to satisfy the proper
constraints ΓPROP one by one, by extending the database ACONST with some
number of copies of canonical structures of the formulas of ΓPROP. But won’t
satisfying a constraint in such a way cause some of the constraints, which have
been already satisfied, to fail? In Sect. 4.2 we show that the problem can be
overcome if constraints are in some normal form, and if the order in which we
try to satisfy them is correct. Earlier, in Sect. 4.1 we show that, for each set of
modulo constraints, one can construct, in NEXPTIME an equisatisfiable set of
constraints which is in the desired normal form.
Operation REPLACE. Suppose that formulas ϕ1, . . . , ϕn in some constraints
(ϕi, ki, ji) ∈ ΓPROP (for i ∈ {1, . . . , n}) are equivalent (i.e. canonical structures
Cϕi

are isomorphic). We define a single constraint (ϕ1, k, j), where j is the least
common multiple of the numbers j1, . . . , jn (recall that ji > 0 in constraints in
ΓPROP) and k is the smallest number such that, for each i = 1, . . . , n, there exists
αi ∈ N such that it holds k = ki +αi ∗ ji. Using Chinese Remainder Theorem it
is possible to show that if the constraints are satisfiable such a number k exists,
otherwise we know that the constraints are inconsistent and the algorithm stops.

This allows us to define an operation REPLACE. The operation transforms a
set of proper constraints Γ by replacing each set of constraints having equivalent
formulas with a single constraint, while preserving satisfiability. After applying
the operation, there are no two distinct constraints in REPLACE(Γ) with equiv-
alent formulas. Notice that equivalence of CQs is in NP, so we do not run out of
time.

Lemma 1. For every set of proper constraints Γ and every database A we have
A |= Γ iff A |= REPLACE(Γ).

Dealing with constant constraints. In the following lemma we show that
given a satisfiable set of constraints Γ = ΓCONST ∪ΓPROP, it is possible to guess
a database ACONST of at most exponential size, such that ACONST |= ΓCONST.

Lemma 2. Let Γ = ΓCONST ∪ ΓPROP be a set of constraints. If there exists a
database A such that A |= Γ then there exists a database ACONST such that
ACONST |= ΓCONST. The size of ACONST is at most exponential w.r.t. |Γ |.

Proof (sketch). Consider the database A and the set Γ = ΓCONST∪ΓPROP. Since
A |= Γ obviously we have A |= ΓCONST. Let ACONST be a substructure of A
which consists exactly of the elements from A that are in some tuple satisfying
a formula in a constraint from ΓCONST or are a constant in Γ .

6

The number of such elements is bounded by the sum of the number of con-
stants in Γ and the number of constraints in ΓCONST multiplied by the maximal
number of variables in formulas in ΓCONST and the value of the maximal num-
ber k from ΓCONST. Hence, the size of ACONST is at most exponential w.r.t. |Γ |.
Clearly, ACONST satisfies ΓCONST. ⊓⊔

From now on we assume that the set of constraints Γ = ΓCONST∪ΓPROP and
the database ACONST are fixed. All databases which we are going to consider
will be superstructures of ACONST. We extend the vocabulary provided by Γ
with a new set of constants dom(ACONST), interpreted as elements of ACONST.

4.1 Construction of a modified set of constraints

The algorithm starts the modifications with a set ΓPROP and goes through three
steps. Each of these steps will produce an equisatisfiable set of constraints that
will be the input of the next step. All steps are of a similar structure:

1. For each constraint t from the input set, a set Γt of new constraints is
generated.

2. The set REPLACE(
⋃

Γt) is returned as the output of the step.

Step 1. Each constraint t = (ϕ, k, j) asserts the existence of exactly k+α∗j, for
some α ∈ N, tuples ā of elements of a database such that ϕ(ā) is true. In this step
we want to fix which variables are substituted with elements of ACONST. Thus
we have to produce separate constraints for each (possibly partial) substitution
of variables of ϕ with elements of ACONST. Additionally, we ensure that such a
substitution is final i.e. we forbid the substitution of remaining variables to the
constants in the resulting constraints.

Recall the basic intuition behind the algorithm – for each proper constraint,
we want to extend ACONST with copies of the canonical structure of the formula
in the constraint. After Step 1 it is clear how to do it – the elements of the
canonical structure corresponding to the constants should be identified with
elements of ACONST and the other elements should be fresh.

Consider a constraint t = (ϕ, k, j) ∈ ΓPROP. We define Γt to be the set of
triples of the form (ψθ, kθ, j), for each V ⊆ Vars(ϕ) and θ : V → dom(ACONST),
where:

ψθ = ϕ[θ] ∧ NotConstants(Vars(ϕ[θ])).

By ϕ[θ] we mean the result of the substitution θ on ϕ. NotConstants(X) is
the conjunction of inequalities of the form x 6= c, for each x ∈ X and c ∈
dom(ACONST). The inequalities are introduced to ensure that for any database
A such that A |= Γt, in any tuple satisfying ϕ[θ] no variable from Vars(ϕ[θ]) is
substituted with an element from ACONST.

The numbers kθ are guessed in such a way that
∑

θ kθ = k + α ∗ j, for some
α ∈ N. It is enough to consider the numbers bounded by k + j. Intuitively
numbers kθ determine how the total number of tuples satisfying the constraint
t = (ϕ, k, j) is distributed among its versions ϕ[θ], for all θ.

We define Γ1 = REPLACE(
⋃

t∈Γ0
Γt).

7

Lemma 3.

1. Let A be a database, such that ACONST ⊆ A and A |= Γ . There exists a
choice of the numbers kθ in Γ1 such that A |= Γ1.

2. If there exists A′ ⊇ ACONST such that A′ |= ΓCONST and A′ |= Γ1 then
A′ |= Γ .

3. The size of Γ1 is exponential w.r.t. the size of Γ .

Step 2.

Definition 4. Let B be a relational structure over the vocabulary containing re-
lational symbols from Γ and constant symbols dom(ACONST). Define GRAPH(B)
to be a graph, whose vertices are the elements of B which are not a constant in
dom(ACONST). There is an edge between vertices e1, e2 of GRAPH(B) if there
is a tuple ē of elements of B containing both e1 and e2, such that an atom R(ē)
is true in B, for some relation R in B.

Consider a formula ϕ(x̄) from one of the constraints from Γ1. The formula
ϕ(x̄) is of the form

∧

k Rk(x̄k) ∧ NotConstants(x̄).

Notice that the set of vertices of GRAPH(Cϕ) (i.e. the graph for the canonical
structure for ϕ) is exactly the set of variables of ϕ.

Definition 5. A connected subformula of ϕ is a formula ϕD(x̄D) defined as
∧

R∈D R(x̄R) ∧ NotConstants(x̄D), where D is a maximal set of non-ground
atoms (i.e. atoms with variables), such that GRAPH(CϕD

) is a connected com-
ponent of GRAPH(Cϕ).

Notice, that the formula ϕ is a conjunction of its connected subformulas and its
ground atoms. (i.e. atoms without variables).

Example 2. Consider following formula ϕ(x1, . . . , x5):

R1(x1, x2) ∧R2(x2, x3, c1, x5, c2) ∧R1(c1, c3) ∧R1(c3, c3)

∧R1(x4, c1) ∧R1(c2, x4) ∧ NotConstants({x1, . . . , x5}),

where c1, c2, c3 are constants from ACONST. Vertices of GRAPH(Cϕ) are {x1, . . . , x5},
and edges of GRAPH(Cϕ) are {x1, x2}, {x2, x3}, {x2, x5} and {x3, x5}. Clearly,
GRAPH(Cϕ) has two connected components, namely {x1, x2, x3, x5} and {x4}.

There are two connected subformulas of ϕ:

ϕ1(x1, x2, x3, x5) = R1(x1, x2)∧R2(x2, x3, c1, x5, c2)∧NotConstants({x1, x2, x3, x5})

and

ϕ2(x4) = R1(x4, c1) ∧R1(c2, x4) ∧ NotConstants({x4}).

Ground atoms of ϕ are R1(c1, c3) and R1(c3, c3).

8

The motivation for Step 2 can be best explained using the following exam-
ple. Again, recall that our goal is to order the proper constraints in such a way
that extending ACONST with the canonical structure of the formula in the con-
straint does not increase the number of tuples satisfying the earlier (in the order)
constraints.

Example 3. Let ϕ1 = R1(c1, x1) ∧ R2(c1, x2) ∧ NotConstants({x̄}) and ϕ2 =
R1(c1, x1)∧R2(c1, x2)∧R3(c1, x3)∧NotConstants({x̄}). Thus ϕ1 consists of two
and ϕ2 consists of three connected subformulas. Let t1 be a constraint containing
the formula ϕ1 and t2 a constraint containing the formula ϕ2. Clearly, it is
impossible to order t1 and t2 in a right way –adding a copy of the canonical
structure Cϕ2

changes the number of tuples satisfying ϕ1, and, in presence of
at least one copy of Cϕ2

, adding a copy of Cϕ1
changes the number of tuples

satisfying ϕ2.

Step 2 is performed in order to avoid the problem from Example 3. The step
consists of replacing each constraint t in Γ1 with separate constraints for each
connected subformula of the formula in t. We also forget about ground atoms
in formulas in the constraints. The reason is that after Step 1 the ground atoms
are already determined to be either true or false.

Let t = (ϕ, k, j) be a constraint in Γ1, let ϕ1, . . . , ϕn be connected subfor-
mulas of ϕ and let ψ1, . . . , ψl be ground atoms of ϕ. Let mi ∈ {0, 1} be 1 if
ψi holds in ACONST and 0 otherwise (for i = 1, . . . , l). Notice that the number
of tuples satisfying t is the product of the numbers of tuples satisfying ϕi, (for
i = 1 . . . , n), times the product of mi, for i = 1, . . . , l.

Now, if k > 0 and somemi = 0, we know that the constraints are inconsistent,
so the algorithm can stop. If k = 0 and some mi = 0 the constraint is satisfied
in every superstructure of ACONST so we put Γt = ∅. If k ≥ 0 and for all
i = 1, . . . , l the number mi = 1, then Γt consists of triples (ϕi, ki, j), where the
numbers ki ≤ k + j are guessed such that

∏

i ki = k + α ∗ j, for some α ∈ N.
We define Γ2 = REPLACE(

⋃

t∈Γ1
Γt).

Lemma 4. 1. Let A be a database, such that A ⊇ ACONST and A |= ΓCONST∪
Γ1. There exists a choice of the numbers ki in Γ2, such that A |= Γ2.

2. For every database A′ such that A′ ⊇ ACONST if A′ |= ΓCONST and A′ |= Γ2

then A′ |= Γ .
3. The size of Γ2 is exponential w.r.t. the size of Γ .

Step 3. Consider a database A, a formula ϕ(x̄) from Γ2 and a tuple ā such
that A |= ϕ(ā). The substitution of elements ā for variables x̄ may map several
variables from x̄ to a single element a in ā. During Step 3 we replace each
constraint t with separate constraints for all possible ways in which variables of
the formula of t can be identified. We also disallow any further identification of
variables in the resulting constraints Γ3. In other words: if A |= ϕ(ā) then there
is a corresponding homomorphism from elements of the canonical structure Cϕ to
elements of A. The goal of this step is to obtain a new set Γ3 which can replace
Γ2, such that all homomorphisms, which correspond to the tuples satisfying
formulas in Γ3, are injective.

9

The following example explains why we need this step.

Example 4. Let ϕ1 = R(x1, x2) ∧ R(x1, x3) and ϕ2 = R(x1, x2). The formula
ϕ2 is, in fact, equal to the formula ϕ1 with variables x2 and x3 identified. Let
t1 be a constraint containing the formula ϕ1 and t2 a constraint containing the
formula ϕ2. Similarly as in Example 3, these two constraints cannot be ordered
properly. If we extend a database with the canonical structure Cϕ1

we change
the number of tuples satisfying ϕ2 and vice versa.

Let t = (ϕ, k, j) be a constraint in Γ2. We define Γt to be the set of constraints
of the form: (ψθ, kθ, j) for each V ⊆ Vars(ϕ) and each θ : Vars(ϕ)\V → V , where
ψθ is:

ϕ[θ] ∧ INEQ(Vars(ϕ[θ])).

The numbers kθ ≤ k + j are guessed such that
∑

θ kθ = k + α ∗ j, for some
α ∈ N. INEQ(Vars(ϕ[θ])) is a conjunction of inequalities of the form x 6= y, for
each pair of distinct variables x, y ∈ Vars(ϕ[θ]). We introduce the inequalities
to ensure that all variables which are not identified during this step have to be
substituted with distinct elements of a database.

Finally, we define Γ3 as REPLACE(
⋃

t∈Γ2
Γt).

The following lemma states the properties of Γ3.

Lemma 5.

1. Let A be a database, such that A ⊇ ACONST and A |= ΓCONST ∪ Γ2 There
exists a choice of the numbers kθ in Γ3, such that A |= Γ3.

2. For every database A′ such that A′ ⊇ ACONST if A′ |= ΓCONST and A′ |= Γ3

then A′ |= Γ .
3. The size of Γ3 is exponential w.r.t. Γ .

4.2 Construction of an exponential database satisfying Γ3.

In Sect. 4.1 we constructed, for a set Γ of modulo constraints a set Γ3 of con-
straints which are satisfiable if and only if Γ are, and such that formulas in the
constraints from Γ3 have the following normal form:

(A) Each formula contains the NotConstants subformula, so that the variables
cannot be substituted with elements dom(ACONST);

(B) each formula is connected and does not contain ground atoms;
(C) each formula contains the INEQ subformula, so that distinct variables cannot

be substituted with the same element of a database.

Define a partial order ≤part on constraints from Γ3 as follows: (ϕ1, k1, j1) ≤part

(ϕ2, k2, j2) if there exists a tuple ā of elements of Cϕ2
such that Cϕ2

|= ϕ1(ā).
In other words: (ϕ1, k1, j1) ≤part (ϕ2, k2, j2) if Cϕ1

is isomorphic to a substruc-
ture of Cϕ2

. We use the word substructure in a positive sense where R(a, b) is a
substructure of R(a, b), R(b, a), R(a, c).

Let ≤ be some linear order on constraints from Γ3 consistent with the partial
order ≤part. We write (ϕ1, k1, j1) < (ϕ2, k2, j2) if (ϕ1, k1, j1) ≤ (ϕ2, k2, j2) and
ϕ1 6= ϕ2 (recall that formulas in Γ3 are unique).

10

Lemma 6. Let (ϕ, k, j) be a constraint in Γ3 such that Cϕ has exactly n auto-
morphisms. There are exactly n tuples ā such that Cϕ |= ϕ(ā). Moreover, for
every database B we have |{ā | B |= ϕ(ā)}| = α ∗ n, for some α ∈ N.

Notice however, that the above lemma would not be true if conjunctive
queries with projections were allowed.

Lemma 7. Let (ϕ, k, j) be a constraint in Γ3 and let B be a database such that
ACONST ⊆ B and B |= {t ∈ Γ3 | t > (ϕ, k, j)}. If the constraints Γ3 are satisfiable
then there exists a database B′ ⊇ B such that B′ |= {t ∈ Γ3 | t ≥ (ϕ, k, j)}. The
size of the database B′ is at most |B| + |Cϕ| ∗ δ, where δ ∈ N is bounded by the
sum of k and j.

Example 5. Consider constraints t1 = (ϕ1, 2, 2) and t2 = (ϕ2, 1, 6). Let ϕ1 =
R(v, z1) ∧ R(v, z2) ∧ R′(a, b, z1) ∧ NotConstants(v, z1, z2) ∧ INEQ(v, z1, z2) and
ϕ2 = R(x, y)∧NotConstants(x, y)∧ INEQ(x, y). Clearly: t1 > t2. There are two
tuples x̄ such that Cϕ1

|= ϕ2(x̄). Let B be a database presented schematically at
Fig. 2 such that B |= {t1}. Our algorithm constructs the database B′ |= {t1, t2}.
In order to satisfy t2 three copies of Cϕ2

are added.

Cϕ1

Cϕ1

copies of Cϕ2

inside Cϕ1

ACONST

new copies of Cϕ2
in B′

The database B

Fig. 2. The database B satisfying the constraint t1 from Example 5.

Proof (of Lemma 7). Let n be the number of automorphisms of Cϕ. According
to Lemma 6, the number m = |{b̄ ∈ B | B |= ϕ(b̄)}| is a multiple of n.

Let m′ be the smallest number such that m′ is a multiple of n (including 0)
and m′ + m = k + α ∗ j, for some α ∈ N. If constraints Γ3 are satisfiable such
number m′ exists and its value is bounded by j ∗ n+ k.

Let x1, . . . , x|Vars(ϕ)| be variables in ϕ. The database B′ is defined as the union

of the database B and m′

n
copies of the canonical structure Cϕ, with constants

dom(ACONST) from each copy of Cϕ identified with elements of ACONST ⊆ B.
Formally, elements of B′ are elements of B and new elements eh,i, for h =

1, . . . , |Vars(ϕ)| and i = 1, . . . , m′

n
. Database B′ is a superstructure of B, and

additionally for each conjunct R(w1, . . . , wl) in ϕ, for each i = 1, . . . , m′

n
, the

atom R(v1,i, . . . , vl,i) is true in B′, where

vh,i =

{

eg,i if wh = xg, where g ∈ {1, . . . , |Vars(ϕ)|}
a if wh = a, where a is a constant,

11

for h = 1, . . . , l. Clearly, the size of B′ is at most |B|+ |Cϕ| ∗
m′

n
.

Now, we show that B′ |= {t ∈ Γ3 | t ≥ (ϕ, k, j)}. We will use the following
observation:

Observation. Consider a constraint (ϕ′, k′, j′) ∈ Γ3, such that (ϕ′, k′, j′) ≥
(ϕ, k, j). Each tuple b̄ such that B′ |= ϕ′(b̄) is contained in a single connected
component of GRAPH(B′).

Proof (of the observation). This is since, by (A), the variables in ϕ′ cannot be
substituted with elements from ACONST. and since, by (B), the graph of the
canonical structure for ϕ′ consists of a single connected component. ⊓⊔

We show that B′ |= (ϕ, k, j). Let us count the number of tuples b̄ such that
B′ |= ϕ(b̄): there are m tuples consisting of elements of B and m′ new tuples
(by Lemma 6), such that the elements of each of them are all contained in some
new copy of Cϕ. Since newly added copies of Cϕ are the only new connected
components of GRAPH(B′), it follows from the above observation that there are
no new tuples satisfying ϕ in B′. So there are exactly m +m′ tuples satisfying
ϕ and B′ |= (ϕ, k, j).

Now we need to prove that by extending the structure we did not spoil one of
the old constraints. We claim that, for each constraint (ϕ′, k′, j′) ∈ Γ3, such that
(ϕ′, k′, j′) > (ϕ, k, j), the number of tuples satisfying (ϕ′, k′, j′) in B′ is exactly
the same as in B: from the above observation it follows that each new tuple b̄,
such that B′ |= ϕ′(b̄), must be contained in some copy of Cϕ. But this would
mean that Cϕ |= ϕ′(b̄), which would contradict (ϕ′, k′, j′) > (ϕ, k, j). ⊓⊔

Let us now construct a sequence of databases Ai, for i = 0, . . . , |Γ3|, such that
the database Ai satisfies the set of first i (in the order ≤) constraints from Γ3. We
start from the database A0 = ACONST. Then, for all i = 1, . . . , |Γ3|, we consider
the i-th (in the order ≤) constraint from Γ3 and obtain the database Ai from
the database Ai−1 using Lemma 7, which guarantees that finally: A′ = A|Γ3|

satisfies Γ3, and the size of A′ is at most exponential in |Γ |.
So far, our nondeterministic algorithm has built a database A′. As its last

step it just verifies if A′ |= Γ3 ∪ ΓCONST. This would almost finish the proof
of Theorem 2. The only thing which would still be in doubt is if in the process
of satisfying the constraints from Γ3 we did not spoil anything concerning the
constant constraints ΓCONST:

Lemma 8. Let A′ be the database resulting from the construction in the pre-
vious paragraphs. If there exists a database A such that A ⊇ ACONST and
A |= ΓCONST ∪ Γ3 then A′ |= ΓCONST.

Notice that Lemma 8 needs an additional assumption: that there exists A ⊇
ACONST satisfying all the constraints Γ3 ∪ ΓCONST. Otherwise it might happen
that new tuples satisfying the queries from ΓCONST would appear in A′, and thus
the constraints from ΓCONST would be violated in A′. But if the constraints are
satisfiable then our nondeterministic algorithm guessed ACONST correctly, and
so we can be sure that such A ⊇ ACONST indeed exists.

12

Observation. Let (ϕ, k, j) ∈ Γ3. If ACONST ∪ Cϕ is a substructure of A′ then
ACONST∪Cϕ is also a substructure of A. By ACONST∪Cϕ we mean here a union
of the two structures, with constants from Cϕ identified with the respective
elements in ACONST. Again, the word substructure is used in a positive sense.

Proof (of the observation). Suppose ACONST ∪ Cϕ is a substructure of A′. Then
there exists a minimal number i such that 0 < i ≤ |Γ3| and ACONST ∪ Cϕ

is a substructure of Ai.Thus, at the i-th step of the construction of A′, while
processing some constraint (ϕ′, k′, j′) ∈ Γ3 we extended the database Ai−1 with
at least one copy of the canonical structure Cϕ. This means that Cϕ must be a
substructure of Cϕ′ . Now there are 2 cases:

Case 1: k′ > 0. Then ACONST∪Cϕ′ is a substructure of A, and so also ACONST∪
Cϕ is a substructure of A.

Case 2: k′ = 0. Recall that we extended Ai−1 because the number of tuples b̄
such that Ai−1 |= ϕ′(b̄) was not equal to α∗j′ for any α ∈ N, including α = 0.
Hence, ACONST ∪ Cϕ′ is a substructure of Ai−1, but therefore ACONST ∪ Cϕ

is a substructure of Ai−1. But this contradicts the minimality of i. ⊓⊔

Proof (of Lemma 9). For each B′ being a substructure of A′, of a form ACONST∪
Cϕ (where ϕ is a formula in constraints from Γ3) and such that GRAPH(B′) is
a connected component of GRAPH(A′), fix one substructure B of A of the
form ACONST ∪ Cϕ (existence of B is guaranteed by Observation) and define
hB : B′ → B as identity (or, to be more precise, as isomorphism).

We define a mapping h : A′ → A. For c ∈ ACONST put h(c) = c. For a 6∈
ACONST put h(a) = hB(a), where B is such that a ∈ dom(hB). Notice that we
used the fact that all connected components of GRAPH(A′) are of the form
GRAPH(Cϕ) for some (ϕ, k, j) ∈ Γ3.

Now, suppose that A′ 6|= ΓCONST. So, there exists a tuple ā of elements of A′,
containing some element(s) not in ACONST such that for a constraint (ψ, k, j) ∈
ΓCONST it holds A′ |= ψ(ā). But then the tuple h(ā) contains some element(s)
not in ACONST and A |= ψ(h(ā)). (this is since negation and inequality are not
allowed in constraints from ΓCONST). The last implies that A 6|= ΓCONST. ⊓⊔

5 From the intermediate result to the main result

In this section we use some of the ideas from [2] to show how Theorem 2 implies
Theorem 1. We start with the following definition and lemma from [2].

Definition 6. Let R be a TreeQL-program and let d be a DTD such that R does
not typecheck with respect to d. Then:

– there is a path v̄ = v1, . . . , vk in the program R where
1. v1 is a child of the root;
2. lab(vi) = (σi, ϕi(x̄1, . . . , x̄i)), for i ∈ {1, . . . , k};
3. let x̄ = x̄1, . . . , x̄k.

The node vk has precisely n children with labels (δ1, ψ1(x̄, ȳ1)), . . . ,
(δn, ψn(x̄, ȳn));

13

and

– there is a database A with elements ā = ā1, . . . , āk such that:

1. A satisfies ϕi(ā1, . . . , āi), for each i = 1, . . . , k;

2. δj1
1 . . . δjn

n /∈ d(σk) where ji = |{b̄ | A satisfies ψi(ā, b̄)}|, for all i =
1, . . . , n.

We say that (v̄,A, ā) is a breakpoint for R and d.

Lemma 9 ([2]). Let δ1, . . . , δn be symbols and let ν = (k1, j1), . . . , (k1, j1) be a
vector of n pairs of natural numbers. We denote by Lν the language of all words of
the form: δk1+α1∗j1

1 . . . δkn+αn∗jn
n where each αi ∈ N, 1 ≤ i ≤ n. For each regular

language r over alphabet {δ1, . . . , δn}, there exists a finite set Vec(r) of vectors
of pairs of natural numbers as above such that ¬r ∩ δ∗1 . . . δ

∗
n =

⋃

ν∈Vec(r) Lν .

Moreover, the values of the numbers in Vec(r) are bounded by the number of
states of the deterministic automaton recognizing ¬r.

We briefly sketch the beginning of the proof of the non-elementary upper
bound from [2], using the notation introduced in Definition 6. Assume that the
program R does not typecheck w.r.t. d, then there exists a breakpoint (v̄,A, ā).
Let r be the regular language d(σk) specified by the DTD d. Consider the lan-
guage ¬r∩ δ∗1 . . . δ

∗
n, it is the intersection of the language of children of the node

vk (i.e. δ∗1 · . . . · δ
∗
n) and the complement of r. From lemma 9 it follows that there

exists a set of vectors VecR,d,v̄ such that ¬r ∩ δ∗1 . . . δ
∗
n =

⋃

ν∈VecR,d,v̄
Lν

Since (v̄,A, ā) is a breakpoint then there exists a vector ν = (k1, j1), . . . , (kn, jn)
in VecR,d,v̄, such that for each l ∈ {1, . . . , n} there exists αl ∈ N such that:
|{b̄ | A |= ψl(ā, b̄)}| = kl + αl ∗ jl.

Then it is shown that it is always possible to find a substructure A′ of A of
a size bounded independently of A such that elements ā are in A′ and for each
l ∈ {1, . . . , n} there exists α′

l ∈ N such that: |{b̄ | A′ |= ψl(ā, b̄)}| = kl + α′
l ∗ jl.

In our proof we do not require the database A′ to be a substructure of
A. This allows us to modify the structure, which makes it possible to achieve
an exponential upper bound, however at the cost that we can no longer have
universal formulas as integrity constraints.

Again, we use the same notation as in Definition 6. We begin by guessing
a path v̄ = v1, . . . , vk in the program R, and a vector ν = (k1, j1), . . . , (kn, jn)
of as many pairs of natural numbers as the node vk has children. The numbers
in ν are bounded by the number of states of the DFA for ¬r. Hence, the sizes
of binary representations of the numbers in ν are linear in DTD d. Then we
have to check2 whether the language {δk1+α1∗j1

1 . . . δkn+αn∗jn
n | α1, . . . , αn ∈ N}

is contained in ¬r. This step can be done in PSPACE. It is enough to check
words with values of α1, . . . , αn bounded by the number of states of the DFA for
¬r. Each of these words (represented with all numbers written in binary) can

2 This is to guarantee that if for some database A there exists a node (vk, θ) in the
output tree R(A) such that the concatenation of symbols labeling children of (vk, θ)
is in the language defined by ν then R(A) is not consistent with the DTD d.

14

be verified to be in ¬r in PSPACE by checking whether a final state of the NFA
for r can be reached by reading the word.

Now, we construct a set of modulo constraints Γ over the vocabulary con-
sisting of relational symbols in the program R and constants ā = ā1, . . . , āk:

1. For formulas ϕ1, . . . , ϕk in nodes v1, . . . , vk we define the constraint t0:
(
∧

i=1,...,k ϕi(ā1, . . . , āi), 1, 0). Notice that A |= t0 iff A satisfies ϕi(ā1, . . . , āi),
for each i = 1, . . . , k.

2. For the l-th child (l = 1, . . . , n) of the node vk we define the constraint
tl = (ψl(ā, ȳl), kl, jl). Notice that A |=

⋃

l=1,...,n{tl} iff δj1
1 . . . δjn

n is in the

language defined by ν, where jl is |{b̄ | A |= ψl(ā, b̄)}|, for all l = 1, . . . , n.

Finally, Γ is defined as {t0, . . . , tn}. We conclude with the following lemma,
which completes the proof of Theorem 1.

Lemma 10.

1. If the program R does not typecheck w.r.t. d then there exists a choice of a
path v̄ in R and a choice of a vector ν, such that there exists a database A
satisfying Γ .

2. For every choice of a path v̄ in R and every choice of a vector ν, if there
exists a database A satisfying Γ then R does not typecheck w.r.t. d.

3. The construction of Γ can be done in polynomial space.

Acknowledgments. This paper would not have been possible without help
of Jurek Marcinkowski, who spent a lot of time on discussions with me and
suggested many ideas. Then I would like to thank Tomek Truderung for his
suggestions and comments. I really appreciate all the help from both of them.
Also, I thank the anonymous referees for their helpful comments.

References

1. S.Abiteboul, R. Hull, V. Vianu Foundations of Databases. Addison-Wesley 1995.
2. N. Alon, T. Milo, F. Neven, D. Suciu, V. Vianu Typechecking XML Views of Re-

lational Databases, ACM Transactions on Computational Logic, Vol. 4, No. 3, July
2003, pages 315-354. (preliminary version in Proceedings of the 16th LICS, 421-430,
2001).

3. N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu. XML with data values: Type-
checking revisited. Journal of Computer and System Sciences, 66(4) pages 688-727,
2003.

4. M. Fernandez, D. Suciu, W. Tan. SilkRoute: Trading between relations and XML.
In Proceedings of the WWW9 Conference. 2000, pages 723-746.

5. W. Martens and F. Neven. On the complexity of typechecking top-down XML trans-
formations. Theoretical Computer Science, 336(1) pages 153-180, 2005.

6. W. Martens and F. Neven. Frontiers of tractability for typechecking simple XML
transformations. Journal of Computer and System Sciences, 2006. to appear.

7. T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers. Journal of
Computer and System Sciences, 66(1) pages 66-97, 2003.

15

