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In these notes I describe the first implementation of an experimental
language invented by Zdzis law Sp lawski [2]. I wrote the IPL interpreter in
Standard ML Core Language during a computer laboratory of a course on
Typed Lambda Calculi using Edinburgh ML compiler v. 4.0. The first version
of the program was presented at Seminarium Warszawsko – Wroc lawskie in
November, 1992. Since then some changes have been made (cotypes have
been added etc.) and now a new version, proudly called “ver. 2.0”, is avail-
able.

In the following I describe technical details I had to establish (e.g. how
the system generates names of eliminators etc.) They are inessential from
the theoretical point of view and it is too early to define them permanently.
Thus it is an example how the language may look rather than how it will
look.

In a definition of the syntax a variant of the BNF has been used. Terminal
symbols are printed in a teletype font. Slanted text states for non-terminal
symbols. Meta-alternatives are listed between two vertical lines. [ ] denotes
an option. { } repeats its contents at least once. A structure of the definitions
corresponds to a precedence and associativity of operators. Comments, in
general, describe only differences between SML and IPL.

program = [ { declaration } ]

declaration = [

∣∣∣∣∣∣∣∣∣
value binding
term
datatype definition
codatatype definition

∣∣∣∣∣∣∣∣∣ ] ;

An occurrence of a single term in a program is also a value binding: a
value of this term is bound to the name it (and, of course, type-checked,
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evaluated (i.e. normalized) and then displayed (including functions.)) Thus
a program is simply a sequence (may also be empty) of declarations. Note
that a semicolon, unlike in SML, must occur at the end of any declaration.

atomic term =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

value name
parameter
constructor
destructor
iterator
recursor
coiterator
corecursor
()

case0

case1

True

False

fst

snd

Inl

Inr

when

( term )

let { value binding ; } in term end

fn { parameter } => term
if term then term else term

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
application = [ application ] atomic term

pair = [ pair , ] application

term = [ term = ] pair

An application, pair constructor , and metapredicate = associate to the
left. An application is the strongest, = — the weakest. The common rules
of missing parentheses in lambda terms have been adopted. A body M of a
lambda abstraction fn x => M and an else branch of an if-then-else expres-
sion extend as far to the right as possible. fn x1 . . . xn => M (inadmissible in
SML) is equivalent to fn x1 => . . . => fn xn => M . Note that in IPL fewer
parentheses are needed than in SML, e.g.

fn x => x fn y => y
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is valid and is equivalent to

fn x => x (fn y => y)

atomic type =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

type variable
( type )
datatype constructor [ { type } ]
codatatype constructor [ { type } ]
{}
UNIT

BOOL

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
pair type = [ pair type * ] atomic type

union type = [ union type + ] pair type

type = union type [ -> type ]

A function type constructor -> associates to the right and is weaker than
a union type constructor + which is weaker than a pair type constructor *.
Union an pair type constructors associate to the left. An order of a type
concretization is determined by a number of type arguments, e.g. T2 T1 T0 T0

means T2 ( T1 T0 ) T0 if the type Ti has i arguments or T2 ( T1 T0 T0 ) if
T0 has no arguments, T1 — two, and T2 — one. Type arguments are listed
after a type constructor and there are no separators (like (,,,) in SML)
between them. In responses, for readability, system uses more parentheses
than required, but fewer than Edinburgh SML does.

value binding = val value name = term

Note that there is no function binding of the form fun f x = M

val f = fn x => M

should be used instead of it. A defined value name (which occurs at the left
side of a sign of equality) cannot occur in the term (i.e. general recursion is
not allowed.)

datatype definition = datatype datatype constructor [ { type variable } ] =

[ constructor list ]

codatatype definition = codatatype codatatype constructor [ { type variable } ] =

[ destructor list ]

constructor list = constructor [ from { type } ] [ | constructor list ]

destructor list = destructor [ to { type } ] [ & destructor list ]
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Object constructors are in curried form (like in Miranda) and there is a
separator from instead of of used in SML. Omitting from and the following
type expression has the same meaning as in SML — non-functional construc-
tor is created. Omitting to and a type expression in a destructor declaration
is equivalent to a declaration of a destructor to the absurd type {}. A range
of a destructor is a union of all types listed after the keyword to, hence if this
list is omitted with preceding to, it is treated as empty list, and the range is
the empty union (i.e. the absurd type {}.) A constructor/destructor list is
optional (a (co)datatype with no constructors/destructors could be defined.)
It makes possibiblity to define the maximal/minimal type in a lattice of all
types.

value name = lower case alphanum

parameter = lower case alphanum

iterator = datatype constructor it

recursor = datatype constructor rec

coiterator = codatatype constructor ci

corecursor = codatatype constructor cr

constructor = upper case alphanum

destructor = upper case alphanum

type variable = ’ alphanum

datatype constructor = letter alphanum

codatatype constructor = letter alphanum

Object constructors begin with capital, value names and formal param-
eters — with small letter, (co)datatype constructors can begin with both
capital and small letter. The system derives a name of an eliminator from
a corresponding type constructor adding an underscore at the beginning of
the identifier and it (for iterators,) rec (for recursors,) ci (for coiterators)
or cr (for corecursors) at its end. In responses the system names type vari-
ables adding a small letter to an apostrophe starting from a by b, c an so on
(i.e. ’a ’b ’c ... , like in SML,) and formal parameters using small letters
from z by y, x and so on (SML does not display terms including lambda
abstractions thus this is only an IPL feature.)

The IPL is a theoretical formalism rather than a programming language
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of a practical usage, hence it does not contain any side effects, syntactic
sugar etc. Nevertheless in our IPL interpreter we had to include the follow-
ing four ’earthly-minded’ commands, that may occur in programs between
declarations:

use string ; — is similar to the SML function use. A string cannot
contain ".

show [

∣∣∣∣∣ datatype constructor
codatatype constructor

∣∣∣∣∣ ] ; — lists all value names and

type constructors stored in an environment. If a type constructor oc-
curs after the keyword show, information about that type is listed.

del { value name } ; — removes values bound to listed names from
an environment.

exit ; — quits an interpretation of a source file or shuts down an
interactive session (usually used in the second case.)

Note that the commands listed above are not functions and do not return
any value.

The remaining syntax definitions are as follows:

letter =

∣∣∣∣∣ upper case
lower case

∣∣∣∣∣
alphanum = [ {

∣∣∣∣∣∣∣
letter

’

∣∣∣∣∣∣∣ } ]

upper case = one of ABCDEFGHIJKLMNOPQRSTUVWXYZ

lower case = one of abcdefghijklmnopqrstuvwxyz

digit = one of 0123456789

string = " any sequence of ASCII char’s not containing " "

comment = (* any sequence of ASCII char’s not containing *) *)

No keyword (including True , BOOL , fst etc.) may be used as an identi-
fier. Comments cannot be nested. (* This is (* a comment *) is a valid
comment. Lexical separators are: space, tab, newline and comment. Sepa-
rators may occur between any two items and only there. They must occur
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between two alphanumeric items (e.g. keywords and identifiers) and only
there.

The system prompts a user with + (equivalent to - in SML) at the begin-
ning of a line. Continuation lines are preceded by = (like in SML.) System
responses are not preceded by any sign.

A term M is in normal form iff it does not contain any redexes. The
IPL has the strong normalization property, hence any term has a normal
form. The normalization procedure consists of a sequence of contractions of
redexes. There are eight kinds of redexes:

1. (fn x => M1) M2 (beta redex.) Its evaluation consists in substitution
of M2 for all free occurrences of x in M1. De Bruijn’s representation
of lambda terms is used. Thus there are no name conflicts and alpha
conversion is not necessary;

2. fn x => M x where there are no free occurrences of x in M (eta
redex.) This redex contracts to M ;

3. I (C M1 . . . Mk) where I is an iterator of some defined datatype T ,
C is a constructor of the datatype T an M1, . . . ,Mk are terms of apro-
priate types. Contraction of this redex consists in replacing it by the
right hand side of the computation rule generated for the constructor
C, where terms M1, . . . ,Mk are substituted for apropriate variables.
Note that there is actually infinite number of kinds of redexes of that
form, one for each constructor of each defined datatype;

4. the same as in 3 but for recursors;

5. D (I M1 . . . Mk) where D is a destructor of some defined codatatype
T , I is a coiterator of the codatatype T , and M1, . . . ,Mk are terms of
apropriate types. Contraction of this redex consists in replacing it by
the right hand side of the computation rule generated for the destructor
D, where terms M1, . . . ,Mk are substituted for apropriate variables.
Note that there is actually infinite number of kinds of redexes of that
form, one for each destructor of each defined codatatype;

6. the same as in 5 but for corecursors;

7. fst (M1, M2) — contracts to M1;

8. snd (M1, M2) — contracts to M2.

6



In accordance with the diamond and the strong normalization properties,
the reduction strategy is inessential. In our IPL interpreter we consistently
use lazy evaluation, e.g. we contract the leftmost outermost redex (of any
kind) first, because in connection with the graph reduction it is the most
efficient evaluation order (and is easy to program!)

A function, pair, union, absurd, unit and Boolean types have been pre-
defined. Only the first of them is absolutely necessary. Its type constructor
is an infix operator -> and its object constructor is a lambda abstraction.
There is no eliminator for this type but a lambda application (which has no
denotation and plays a role of a selector for this type.) According to the
strong normalization property we could predefine a metapredicate = for any
type (including functions):

= : ’a -> ’a -> BOOL

thus we had to predeclare:

type BOOL = True | False;

There are only syntactical differences between an if-then-else expression and
an ordinary eliminator for the type BOOL (the iterator and recursor are equal
since BOOL is not inductive.) We have a strange consequence of that fact
— in Miranda, for example, a function if is lazily evaluated to the Weak
Head Normal Form (WHNF) hence it behaves like an ’imperative’ if-then-else
statement: at most one branch is evaluated, but IPL normalizes ’strongly’,
thus if a logical condition is unresolvable (i.e. contains free variables) then
both branches are evaluated. This is the price we have to pay for a well-
defined equality. We have predefined also pair and union types:

datatype * ’a ’b = , from ’a ’b;

datatype + ’a ’b = Inl from ’a | Inr from ’b;

(certainly it cannot be written explicitly in IPL), where *, + and , are
infix type and object constructors, respectively. To denote in IPL a pair
<<x, y>, z> one simply writes x,y,z (, associates to the left.) There are
no eliminators predefined for this type but selectors fst and snd. One can
define himself an eliminator:

val split = fn z y => y (fst z) (snd z);

but in normal form only selectors can occur. For the union type an ordinary
eliminator named by keyword when has been predefined (it is iterator and
recursor since union datatype is not inductive.) Pairs (in current version)
are necessary to generate recursors, and unions to generate corecursors.

Remaining datatypes have been predefined as follows:
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datatype {} = ;

datatype UNIT = ();

Their eliminators are named by keywords case0 and case1 respectively.
According to this scheme one can also define

val case2 = fn b t f => if b then t else f;

To use the interpreter firstly install the program following instructions
included in README file, then type ipl from the Unix shell to run it. Try
exit command in IPL state to return to SML. The following values are
defined in SML:

ipl_env = - : environment ref

ipl_clear = fn: unit -> unit

ipl_run = fn: string -> string -> environment -> unit

ipl = fn: unit -> unit

An IPL environment (e.g. all declarations made during an IPL session) is
stored in ipl env. ipl clear resets it to predefined environment. ipl run

executes a program. It gets a name of an input file, a name of an output
file and an initial environment as parameters. ipl is a simpified version of
ipl run which uses a standard input and output, and ipl env as its envi-
ronment. If, for example, you prepared an IPL program in file myprog.ipl,
you may type in SML state

- ipl_run "myprog.ipl" "myprog.lst" (!ipl_env);

obtaining a compilation (interpretation) listing in file myfile.lst rather
than on console. The listing requires some editing, since it usually contains
lines exceeding 80 columns (use a standard Unix fmt program with option
-s to split long lines). You may also open an interactive session:

- ipl();

and type IPL command

+ use "myprog.ipl";

to get the listing on standard output.
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