
Projektowanie obiektowe oprogramowania
Wykład 2 - UML

Wiktor Zychla 2020

Spis treści
1 Wprowadzenie ... 2

2 Diagramy klas .. 3

2.1 Hierarchia modeli .. 3

2.1.1 Diagram modelu pojęĐiowego... 3

2.1.2 Diagram modelu obiektowego (diagram klas) .. 4

2.1.3 Diagram modelu implementacyjnego (relacyjnego) ... 6

2.2 Jeszcze o formalizmie diagramów klas - klasy i asocjacje ... 8

2.3 Składowe .. 9

2.4 Dziedzieczenie .. 10

3 Diagramy obiektów ... 11

4 Diagramy stanów .. 12

5 Diagramy czynności ... 13

6 Diagramy sekwencji ... 15

7 Diagramy komponentów .. 17

8 Literatura .. 18

1 Wprowadzenie

Dwie rodziny diagramów - diagramy struktur i diagramy zachowań (dynamiki):

• Diagramy struktur – służą do dokumentowania statycznych elementów systemu i
relacji/powiązań między nimi

• Diagramy zachowań - służą do dokumentowania dynamicznych elementów systemu
np. procesów/algorytmów/przypadków użycia

Jest wiele narzędzi wspierających projektowanie diagramów, począwszy od lekkich,
przeglądarkowych typu draw.io, yuml.me czy umletino po pełnoprawne narzędzia wizualne, z
których na uwagę zasługują dwa:

• Enterprise Architect – narzędzie płatne
• Visual Paradigm - posiada wersję Community bezpłatną do zastosowań

niekomercyjnych

https://www.draw.io/
https://yuml.me/
http://www.umletino.com/
https://sparxsystems.com/products/ea/
https://www.visual-paradigm.com/
https://www.visual-paradigm.com/download/community.jsp

2 Diagramy klas

2.1 Hierarchia modeli
Formalnie w UML występuje Diagram klas (Class Diagram). Ale ten sam formalizm służy do
reprezentacji trzech różnych typów diagramów, z których każdy występuje w innej fazie
projektowania.

2.1.1 Diagram modelu pojęciowego

• Jest elementem projektu analitycznego
• Służy ustaleniu wspólnego języka w projekcie
• Służy weryfikacji podstawowych elementów struktury dziedziny projektu
• Pojęcia i atrybuty (tylko publiczne)

• Asocjacje (relacje) między pojęciami („ma”, „używa”, „płaci się za pomocą”)
• Asocjacje mogą być skierowane, wtedy kierunek strzałki i jej etykieta powinien być

tak dobrany żeby można było „przeczytać” zdanie

• Brak dziedziczenia i innych ograniczeń specyficznych dla struktury stricte obiektowej
• Brak metod (!)

 class Hierarchia modeli

Model pojęciowy Model obiektowy Model relacyjny
rozszerzarozszerza

 class Model pojeci...

Osoba

+ Imie
+ Nazwisko

 class Metody pojęciowe

Mysz Ser
zjada

2.1.2 Diagram modelu obiektowego (diagram klas)

• Jest elementem projektu architektury
• Punktem wyjścia jest diagram modelu pojęciowego
• Na etapie projektowania obiektowego należy refaktoryzować model pojęciowy do

stanu, w którym pojęcia reprezentowane są przez klasy (w rozumieniu obiektowym)
• Refaktoryzacja polega na:

o Usuwaniu zbędnych pojęć, które są reprezentowane przez jedną i tę samą
klasę (na przykład pojęcia Użytkownik i Administrator staną się jedną i tą
samą klasą)

o Dodawaniu nowych klas (na przykład tam gdzie do reprezentacji relacji
potrzebna jest pomocnicza klasa)

o Rozróżnianiu atrybutów publicznych, prywatnych, statycznych itd.
o Wprowadzaniu metod do interfejsów klas
o Zamienianiu wszystkich relacji z diagramu modelu pojęciowego na relacje

występujące w świecie obiektowym:
▪ asocjacja,
▪ agregacja,
▪ kompozycja,
▪ dziedziczenie,
▪ implementowanie interfejsu
▪ metoda obiektu (przyjmująca parametr lub zwracająca wartość)

Po tej fazie zamiany relacji, na diagramie klas nie może pozostać żadna
asocjacja, której nie da się zaimplementować w języku obiektowym

Przykład ϭ:

 class Model dziedziny

Die

- faceValue

MonopolyGame Board

Player

- name

Piece

- name

Square

- name

1

Played-with

2 1

Played-on

1

2..8

Plays

1

1

Owns

1 0..8

Is-on

1

40

Contains

1

vs

Przykład Ϯ:

vs

 class Dziedziczenie pojęciowe

Użytkownik Administrator

 class Dziedziczenie...

Użytkownik

Administrator

 class Agregacja/kompozycja pojęć

Samochód Część
ma

Przykład ϯ:

vs

2.1.3 Diagram modelu implementacyjnego (relacyjnego)

• To diagram reprezentujący strukturę relacyjnej bazy danych
• Reprezentuje fizyczną strukturę właściwą do utrwalania obiektów
• Punktem wyjścia jest diagram klas
• Podczas refaktoryzacji usuwa się z diagramu klas wszystkie te relacje, których nie da

się reprezentować w świecie relacyjnym
o Nie ma metod
o Nie ma dziedziczenia, zamiast tego wybiera się jeden ze sposobów

implementacji dziedziczenia
▪ Table-per-concrete-type
▪ Table-per-hierarchy

 class Agregacja/kompozycja klas

Samochód

+ Typ: string

Część

+ Nazwa: string

Samochód_

+ Typ: string
+ Część: Część[]

lub

0..*1

 class Metody pojęciowe

Mysz Ser
zjada

 class Metody klas

Mysz

+ Imię: string

+ Zjedz(Ser) : void

Ser

▪ Table-per-type
o Wprowadza się sztuczne identyfikatory główne (ID) (wzorzec tzw. Surrogate

key, https://en.wikipedia.org/wiki/Surrogate_key)

o Nie ma relacji wiele-wiele, zamiast tego są pomocnicze tabele do
reprezentacji takich relacji

2.1.3.1 Table per concrete type

Hierarchia obiektowa zaŵodelowaŶa jako osoďŶe taďele dla każdej z koŶkretŶyĐh klas.

https://en.wikipedia.org/wiki/Surrogate_key

2.1.3.2 Table per hierarchy

Hierarchia obiektowa zaŵodelowaŶa jako jedŶa taďela z dodatkową koluŵŶą dyskryŵiŶatora.

2.1.3.3 Table per type

Hierarchia obiektowa zamodelowana jako osobne tabele, w tym tabela dla klasy bazowej oraz tabele

dla każdej klasy potoŵŶej, z relaĐjaŵi

2.2 Jeszcze o formalizmie diagramów klas - klasy i asocjacje
• Zależności (strzałka przerywana) – brak informacji o rodzaju zależności, może być:

o Tworzy
o Wykorzystuje (zmienna lokalna)
o Wykorzystuje (parametr metody)
o Nadklasa lub interfejs

• Nazwy asocjacji

• Liczebność : 1, 1..*, 0..1, *, 0..*, n, 1..n, 0..n, n..m, n..*

• Agregacja vs kompozycja

o Agregacja – luźniejsza

o Kompozycja - ściślejsza

▪ Instancja reprezentująca część może należeć tylko do jednej instancji
złożonej

▪ Czas życia części jest powiązany z czasem życia całości

2.3 Składowe
• Składowa prywatna, publiczna, chroniona, stała, statyczna, kolekcja, atrybut

pochodny
• Metoda prywatna, publiczna, chroniona, internal, abstrakcyjna, statyczna,

konstruktor, parametry
• Atrybut wpisany vs asocjacja – kiedy używać? Atrybut: typ prosty, asocjacja do typu

złożonego

• Klasa asocjacyjna – do modelowania relacji wiele-wiele

 class Pojęcia a atrybuty

Osoba

+ Imie v s

Osoba_ Imie

+ Mianownik
+ Wołacz

ma

2.4 Dziedzieczenie
• Realizacja – implementacja interfejsu

• Generalizacja, specjalizacja – dziedziczenie (tylko w zależności od kierunku)

3 Diagramy obiektów
• Migawka stanu systemu – obiekt określonego typu w określonym stanie w pewnym

momencie swojego życia
• Enterprise Architect: Advanced / Instance Classifier – umożliwia wybór typu dla

instancji
• EA: Advanced / Set Run State – umożliwia określenie stanu obiektu

• Visual Paradigm: osobny typ diagramu – Object diagram, na diagramie można dodać

instancję obiektu, wskazać jej typ (Add Clasifier/Select clasifier) spośród wcześniej
zdefiniowanych typów, a następnie w specyfikacji (Open specification) określać
„sloty” czyli zawartość pamięci obiektu

4 Diagramy stanów
• Stany i przejścia (akcje) – stany to bloczki, a akcje to strzałki
• Stany – nazwane rzeczownikowo/przymiotnikowo (oczekiwanie/przetwarzanie,

oczekujący/aktywny/przydzielony)
• Akcje – nie nazywają się
• Przykładowy schemat

o Stany – oczekiwanie, przetwarzanie
o Wariant – nazwany
o Zrównoleglanie – wysyłanie, fakturowanie
o Stan kompozytowy

 stm Diagram stanów

Initial

Oczekiwanie

Przetwarzanie
zamówienia

walidacja

Wysyłanie Fakturowanie

Kończenie

Foo

[odrzucone]

5 Diagramy czynności
• Służą do dokumentowania procesów
• Czynności vs akcje

o Czynności – długotrwałe, podzielne, ogólne
o Akcje – krótkotrwałe, niepodzielne, szczegółowe – nazwane czasownikowo

(wprowadź/wybierz/zatwierdź/wydrukuj/aktualizuj/weryfikuj)
• Różnica w stosunku do diagramu stanów jeśli chodzi o semantykę bloków vs strzałek

– tam bloczek = stan, strzałka = akcja; tu bloczek = akcja, strzałka – wyznacza
następstwo akcji

o Sygnały (zdarzenia) – wyślij, odbierz
o Wariant – „if”
o Zdarzenia – send/receive
o Regiony – na przykład „przerywalny”, pojawia się zdarzenie „przerwij”,

anulowanie
o Partycje – podział na aktorów

Diagramy stanów i czynności wykorzystują niemalże ten sam formalizm do reprezentowania
różnych kategorii diagramów.

 act Diagram czynnosci bez partycj i

Przerywalne

Start

Pokaż towar

Czy więcej towarów?

Dodaj wartość towaru do
kwoty ogółem

Poproś o zapłatę

Fail

Podziękuj

Przerwanie

Anulowanie

Success

[Gotówka ok] [Brak gotówki]

[tak]

6 Diagramy sekwencji
• Służą do dokumentowania procesów
• Linie życia, paski aktywacji/ośrodki sterowania (execution specification)
• Typy obiektów

o Boundary – widok
o Control – kontroler
o Entity – model

• Związek między diagramem sekwencji a diagramem klas – ustalanie typu obiektu
• Komunikat – wartość zwrotna

wartość = komunikat(p1:P1, p2:P2, …) : typ
• lub przerywana strzałka zwrotna (EA – niekoniecznie)
• Singleton – jedynka w rogu, metoda statyczna – stereotyp „class”, „metaclass”
• Komunikat odnaleziony – „od nikogo”
• Create/destroy
• Ramki, można zagnieżdżać

o Loop – pętla
o Alt – if-then-else
o Opt – if
o Neg – czynność nieprawidłowa, wyjątek
o Par - współbieżność
o Ref – odwołanie do innej, nazwanej ramki
o Sd – nazwana ramka

Przykładowy pseudokod:

public class Actor {

 public void XXXX() {

 while (n < 10) {

 a.fooA();

 }

 }

}

public class A {

 public void fooA() {

 b.fooB();

 c.fooC();

 }

}

public class B {

 public void fooB() {

 d.fooD();

 }

}

public class C {

 public void fooC() {

 b.fooB();

 if (x > 0)

 d.fooD();

 }

}

i jego diagram

Diagram czynności a diagram sekwencji

Diagram czynności

Diagram sekwencji

Dokumentacja procesów Dokumentacja procesów
Może być używany do dokumentacji
wysokopoziomowej (np. przypadki użycia)
albo szczegółowej (implementacja)

Może być używany do dokumentacji
wysokopoziomowej (np. przypadki użycia)
albo szczegółowej (implementacja)

Oś czasu diagramu wyznaczona jest przez
przejścia między akcjami, w szczególności
łatwiej jest długi skomplikowany proces
rozplanować na diagramie

Diagram ma jednoznaczną „oś czasu” –
należy go czytać z góry na dół, długie
skomplikowane procesy mogą być
nieczytelne

W interpretacji implementacyjnej – jeśli
diagram obejmuje więcej niż jedną metodę
dwóch różnych obiektów to może być trudno
określić które akcje wchodzą w skład której
metody

W interpretacji implementacyjnej – ciągły
blok na linii życia obiektu wyznacza granicę
metody (funkcji)

 sd Diagram sekwencj i

Actor

a : A b : B c : C d : D

alt

[x > 0]

loop

[n < 10]

XXXX()

fooA()

fooB()

fooD()

fooC()

fooB()

fooD()

7 Diagramy komponentów
• Dokumentacja komponentów systemu i ich powiązań – przez komponent rozumie się

tu coś więcej niż klasa. Może to być pakiet (zbiór klas), może być cały moduł systemu
• Komponenty łączą się z innymi komponentami za pomocą portów

o
dostawca usługi – port na komponencie który posiada implementację usługi
dla innego komponentu

o
odbiorca usługi – port na komponencie który korzysta z usługi dostarczanej
przez inny komponent (na przykład zależy od danych produkowanych przez
inny komponent)

8 Literatura
Wrycza, Marcinkowski, Wyrzykowski - Język UML 2.0 w modelowaniu systemów
informatycznych

The Unified Modelling Language - https://www.uml-diagrams.org/

https://www.uml-diagrams.org/

