
Wybrane elementy praktyki projektowania oprogramowania
Wykład 09/15

node.js: Express (2)

Wiktor Zychla 2018/2019

1 Spis treści
2 Silne typowanie argumentów funkcji w VS Code .. 2

3 Domyślne middleware do obsługi nieobsłużonych ścieżek oraz zagrożenie Cross-site scripting ... 3

4 Użycie parametrów w ścieżkach i zagrożenie Web Parametr Tampering.................................... 4

5 Obsługa ciastek.. 6

6 Obsługa kontenera sesji na serwerze .. 9

7 Złożone szablony z parametrami ..11

2 Silne typowanie argumentów funkcji w VS Code

Na przykładzie funkcji typu middleware można zademonstrować sposób na uzyskanie efektu

podpowiadania typu obiektu. W tym celu należy użyć elementów TypeScript (import) oraz napisać

komentarz w składni JSDoc.

Tego sposobu można użyć do dowolnego typu argumentów

http://usejsdoc.org/

3 Domyślne middleware do obsługi nieobsłużonych ścieżek oraz

zagrożenie Cross-site scripting

„Domyślne” middleware, dodane jako ostatnie, będzie obsługiwać wszystkie nieobsłużone do tej pory

ścieżki. Można użyć tej techniki do przechwycenia żądań do nieobsługiwanych ścieżek:

// ... wcześniej inne mapowania ścieżek

app.use((req,res,next) => {

 res.render('404.ejs', { url : req.url });

});

http.createServer(app).listen(3000);

<!-- 404.ejs -->

<html>

<body>

 Strona <%= url %> nie została znaleziona.

</body>

</html>

Przy okazji przyjrzyjmy się temu że wartość req.url jest w obiekcie żądania zakodowana w standardzie

Percent-encoding (URL Encoding), co ma chronić aplikację przed prostym atakiem Script injection – a

konkretnie jego wersją nazwaną Cross-site scripting.

W tym ataku, atakujący może spreparować jakoś zasób na serwerze, który po odwiedzeniu go przez

atakowanego spowoduje wykonanie dowolnego skryptu Javascript po stronie przeglądarki. Daje to

atakującemu możliwość wykradania wartości wpisanych do formularza i odsyłania ich na kontrolowane

przez niego serwery.

Tu: możliwy atak polegałby na przesłaniu przez atakującego spreparowanego odnośnika zawierającego

fragment skryptu do wykonania:

http://localhost:3000/foobar<script>window.alert(‘hello’)</script>

W zaprezentowanej powyżej wersji taki odnośnik spowoduje wyrenderowanie nieczytelnego

Wystarczyłoby jednak w kodzie użyć funkcji decodeURIcomponent i równocześnie w widoku użyć <%-

%> zamiast <%= %>, aby otworzyć podatność. Jej źródłem jest bezrefleksyjne zwrócenie użytkownikowi

zawartości, której część pochodzi od niego samego (lub innego użytkownika).

https://en.wikipedia.org/wiki/Percent-encoding
https://en.wikipedia.org/wiki/Code_injection#HTML_script_injection
https://en.wikipedia.org/wiki/Cross-site_scripting
http://localhost:3000/foobar%3cscript%3ewindow.alert('hello')%3c/script

4 Użycie parametrów w ścieżkach i zagrożenie Web Parametr

Tampering

Możliwe jest dynamiczne parametryzowanie ścieżek

var http = require('http');

var express = require('express');

var app = express();

app.set('view engine', 'ejs');

app.set('views', './views');

app.use(express.urlencoded({extended:true}));

app.get("/",

 (req, res) => { res.end("default page")});

app.get("/faktura/:id",

 (req, res) => { res.end(`dynamicznie generowana faktura:

${req.params.id}`)});

// ... wcześniej inne mapowania ścieżek

app.use((req,res,next) => {

 res.render('404.ejs', { url : req.url });

});

http.createServer(app).listen(3000);

Taka ścieżka dopasowuje się do całej klasy ścieżek, a ograniczenie dopasowania polega na możliwości

użycia wyrażenia regularnego, na przykład wymuszającego tylko liczby

app.get("/faktura/:id(\\d+)",

 (req, res) => { res.end(`dynamicznie generowana faktura:

${req.params.id}`)});

Użycie parametrów w ścieżkach otwiera aplikację na kolejny typ podatności o którym warto

wspomnieć, tzw. Web Parameter Tampering (Query string tampering). Atak ten polega na tym że pasek

adresowy jest pod kontrolą użytkownika przeglądarki , a programiście aplikacji webowej zdarza się o

tym zapomnieć.

Typowa sytuacja w której dochodzi do podatności polega na sytuacji w której aplikacja dla konkretnego

użytkownika generuje link do konkretnego zasobu (faktury, powiadomienia, itp.) i wysyła taki link

użytkownikowi innym kanałem (np. e-mail czy sms). Uzytkownik po otwarciu linka dostaje się do

zasobu przewidzianego dla niego, ale modyfikując pasek adresowy może mieć dostęp do innych

zasobów.

Jednym z typowych mechanizmów ochrony przez tym zagrożeniem jest użycie dodatkowego

parametru weryfikującego poprawność odnośnika, wykorzystującego mechanizm HMAC (Hash

Message Authentication Code). Na serwerze, parametr ścieżki jest łączony z kluczem tajnym a

otrzymana wartość jest przepuszczana przez jednokierunkową funkcję skrótu (np. SHA2). Wynik jest

dodawany do adresu jako jego „podpis”:

http://localhost/faktura/114?mac=7658765876587658765abfe789789

Przy przetwarzaniu żądania na serwerze operacja wyliczenia „podpisu” jest powtarzana, a niezgodność

podpisu wyliczonego z oczekiwanym oznacza że użytkownik zmodyfikował wartość parametru. Taką

sytuację można jawnie obsłużyć i zwrócić komunikat błędu.

https://www.owasp.org/index.php/Web_Parameter_Tampering
https://en.wikipedia.org/wiki/HMAC
https://en.wikipedia.org/wiki/HMAC
http://localhost/faktura/114?mac=7658765876587658765abfe789789

5 Obsługa ciastek
Do obsługi ciasteczek służy middleware cookie-parser. Wartość ciastka utworzona na serwerze jest

dodawana do odpowiedzi w nagłówku Set-cookie, a następnie dołączana przez przeglądarkę w każdym

żądaniu. Na serwerze można odczytać wartości przychodzących ciastek:

var http = require('http');

var express = require('express');

var cookieParser = require('cookie-parser');

var app = express();

app.set('view engine', 'ejs');

app.set('views', './views');

app.disable('etag');

app.use(cookieParser());

app.use(express.urlencoded({

 extended: true

}));

app.use("/", (req, res) => {

 var cookieValue;

 if (!req.cookies.cookie) {

 cookieValue = new Date().toString();

 res.cookie('cookie', cookieValue);

 } else {

 cookieValue = req.cookies.cookie;

 }

 res.render("index", { cookieValue: cookieValue });

});

http.createServer(app).listen(3000);

<!-- views/index.ejs -->

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <meta http-equiv="X-UA-Compatible" content="ie=edge">

 <title>Document</title>

</head>

<body>

 <form method="POST">

 Wartość z ciastka: <%= cookieValue %>

 <button>Zapisz</button>

 </form>

</body>

</html>

Spośród możliwych parametrów ciastka interesują nas

• maxAge umożliwiające sterowanie czasem życia ciastka w przeglądarce, w tym usunięcie

ciastka (maxAge: -1)

• signed dodające do ciastka podpis HMAC wygenerowany z klucza dostarczonego jako

argument funkcji cookieParser() - dostęp do podpisanych ciastek wymaga odwołania się do

właściwości signedCookies obiektu request

var http = require('http');

var express = require('express');

var cookieParser = require('cookie-parser');

var app = express();

app.set('view engine', 'ejs');

app.set('views', './views');

app.disable('etag');

app.use(cookieParser('xzufybuixyfbuxziyfbuzixfuyb'));

app.use(express.urlencoded({

 extended: true

}));

app.use("/", (req, res) => {

 var cookieValue;

 if (!req.signedCookies.cookie) {

 cookieValue = new Date().toString();

 res.cookie('cookie', cookieValue, { signed: true });

 } else {

 cookieValue = req.signedCookies.cookie;

 }

 res.render("index", { cookieValue: cookieValue });

});

http.createServer(app).listen(3000);

6 Obsługa kontenera sesji na serwerze
Kontener sesji to zbiornik na dane po stronie serwera, który znosi ograniczenie rozmiaru ciastek –

zamiast transferować cały stan do użytkownika, wysyła mu się klucz w kontenerze, a stan zapamiętuje

na serwerze pod kluczem. Za obsługę sesji odpowiada middleware express-session.

Co ważne – architektura sesji zakłada możliwość użycia na serwerze dostawcy kontenera, którym może

być np. zewnętrzna baza danych.

var http = require('http');

var express = require('express');

var session = require('express-session');

var app = express();

app.set('view engine', 'ejs');

app.set('views', './views');

app.disable('etag');

app.use(session({resave:true, saveUninitialized: true, secret:

'qewhiugriasgy'}));

app.use("/", (req, res) => {

 var sessionValue;

 if (!req.session.sessionValue) {

 sessionValue = new Date().toString();

 req.session.sessionValue = sessionValue;

 } else {

 sessionValue = req.session.sessionValue;

 }

 res.render("index", { sessionValue: sessionValue });

});

http.createServer(app).listen(3000);

<!-- views/index.ejs -->

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <meta http-equiv="X-UA-Compatible" content="ie=edge">

 <title>Document</title>

</head>

<body>

https://github.com/expressjs/session
https://github.com/expressjs/session#compatible-session-stores

 <form method="POST">

 Wartość z session: <%= sessionValue %>

 <button>Zapisz</button>

 </form>

</body>

</html>

7 Złożone szablony z parametrami

Istnieje możliwość wywołania szablonu z innego szablonu

<!-- views/index.ejs -->

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <meta http-equiv="X-UA-Compatible" content="ie=edge">

 <title>Document</title>

</head>

<body>

 Wywołanie szablonu z innego szablonu:

 <% var name='combo1' %>

 <% var options= [

 { value : 1, text : 'element 1' },

 { value : 2, text : 'element 2' },

 { value : 3, text : 'element 3' }

]

 %>

 <% include select %>

</body>

</html>

<!-- select.ejs -->

<select name='<%= name %>'>

 <% options.forEach(option => { %>

 <option value='<%= option.value %>'>

 <%= option.text %>

 </option>

 <% }) %>

</select>

