Wybrane elementy praktyki projektowania oprogramowania

Wyktad 09/15
node.js: Express (2)

Wiktor Zychla 2018/2019

1 Spis tresci

2 Silne typowanie argumentOw funKgi W VS COUEiiiiiiiiiiiiiiiee e 2
3 Domysélne middleware do obstugi nieobstuzonych sSciezek oraz zagrozenie Cross-site scripting... 3
4 Uzycie parametréw w Sciezkach i zagrozenie Web Parametr Tampering........cccevveeeveevvvvvnieeneennns 4
I O] 13 (V== ol - 15 (=] U 6
6 Obstuga KONteNera SESji NA SEMWEIZEcciiiii et e et e e e e e e e et e e e eaaa s 9
7

Z10z0ne SzabloNy Z ParameEtrami........cuuuie it e et e e e e e ar e e e e 11

2 Silne typowanie argumentéw funkcji w VS Code

Na przyktadzie funkcji typu middleware mozna zademonstrowaé sposéb na uzyskanie efektu
podpowiadania typu obiektu. W tym celu nalezy uzy¢ elementéow TypeScript (import) oraz napisac
komentarz w sktadni JSDoc.

middleware(req,
req.

] _destroy

) _read

) addListener

W connection

) destroy

) emit

7} eventNames

) getMaxListeners
& headers

& httpVersion

W httpVersionMajor
W httpVersionMinor

Tego sposobu mozna uzy¢ do dowolnego typu argumentéw

foo(n, s) {

7 fontsize

F includes

% indexOf

@ italics

% lastIndexOf
W length

T 1link

Replaces text in a string, using a regular expression
or search string.

) localeCompare @param searchValue — A stning to search for.
o match
7 normalize @param replaceValue — A string containing

¥ repeat the text to replace for every successful match of
) replace searchValue in this string.

http://usejsdoc.org/

3 Domyslne middleware do obstugi nieobstuzonych sciezek oraz
zagrozenie Cross-site scripting

,DomysIne” middleware, dodane jako ostatnie, bedzie obstugiwac wszystkie nieobstuzone do tej pory
Sciezki. Mozna uzyctej techniki do przechwycenia zgdan do nieobstugiwanych Sciezek:

app.use((req,res,next) {
res.render('404.ejs', { url : req.url });

})s

http.createServer (app).listen(3000);

Strona <%= url %> nie zostata znaleziona.

Przy okazji przyjrzyjmy sietemu ze wartos¢ req.url jest w obiekcie zgdania zakodowana w standardzie
Percent-encoding (URL Encoding), co ma chroni¢ aplikacje przed prostym atakiem Scriptinjection—a
konkretnie jego wersjg nazwang Cross-site scripting.

W tym ataku, atakujgcy moze spreparowac jako$ zaséb na serwerze, ktdry po odwiedzeniu go przez
atakowanego spowoduje wykonanie dowolnego skryptu Javascript po stronie przegladarki. Daje to
atakujgcemu mozliwosé wykradania wartosci wpisanych do formularzai odsytaniaich na kontrolowane
przezniego serwery.

Tu: mozliwy atak polegatby na przestaniu przezatakujgcego spreparowanegoodnosnika zawierajgcego
fragment skryptu do wykonania:

http://localhost:3000/foobar<script>window.alert(‘hello’)</script>

W zaprezentowanej powyzej wersjitaki odnosnik spowoduje wyrenderowanie nieczytelnego

< ' (@ localhost:3000/foobar<script >window.alert(hello’)</script =
Strona /foobar?o3Cscript®3Ewindow alert{"hello")%63C/script?e3E nie zostata znaleziona.
Wystarczytoby jednak w kodzie uzy¢ funkcji decodeURIcomponent i réwnoczesnie w widoku uzyé <%-

%> zamiast <%=%>, aby otworzy¢ podatnosé. Jej zrodtemjest bezrefleksyjne zwrdcenie uzytkownikowi
zawartosci, ktérej czesé pochodzi od niego samego (lub innego uzytkownika).

https://en.wikipedia.org/wiki/Percent-encoding
https://en.wikipedia.org/wiki/Code_injection#HTML_script_injection
https://en.wikipedia.org/wiki/Cross-site_scripting
http://localhost:3000/foobar%3cscript%3ewindow.alert('hello')%3c/script

4 Uzycie parametrow w Sciezkach izagrozenie Web Parametr
Tampering

Mozliwe jest dynamiczne parametryzowanie sciezek

http = require('http');
express = require('express');

app = express();

.set('view engine', 'ejs');
.set('views', './views');

.use(express.urlencoded({extended:)

‘get(ll/ll)
(req, res) { res.end("default page")});

app.get("/faktura/:id",
(reqg, res) { res.end(dynamicznie generowana faktura:
req.params.id})});

app.use((req,res,next) {
res.render('404.ejs', { url : req.url });

Hs

http.createServer (app).listen(3000);

< C @ localhost:3000/faktura/114

dynamicznie generowana faktura: 114

Taka $Sciezka dopasowuje sie do catej klasy Sciezek, a ograniczenie dopasowania polega na mozliw osci
uzyciawyrazeniaregularnego, na przyktad wymuszajgcego tylko liczby

app.get("/faktura/:id(\\d+)",

(req, res) { res.end(dynamicznie generowana faktura:
req.params.id})});

& O @ localhost:3000/faktura/foo

Strona /faktura'foo nie zostala znaleziona.

Uzycie parametrow w S$ciezkach otwiera aplikacje na kolejny typ podatnosci o ktérym warto
wspomnie¢, tzw. Web Parameter Tampering (Query string tampering). Atak ten polega natym ze pasek
adresowy jest pod kontrolg uzytkownika przegladarki, a programiscie aplikacji webowej zdarza sie o
tym zapomnied.

Typowa sytuacjaw ktdrej dochodzi do podatnoscipolega na sytuacjiw ktérejaplikacja dla konkretnego
uzytkownika generuje link do konkretnego zasobu (faktury, powiadomienia, itp.) i wysyta taki link
uzytkownikowi innym kanatem (np. e-mail czy sms). Uzytkownik po otwarciu linka dostaje sie do
zasobu przewidzianego dla niego, ale modyfikujgc pasek adresowy moze mie¢ dostep do innych
zasobow.

Jednym z typowych mechanizmdéw ochrony przez tym zagrozeniem jest uzycie dodatkowego
parametru weryfikujgcego poprawnos¢ odnosnika, wykorzystujagcego mechanizm HMAC (Hash
Message Authentication Code). Na serwerze, parametr $ciezki jest taczony z kluczem tajnym a
otrzymana wartos¢ jest przepuszczana przez jednokierunkowgq funkcje skrotu (np. SHA2). Wynik jest
dodawany do adresu jako jego ,,podpis”:

http://localhost/faktura/114?mac=76587658765876587 65abfe 789789

Przy przetwarzaniu zadania na serwerze operacja wyliczenia ,,podpisu” jest powtarzana, a niezgodnos¢
podpisu wyliczonego z oczekiwanym oznacza ze uzytkownik zmodyfikowat wartos¢ parametru. Taka
sytuacje mozna jawnie obstuzyéizwrdci¢ komunikat btedu.

https://www.owasp.org/index.php/Web_Parameter_Tampering
https://en.wikipedia.org/wiki/HMAC
https://en.wikipedia.org/wiki/HMAC
http://localhost/faktura/114?mac=7658765876587658765abfe789789

5 Obstuga ciastek

Do obstugi ciasteczek stuzy middleware cookie-parser. Wartos¢ ciastka utworzona na serwerze jest
dodawanado odpowiedziw nagtéwku Set-cookie, a nastepnie dotgczana przez przegladarke w kazdym
zadaniu. Naserwerze mozna odczytaé wartosci przychodzgcych ciastek:

http = require('http');
express = require('express');
cookieParser = require('cookie-parser');

app = express();

app.set('view engine', 'ejs');
app.set('views', './views');

app.disable('etag');

app.use(cookieParser());

app.use(express.urlencoded({
extended:

)

app.use("/", (req, res)
cookieValue;
if (!req.cookies.cookie) {
cookieValue = Date().toString();
res.cookie('cookie', cookieValue);
} else {
cookieValue = req.cookies.cookie;

res.render("index", { cookieValue: cookieValue });

})s

http.createServer (app).listen(3000);

html
lang="en"

charset="UTF-8"

name="viewport" content="width=device-width, initial-scale=1.0"
http-equiv="X-UA-Compatible" content="ie=edge"

Document

method="POST"
Wartos¢ z ciastka: cookieValue %>

Sposrdéd mozliwych parametréw ciastkainteresujg nas

maxAge umozliwiajgce sterowanie czasem zycia ciastka w przegladarce, w tym usuniecde
ciastka (maxAge:-1)

signed dodajgce do ciastka podpis HMAC wygenerowany z klucza dostarczonego jako
argument funkcji cookieParser() - dostep do podpisanych ciastek wymaga odwotania sie do
wiasciwosci signedCookies obiektu request

cookie(name: string, val: string,

app.set(’v options: CookieOptions): Response

app.disable(‘etag’}); Set cookie name to val , with the given options .
app.use(cookieParser());

app.use(express.urlencoded({ Options:

extended: - “maxAge” max-age milliseconds, converted to

1D H “expires’

. - “signed’ sign the cookie
app-use("/ ,.(req, res) { - Tpath’ defaults to "/"
cookievValue;
if (!req.cookies.cookie) {
cookieValue = Date().toString(); ~
res.cookie(cookie', cookieValue, [f H);
1 else { W domain?
cookieValue = req.cookies.cookie; W encode?

-

Examples:

1 W expires?
W httpOnly?
res.render(“index”, { cookieValue: cooki & maxAge?
s W path?
& sameSite?
http.createServer(app).listen(30ea); W secure?
W signed?
(1 app
[cookie
[cookieParser

http = require('http');
express = require('express');
cookieParser = require('cookie-parser');

app = express();

app.set('view engine', 'ejs');
app.set('views', './views');

app.disable('etag');
app.use(cookieParser ('xzufybuixyfbuxziyfbuzixfuyb'));
app.use(express.urlencoded ({

extended:

1)

app.use("/", (req, res)
cookieValue;
if (!req.signedCookies.cookie) {
cookieValue = Date().toString();
res.cookie('cookie', cookieValue, { signed:
} else {
cookieValue = req.signedCookies.cookie;

res.render("index", { cookieValue: cookieValue });

})s

http.createServer (app).listen(3000);

6 Obstuga kontenera sesji na serwerze

Kontener sesji to zbiornik na dane po stronie serwera, ktéry znosi ograniczenie rozmiaru ciastek —
zamiast transferowac caty stan do uzytkownika, wysyfa mu sie klucz w kontenerze, astan zapamietuje
na serwerze pod kluczem. Za obstuge sesji odpowiada middleware express-session.

Co wazne —architektura sesji zaktada mozliwos¢ uzycia na serwerze dostawcy kontenera, ktérym moze
byé np.zewnetrzna baza danych.

http = require('http');
express = require('express');
session = require('express-session');

app = express();

app.set('view engine', 'ejs');
app.set('views', './views');

app.disable('etag');

app.use(session({resave: , saveUninitialized:
‘gewhiugriasgy'}));

app.use("/", (req, res)
sessionValue;
if (!req.session.sessionValue) {
sessionValue = Date().toString();
req.session.sessionValue = sessionValue;
} else {
sessionValue = req.session.sessionValue;

res.render("index", { sessionValue: sessionValue });

s

http.createServer (app).listen(3000);

html
lang="en"

charset="UTF-8"

name="viewport" content="width=device-width, initial-scale=1.0"
http-equiv="X-UA-Compatible" content="ie=edge"

Document

https://github.com/expressjs/session
https://github.com/expressjs/session#compatible-session-stores

method="POST"
Wartos¢ z session: <%= sessionValue %>
Zapisz

7 Ztozone szablony z parametrami

Istnieje mozliwos¢ wywofaniaszablonu zinnego szablonu
html
lang="en"

charset="UTF-8"

name="viewport" content="width=device-width, initial-scale=1.0"
http-equiv="X-UA-Compatible" content="ie=edge"

Document

Wywotanie szablonu z innego szablonu:

% var name='combol' %>

% var options= [
text : 'element 1' },
text : 'element 2' },
text : 'element 3' }

include select

name="'<%= name %>’
% options.forEach(option => { %>
value="'<%= option.value %>’

%= option.text %>

% 1) %>

<« ¢ @ localhost:3000

Wywotanie szablonu z innego szablonu:
element 1
element 2
element 3

