
Projektowanie aplikacji ASP.NET  
Wykład 01/15 - Wprowadzenie 

 
Wiktor Zychla 2018/2019 

 

1 Sprawy organizacyjne 
 

Z przyjemnością witam Państwa na wykładzie Projektowanie aplikacji ASP.NET, który będzie okazją do 

zapoznania się z bardzo konkretną technologią wytwarzania usług internetowych – z technologią 

ASP.NET. 

W ramach zajęć zostanie zaprezentowany cykl 15 wykładów uzupełnionych spotkaniami w 

laboratorium, w trakcie którego studenci będą mogli zmierzyć się z szeregiem praktycznych zadań, 

związanych z materiałem wykładu.  

Wykłady będą uzupełnione notatkami, które proszę systematycznie przeglądać i korzystać z gęsto 

zamieszczonych w nich odnośników, stanowiących zachętę do samodzielnego poszukiwania i 

poszerzania wiedzy. Listy zadań będą publikowane w formie osobnych dokumentów. 

  



2 Tło technologiczne ASP.NET 
 

Architektura aplikacji internetowej obejmuje dwa główne komponenty i ścisły podział między nimi – 

to przeglądarka internetowa oraz serwer aplikacji. 

 

Technologie dynamicznego WWW – to żargonowe określenie dotyczy technologii, w których serwer 

aplikacji realizuje coś więcej niż tylko odczyt statycznych plików i wysyłanie ich do przeglądarki. Jeśli 

serwer realizuje ten sam protokół komunikacyjny (HTTP) ale potrafi wykonać kod, który produkuje 

odpowiedź na żądanie klienta, to znacząco zmieniają się możliwości aplikacji, w szczególności – istnieje 

możliwość dostarczenia użytkownikowi spersonalizowanej zawartości, w tym np. wymuszanie 

zalogowania się użytkowników i udostępnianie im ich własnych danych. 

Współczesne technologie wytwarzania aplikacji internetowych mocno rozdzielają obszary 

wytwarzania aplikacji po stronie serwera i po stronie przeglądarki. Technologie serwerowe to 

prawdziwy przekrój języków i platform technologicznych natomiast po stronie przeglądarki wszystkie 

aplikacje, bez względu na wybór sposobu ich wytwarzania, muszą normalizować się do trzech 

wspólnych elementów: 

• HTML 

• CSS 

• JavaScript 

2.1 CGI 
Za protoplastę technologii ASP.NET można uznać pierwsze próby dynamicznego WWW czyli 

technologię CGI i jej wprowadzenie do serwerowej linii Windows (wtedy jeszcze Windows NT 3.51) w 

ramach serwera aplikacyjnego, Internet Information Services (IIS) w 1995 roku.  

CGI pozwala na pisanie skryptów w dowolnym języku, w którym istnieje dostęp do strumienia wejścia 

i wyjścia (na przykład w C++). Serwer aplikacyjny przetwarza żądanie, buduje z niego zbiór 

argumentów, uruchamia zewnętrzny proces skryptowy (na przykład plik wykonywalny), odbiera od 

niego ze strumienia wyjściowego odpowiedź i odsyła do przeglądarki. 

Najprostszy skrypt CGI, napisany w języku C mógłby wyglądać tak:  

 
#include <stdio.h> 

 

int main( int argc, char** argv ) 

{ 

  printf( "HTTP/1.0 200 OK\r\nContent-type: text/html\r\n\r\n" ); 

  printf( "<HTML>\r\n<HEAD>" ); 

  printf( "<TITLE>Witam w CGI</TITLE></HEAD>\r\n" ); 

  printf( "<BODY>Pierwszy skrypt w CGI</BODY>\r\n" ); 

  printf( "</HTML>" ); 

 

  return 0; 

} 

https://en.wikipedia.org/wiki/Web_browser
https://en.wikipedia.org/wiki/Web_server
https://en.wikipedia.org/wiki/Server-side_scripting
https://en.wikipedia.org/wiki/Web_application_development
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/Cascading_Style_Sheets
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Common_Gateway_Interface
https://en.wikipedia.org/wiki/Internet_Information_Services


 

Taki sposób budowania aplikacji internetowej ma swoją cenę – uruchamianie zewnętrznych procesów 

jest kosztowne. Ponadto uruchamiane procesy nie współdzielą pamięci, CGI skaluje się więc słabo. 

2.2 Interner Server Application Programming Interface (ISAPI) 
Aby pokonać problemy związane z wydajnością CGI, Microsoft zaprojektował alternatywną 

technologię dynamicznego WWW, nazwaną Internet Server Application Programming Interface 

(ISAPI). Główny pomysł polegał na tym, że skrypty ISAPI są bibliotekami (DLL) a nie modułami 

wykonywalnymi, dzięki czemu kod skryptu ładowany jest do pamięci tylko raz.  

Istnieją dwa rodzaje bibliotek ISAPI: rozszerzenia ISAPI, które spełniają identyczną funkcję jak skrypty 

CGI oraz filtry ISAPI, które reagują na pewne zdarzenia związane z obsługą stron przez serwer.  

Mimo, że technologia ISAPI jest zdecydowanie wydajniejsza od CGI, nie jest pozbawiona wad. Po 

pierwsze, napisanie poprawnej biblioteki ISAPI wymaga zdecydowanie więcej wiedzy niż napisanie 

skryptu CGI. Po drugie, jeśli biblioteka ISAPI trafi już na serwer Internetowy, to nie ma łatwego sposobu 

na zastąpienie jej nowszą wersją, ponieważ system operacyjny zabroni dostępu do biblioteki, która 

wedle jego rozeznania będzie cały czas używana. Wymiana biblioteki wymaga więc zatrzymania usługi 

serwera Inernetowego na serwerze sieciowym.  

2.3 Active Server Pages (ASP) 
Następcą ISAPI jest technologia Active Server Pages, która, o dziwo, jest zaimplementowana jako 

rozszerzenie ISAPI. W przypadku ASP nie tworzy się jednak żadnej bibilioteki, tylko zwykłą stronę 

HTML, zaś wewnątrz jej kodu umieszcza się dowolne instrukcje języka skryptowego, VBScript. ASP sam 

dba o interpretowanie kodu VBScript i odsyła do klienta wyniki tej operacji.  

Oto przykład bardzo prostej strony ASP:  

 
<% Option Explicit %> 

<HTML> 

<HEAD><TITLE>Witam w ASP</TITLE></HEAD> 

<BODY> 

<% 

Dim n 

For n = 1 to 5 

  Response.Write( "<FONT size=" & n ) 

  Response.Write( ">Witam w ASP</FONT><br>" & vbCrLf ) 

Next 

%> 

</BODY> 

</HTML> 

 

Aby strona internetowa była interpretowana jako strona ASP, wystarczy nadać jej rozszerzenie asp.  
 

Projektując strony ASP można korzystać z całej siły VBScript. Ale to właśnie siła VBScript ta okazuje się 
być największą słabością ASP - VBScript, jak przystało na język skryptowy, jest bardzo słabo otypowany. 
Co więcej – kod jest interpretowany dynamicznie. Oba te fakty oznaczają, że bardzo łatwo popełniać 
błędy w skryptach, które jeśli się pojawią, to wykrywane są dopiero wtedy, kiedy natrafi na nie pierwszy 
użytkownik.  

2.4 Czym jest ASP.NET 
Technologia ASP.NET jest naturalnym rozszerzeniem ASP, które integruje technologię ASP z platformą 

.NET. Dzięki ASP.NET możliwe jest używanie praktycznie dowolnego języka platformy .NET do 

tworzenia dynamicznej zawartości stron WWW.  

https://en.wikipedia.org/wiki/Internet_Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Active_Server_Pages
https://en.wikipedia.org/wiki/ASP.NET


Od premiery w 2001 roku, technologia ASP.NET zyskiwała kolejne podsystemy, które omówimy w 

trakcie naszego wykładu 

• Podsystem WebForms 

• Podsystem ASP.NET MVC 

• Podsystem WCF 

• Podsystem WebAPI 

W 2016 roku miała miejsce premiera alternatywnej implementacji środowiska ASP.NET, czyli ASP.NET 

Core, uruchamianego w ramach platformy .NET Core. 

2.5 Pierwszy przykład ASP.NET 
Najprostszy przykład dynamicznej strony ASP.NET ukazuje jednocześnie, że ASP.NET umożliwia użycie 

C# jako języka skryptowego. Przy próbie uruchomienia kod strony będzie prekompilowany, a błędy 

będą statycznie raportowane osobie testującej.  

 
<%@ Page Language="C#" %> 

<HTML> 

<HEAD><TITLE>Witam w ASP.NET</TITLE></HEAD> 

<BODY> 

 

<% 

int    i; 

 

for ( i=1; i<=5; i++ ) 

{ 

  Response.Write( string.Format( "<FONT size={0}>Witam w ASP.NET</FONT><br>", i ) ); 

} 

%> 

 

</BODY> 

</HTML> 

 

  

https://en.wikipedia.org/wiki/ASP.NET_MVC
https://en.wikipedia.org/wiki/Windows_Communication_Foundation
https://en.wikipedia.org/wiki/ASP.NET_Core
https://en.wikipedia.org/wiki/ASP.NET_Core
https://en.wikipedia.org/wiki/.NET_Core


3 Wprowadzenie do narzędzi 
W trakcie pierwszego wykładu omówimy i zaprezentujemy warsztat narzędziowy, niezbędny do 

rozwijania aplikacji ASP.NET, w szczególności – Visual Studio (w wersji co najmniej 2015). 

 

Omówimy architekturę serwera IIS, nauczymy się poruszać po jego konfiguracji 

 

Opowiemy o 

• Witrynach 

• Pulach aplikacji 

• Konfiguracji wiązania witryn – w tym o tym jak przeglądarka decyduje o tym gdzie wysłać 

żądanie i jak to możliwe że serwer obsługuje wiele aplikacji na tym samym porcie HTTP 

https://en.wikipedia.org/wiki/Microsoft_Visual_Studio


• Konfiguracji uprawnień pul aplikacji 

Zobaczymy też scenariusze deploymentu aplikacji, czyli o tym jak przenosić aplikacje ze środowiska 

deweloperskiego na docelowy serwer fizyczny, na którym pracuje serwer aplikacyjny. 

  



4 Wybrana literatura 
 

Spaanjaars, Beginning ASP.NET 4.5.1 in C# and VB 

 

Galloway, Wilson, Allen, Matson - Professional ASP.NET MVC 5 

 

Lowy, Programming WCF 

 


