
Projektowanie obiektowe oprogramowania
Wykład 7 – wzorce czynnościowe (2)

Wiktor Zychla 2017

1 Mediator

Motto: Koordynator współpracy ściśle określonej grupy obiektów – dzięki niemu one nie odwołują
się do siebie wprost (nie muszą nic o sobie wiedzieć), ale przesyłają sobie powiadomienia przez
mediatora.
Kojarzyć: niby Observer bo też „powiadomienia”, ale zbiór współpracujących obiektów jest tu ściśle
określony. Mediator może więc wykorzystać ten fakt do wyboru różnych technik przesyłania
powiadomień (bezpośrednio, na styl observera itp.).
Druga różnica między Mediatorem a Observerem jest taka że to kolaborujące obiekty przesyłają
sobie powiadomienia o zmianie swojego stanu, a stan Mediatora nie ma nic do tego. W Observerze
wszyscy zainteresowani nasłuchują powiadomień o zmianie stanu obiektu obserwowanego. Nie ma
więc zupełnie analogii między mediatorem a obserwowanym.
Przykład z życia: typowe okienka desktopowych technologii wytwarzania GUI są mediatorami
między konkretnymi kontrolami, które są zagregowane wewnątrz (w środku okienka – Mediator,
pomiędzy okienkami – Observer)

2 Observer

Motto: powiadamianie zainteresowanych o zmianie stanu, dzięki czemu nie odwołują się one do
siebie wprost.

 class Mediator

AbstractMediator

ConcreteMediator

AbstractColleague

ConcreteColleague1 ConcreteColleague2

Kojarzyć: zdarzenia w C#
Przykład z życia: architektura aplikacji oparta o powiadomienia między różnymi widokami (w środku
okienka – Mediator, pomiędzy okienkami – Observer)
Jeszcze inaczej – Observer ujednolica interfejs „Colleagues” Mediatora, dzięki czemu obsługuje
dowolną liczbę „Colleagues”

Komentarz: kolejny wzorzec który silnie wpływa na rozwój języków – C#-owe zdarzenia (events) to
przykład uczynienia ze wzorca projektowego elementu języka.

3 Event Aggregator

Motto: rozwiąż problem Observera ogólniej – jeden raz dla różnych typów powiadomień
Kojarzyć: ogólniejszy Observer, „hub” komunikacyjny (Observer zaimplementowany jako „słownik
list” słuchaczy indeksowany typem powiadomienia)

Event Aggregator znosi najważniejsze ograniczenie Observera – klasy obserwatorów muszą tam zna
klasę obserwowanego. W EventAggregatorze zarówno obserwowani jak i obserwujący muszą tylko
wiedzieć gdzie szukać EventAggregatora. W efekcie klasy obserwowane i obserwujące mogą być
zdefiniowane np. w niezależnych od siebie modułach (co jest niemożliwe w przypadku Observera).

Uwaga: jeden z ważniejszych wzorców dobrej architektury aplikacji

 class Observ er

IObserver

+ Notify() : void

IObservable

+ RegisterObserver(IObserver) : void
+ UnregisterObserver(IObserver) : void

Observ er

+ Notify() : void

Observ able

+ RegisterObserver(IObserver) : void
+ UnregisterObserver(IObserver) : void

0..*

notifies

registers in

namespace Uwr.OOP.BehavioralPatterns.EventAggregator

{

 public interface ISubscriber<T>

 {

 void Handle(T Notification);

 }

 public interface IEventAggregator

 {

 void AddSubscriber<T>(ISubscriber<T> Subscriber);

 void RemoveSubscriber<T>(ISubscriber<T> Subscriber);

 void Publish<T>(T Event);

 }

 public class EventAggregator : IEventAggregator

 {

 Dictionary<Type, List<object>> _subscribers =

 new Dictionary<Type, List<object>>();

 #region IEventAggregator Members

 public void AddSubscriber<T>(ISubscriber<T> Subscriber)

 {

 if (!_subscribers.ContainsKey(typeof(T)))

 _subscribers.Add(typeof(T), new List<object>());

 _subscribers[typeof(T)].Add(Subscriber);

 }

 public void RemoveSubscriber<T>(ISubscriber<T> Subscriber)

 {

 if (_subscribers.ContainsKey(typeof(T)))

 _subscribers[typeof(T)].Remove(Subscriber);

 }

 class Ev entAggregator

Ev entAggregator

Subscriber1

Subscriber2

Publisher1

Publisher2

publish

publish

notify

notify

subscribe

subscribe

 public void Publish<T>(T Event)

 {

 if (_subscribers.ContainsKey(typeof(T)))

 foreach (ISubscriber<T> subscriber in

 _subscribers[typeof(T)].OfType<ISubscriber<T>>())

 subscriber.Handle(Event);

 }

 #endregion

 }

}

4 Memento

Motto: Zapamiętuj i pozwalaj odzyskać stan obiektu
Uwaga: stan obiektu i stan pamiątki nie muszą być takie same. W szczególności duże obiekty mogą
tworzyć małe, przyrostowe pamiątki
Kojarzyć z: Undo (i opcjonalnym Redo).

W trakcie wykładu zobaczymy jak zbudować obiekt Memento i oddzielić od niego odpowiedzialność
typu Caretaker w której umieścimy funkcjonalność Undo/Redo.

namespace Uwr.OOP.BehavioralPatterns.Memento

{

 public class Caretaker

 {

 Stack<Memento> undoStack = new Stack<Memento>();

 Stack<Memento> redoStack = new Stack<Memento>();

 private Originator originator;

 public Caretaker(Originator o)

 {

 this.originator = o;

 this.originator.StateChanged += OriginatorStateChanged;

 }

 public void Undo()

 class Memento

Originator

- state

+ CreateMemento() : Memento
+ RestoreMemento(Memento) : void

Memento

- state

+ GetState() : void
+ SetState(string) : void

Caretaker

state = memento.GetState();

Memento m = new Memento();
m.SetState(this.state);
return m;

 {

 if (this.undoStack.Count > 1)

 {

 // bieżący stan na redo
 Memento m = undoStack.Pop();

 redoStack.Push(m);

 Memento ps = undoStack.Peek();

 this.originator.RestoreMemento(ps);

 }

 }

 public void Redo()

 {

 if (this.redoStack.Count > 0)

 {

 Memento m = redoStack.Pop();

 undoStack.Push(m);

 this.originator.RestoreMemento(m);

 }

 }

 public void OriginatorStateChanged()

 {

 redoStack.Clear();

 Memento m = this.originator.CreateMemento();

 undoStack.Push(m);

 }

 }

 public class Originator

 {

 public event Action StateChanged;

 private string _state;

 public string State

 {

 get

 {

 return _state;

 }

 set

 {

 _state = value;

 if (this.StateChanged != null)

 this.StateChanged();

 }

 }

 public Memento CreateMemento()

 {

 Memento m = new Memento();

 m.State = this.State;

 return m;

 }

 public void RestoreMemento(Memento m)

 {

 this._state = m.State;

 }

 }

 public class Memento

 {

 public string State { get; set; }

 }

}

