Projektowanie obiektowe oprogramowania
Wyktad 7 — wzorce czynnosciowe (2)
Wiktor Zychla 2017

1 Mediator

Motto: Koordynator wspoipracy $cisle okreslonej grupy obiektow — dzieki niemu one nie odwotuja
si¢ do siebie wprost (nie musza nic o sobie wiedzie¢), ale przesytaja sobie powiadomienia przez
mediatora

Kojarzy¢: niby Observer bo tez ,,powiadomienia”, ale zbiér wspotpracujacych obiektow jest tu $cisle
okreslony. Mediator moze wigc wykorzysta¢ ten fakt do wyboru réznych technik przesytania
powiadomien (bezposrednio, na styl observera itp.).

Druga roznica miedzy Mediatorem a Observerem jest taka ze to kolaborujace obiekty przesytaja
sobie powiadomienia o zmianie swojego stanu, a stan Mediatora nie ma nic do tego. W Observerze
wszyscy zainteresowani nastuchujg powiadomien o zmianie stanu obiektu obserwowanego. Nie ma
wigc zupetnie analogii migdzy mediatorem a obserwowanym.

Przyktad z zycia: typowe okienka desktopowych technologii wytwarzania GUI sa mediatorami
migdzy konkretnymi kontrolami, ktore sg zagregowane wewnatrz (w srodku okienka — Mediator,
pomigdzy okienkami — Observer)

class Mediator

AbstractMediator AbstractColleagug

5 5T

ConcreteMediator ConcreteColleaguel ConcreteColleague2

2 Observer

Motto: powiadamianie zainteresowanych o zmianie stanu, dzigki czemu nie odwotujg si¢ one do
siebie wprost.

Kojarzy¢: zdarzenia w C#

Przyktad z zycia: architektura aplikacji oparta o powiadomienia migdzy ré6znymi widokami (w srodku
okienka— Mediator, pomiedzy okienkami — Observer)

Jeszcze inaczel — Observer ujednolica interfejs ,,Colleagues” Mediatora, dzigki czemu obstuguje
dowolng liczbe ,,Colleagues”

class Observer /

IObservable

I0Observer . .
+ RegisterObserver(IObserver) : void

+ UnregisterObserver(IObserver) : void

+ Notify() : void 0.+

registersin h A
A

|

|
| |
| notifies |
| |
| |
| |
1 |

Observer Observable
+ Notify() : void —= + RegisterObserver(IObserver) : void
+ UnregisterObserver(IObserver) : void

Komentarz: kolejny wzorzec ktory silnie wptywa na rozwdj jezykoéw — C#-owe zdarzenia (events) to
przyktad uczynienia ze wzorca projektowego elementu jezyka.

3 Event Aggregator

Motto: rozwigz problem Observera ogélniej — jeden raz dla r6znych typow powiadomien
Kojarzy¢: ogolniejszy Observer, ,,hub” komunikacyjny (Observer zaimplementowany jako ,,stownik
list” stuchaczy indeksowany typem powiadomienia)

Event Aggregator znosi najwazniejsze ograniczenie Observera — klasy obserwatoréw musza tam zna
klase obserwowanego. W EventAggregatorze zarowno obserwowani jak i obserwujacy musza tylko
wiedzie¢ gdzie szuka¢ EventAggregatora. W efekcie klasy obserwowane i1 obserwujace moga by¢
zdefiniowane np. w niezaleznych od siebie modutach (co jest niemozliwe w przypadku Observera).

Uwaga: jeden z wazniejszych wzorcow dobreg architektury aplikacji

class EventAggregator /

Subscriberl

Publisherl
subscribe /I\
notify
publish EventAggregator
publish —‘
notify
subscribe
Publisher2

Subscriber2

namespace Uwr.OOP.BehavioralPatterns.EventAggregator

{

public interface ISubscriber<T>

{
}

void Handle(T Notification);

public interface IEventAggregator
{

void AddSubscriber<T>(ISubscriber<T> Subscriber);
void RemoveSubscriber<T>(ISubscriber<T> Subscriber);
void Publish<T>(T Event);

}

public class EventAggregator : IEventAggregator
{

Dictionary<Type, List<object>> _subscribers =
new Dictionary<Type, List<object>>();

#region IEventAggregator Members

public void AddSubscriber<T>(ISubscriber<T> Subscriber)

{
if (!_subscribers.ContainsKey(typeof(T)))
_subscribers.Add(typeof(T), new List<object>());

_subscribers[typeof(T)].Add(Subscriber);

}

public void RemoveSubscriber<T>(ISubscriber<T> Subscriber)

{
if (_subscribers.ContainsKey(typeof(T)))

_subscribers[typeof(T)].Remove(Subscriber);

public void Publish<T>(T Event)
{

if (_subscribers.ContainsKey(typeof(T)))
foreach (ISubscriber<T> subscriber in
_subscribers[typeof(T)].0fType<ISubscriber<T>>())

subscriber.Handle(Event);

}

#endregion

4 Memento

Motto: Zapamigtuj i pozwalg odzyska¢ stan obiektu

Uwaga: stan obiektu i stan pamiatki nie musza by¢ takie same. W szczegdlnosci duze obiekty moga
tworzy¢ mate, przyrostowe pamiatki

Kojarzy¢ z: Undo (i opcjonalnym Redo).

class Memento /

Originator Memento
Caretaker
state |- sate —
+ CreateMemento() : Memento [~ + GetState() : void
+ RestoreMemento(Memento) : void Se. + SetState(string) : void

Memento m = new Memento();
AN m.SetState(this.state);
state = memento.GetState(); return m;

W trakcie wyktadu zobaczymy jak zbudowa¢ obiekt Memento i oddzieli¢ od niego odpowiedzialnosé
typu Caretaker w ktorej umiescimy funkcjonalno$é¢ Undo/Redo.

namespace Uwr.OOP.BehavioralPatterns.Memento

{

public class Caretaker

{

Stack<Memento> undoStack = new Stack<Memento>();
Stack<Memento> redoStack = new Stack<Memento>();

private Originator originator;

public Caretaker(Originator o)

{

this.originator = o;

this.originator.StateChanged += OriginatorStateChanged;
}

public void Undo()

.undoStack.Count > 1)
Memento m = undoStack.Pop();
redoStack.Push(m);

Memento ps = undoStack.Peek();
.originator.RestoreMemento(ps);

Redo()
.redoStack.Count > 9)
Memento m = redoStack.Pop();

undoStack.Push(m);
.originator.RestoreMemento(m);

OriginatorStateChanged()

redoStack.Clear();

Memento m = .originator.CreateMemento();
undoStack.Push(m);

Originator
Action StateChanged;

_state;
State

)

.StateChanged !=
.StateChanged();

Memento CreateMemento()
Memento m = Memento();

m.State = .State;
m;

RestoreMemento(Memento m)

._state = m.State;

Memento

State {

