Projektowanie obiektowe oprogramowania

Wyklad 4 — wzorce projektowe

cz.l. wzorce podstawowe 1 kreacyjne

Wiktor Zychla 2017

1 Wzorce podstawowe

11

Interface vs Abstract class

class InterfaceAbstractClass /

Client «interface» AbstractService

linterface

«uzywan» + Operation() : void

7

Service ConcreteService

+ Operation() : void

Klasa abstrakcyjna moze zawiera¢ implementacje, interfejs nie
klasa moze dziedziczy¢ tylko z jedngj klasy abstrakcyjngj i wielu interfejséw
przyktady IEnumerable VSStream

1.2 Delegation (Prefer Delegation over Inheritance)

dziedziczenie jest relacja statyczna, delegacja moze by¢ dynamiczna

delegujacy obiekt moze ukrywac¢ metody delegowanego (i ogdlniej — zmienia¢ kontrakt), co
jest niemozliwe w przypadku dziedziczenia

dobra praktyka: klasa domeny nie dziedziczymy z klas uzytkowych (Person nie dziedziczy z
Hashtable), dedelegacjajest ok.

delegacja powoduje ze jest wigcej kodu — w jezykach programowania brakuje wsparcia dla
delegacji (por. https.//github.com/dotnet/roslyn/issues/13952 - dyskusja nad propozycja
rozszerzenia sktadni C# o wsparcie dla delegacji)

2 Wzorcekreacyjne

https://github.com/dotnet/roslyn/issues/13952

2.1 Singleton

class Singleton /

Singleton

_instance: Singleton
+ Instance: Singleton

Singleton()

e Jednai tasamainstancja obiektu dla wszystkich klientow
e (Czesto punkt wyjscia dla innych elementow architektury aplikacji

Zalety:

e Uniwersalnos¢
o Leniwa” konstrukcja

Rozszerzenia

o Mozliwos¢ sterowania czasem zycia obiektu ,,wspierajacego” (,,pseudosingleton”, singleton z
okreslong polityka czasu zycia)
e Singleton parametryzowany (zainicjowanie wymaga parametréw inicjalizacyjnych)

2.2 Monostate

o Usuwa ograniczenie liczby instancji w Singletonie, pozostawia wlasciwo$¢ wspotdzielenia
stanu

2.3

(Parametrized) Factory

class Factory /

Client

——

uses

v

«interface»
Product asks for object

7

ConcreteProduct Factory
creates

+ CreateFineProduct(string) : Product
+ CreateProduct(int) : Product

AN

Product CreateProduct(int Type) {
switch (Type) {
case ProductType.P1:
return new ConcreteProductl();
case ProductType.P2 :
return new ConcreteProduct2(); }

To jeden z czgsciej stosowanych wzorcow, realizacja odpowiedzialnosci Creator z GRASP
Interfejs klasy fabryki moze mie¢ wiele metod, ulatwiajacych tworzenie konkretnych
obiektow (parametryzacja przez typ metody fabryki, przez wiele metod jedng fabryki);
fabryka moze tez zwraca¢ obiekt typu pochodnego wzgledem oczekiwanego, w ten sposob
by¢ przygotowana na zmiany funkcjonalnosci — klient spodziewa si¢ obiektu typu A, dostaje
B dziedziczace z A i korzysta z niego jak z A, ale w rzeczywisto$ci B realizuje swoja
odpowiedzialno$¢ by¢ moze inaczej niz A

Fabryka moze kontrolowaé czas zycia tworzonych obiektow (zwracajac obiekty o réznych
czasach zycia)

Fabryka moze by¢ przygotowana na rozszerzenia, w ten sposob realizujac postulat Open-
Closed Principle (przyktad z wyktadu: Factory + FactoryWorker zamiast ,,switch”)

W praktyce — zamiast z singletonéw i1 monostates lepiej uzywacé fabryk, sa bardziej
uniwersalne w implementacji i zapewniajg stabilny interfejs dla klienta (w ten sposob fabryka
realizuje tez postulat Protected Variations (Law of Demeter) z GRASP

2.4 Factory Method

Product Creator

+FactoryMethod() — —— - product = Factaryhethod()
+AnCperation|)

i i

ConcreteProduct ConcreteCreator

(----

+FactoryMethod() — — — 4 return new ConcreteProduct

e Delegowanie tworzenia obiektu uzytkowego do metody tworzacej, zwykle abstrakcyjne
(FactoryMethod)

e Metoda fabrykujaca mimo ze nie ma implementacji, moze juz by¢ uzywana (W
AnOperation)

o Podklasy dostarczajg implementacji metody fabrykujace;j

2.5 Abstract Factory

Client AbstraciFactory
+CreateP roductAl)
+CreateProductBi)
AbstraciProductA
ConcreteFactory1 ConcreteFactory?
— ﬁ|\—\‘ Zﬁ +CreateProductaf) +CreateProductaf)
+CraateProductB() +CraateProductB()
Producta Producta2 T T T T
Y | I
| I I
| I I
N | I I
e | | |
I I
I I
AbstractProductB | |
I I
I I
I I
I I
5% | |
I I
ProductB ProductB2 I I
é ______ e e e |
I
I
T I

e Nazywany tez ,,tookit”

e Abstrakcyjna fabryka calej rodziny obiektow — Klient nie uzywa abstrakcji ae potrzebuje
konkretneg implementacji

e Konstrukcja podobna jak w Factory Metod ale inny zasieg:

o W FM klasa uzytkowa sama realizuje jakie$ funkcjonalno$ci i do nich potrzebuje
obiektu pomocniczego ktory sama sobie tworzy
o W AF klasa klienta nie tworzy sobie sama obiektu pomocniczego tylko deleguje jego
tworzenie do fabryki
o Potrzebarefaktoryzacji FM do AF pojawia si¢ zwykle wtedy, kiedy w klasie implementujacej

FM pojawia si¢ drugaltrzecia (i kolgna) potrzeba wykreowania obiektu pomocniczego o
nieznangj implementagji

2.6 Prototype

Client prolatype Prototype
+Operation() . +Clone()
I J
| |
p=profotype. Clone()
ConcretePrototype1 ConcretePrototype2
+Clona() | +Clana()
|]
1 I
return copy of this return copy of this

e Istnieje kilka prototypowych instancji obiektow
o Tworzenie nowych polega na kopiowaniu prototypow
e Nie ma znaczenia kto i jak wyprodukowatl instancje prototypow

2.7 Object Pool

class Pool
Client
asks for Reusable
ReusablePool
uses
+ AcquireReusable() : Reusable
+ Instance() : ReusablePool
+ ReleaseReusable(Reusable) : void
Reusable
<>

o Reuzywanie / wspoétdzielenie obiektow ktore sa ktopotliwe w tworzeniu (np. czasochtonne)
e Metoda tworzenia/pobierania obiektu bywa parametryzowana

2.8

Builder

Director | puilder

Builder

+Construct()

+BuildPart()

i

ConcreteBuilder

-——)

Toraach item in slruciure
Cadildar. BuildParil)

+BuildPari])
+EetiRasult()

Product

Ukrywanie szczeg6tow kodu stuzacego do kreowania obiektu/obiektow
Ukrywanie wewnetrznej struktury obiektu

Przyktad — Xm1lTextWriter

Przyktad z wyktadu: http://www.wiktorzychla.com/2012/02/simple-fluent-and-recursive-tag-

builder.html

http://www.wiktorzychla.com/2012/02/simple-fluent-and-recursive-tag-builder.html
http://www.wiktorzychla.com/2012/02/simple-fluent-and-recursive-tag-builder.html

