
Projektowanie obiektowe oprogramowania
Wykład 4 – wzorce projektowe

cz.I. wzorce podstawowe i kreacyjne
Wiktor Zychla 2017

1 Wzorce podstawowe

1.1 Interface vs Abstract class

• klasa abstrakcyjna może zawierać implementacje, interfejs nie
• klasa może dziedziczyć tylko z jednej klasy abstrakcyjnej i wielu interfejsów

• przykłady IEnumerable vs Stream

1.2 Delegation (Prefer Delegation over Inheritance)
• dziedziczenie jest relacją statyczną, delegacja może być dynamiczna
• delegujący obiekt może ukrywać metody delegowanego (i ogólniej – zmieniać kontrakt), co

jest niemożliwe w przypadku dziedziczenia
• dobra praktyka: klasa domeny nie dziedziczymy z klas użytkowych (Person nie dziedziczy z

Hashtable), ale delegacja jest ok.

• delegacja powoduje że jest więcej kodu – w językach programowania brakuje wsparcia dla
delegacji (por. https://github.com/dotnet/roslyn/issues/13952 - dyskusja nad propozycją
rozszerzenia składni C# o wsparcie dla delegacji)

2 Wzorce kreacyjne

 class InterfaceAbstractClass

Client «interface»
IInterface

Serv ice

AbstractService

+ Operation() : void

ConcreteServ ice

+ Operation() : void

«używa»

https://github.com/dotnet/roslyn/issues/13952

2.1 Singleton

• Jedna i ta sama instancja obiektu dla wszystkich klientów

• Często punkt wyjścia dla innych elementów architektury aplikacji

Zalety:

• Uniwersalność

• „Leniwa” konstrukcja

Rozszerzenia:

• Możliwość sterowania czasem życia obiektu „wspierającego” („pseudosingleton”, singleton z
określoną polityką czasu życia)

• Singleton parametryzowany (zainicjowanie wymaga parametrów inicjalizacyjnych)

2.2 Monostate
• Usuwa ograniczenie liczby instancji w Singletonie, pozostawia właściwość współdzielenia

stanu

 class Singleton

Singleton

- _instance: Singleton
+ Instance: Singleton

- Singleton()

2.3 (Parametrized) Factory

• To jeden z częściej stosowanych wzorców, realizacja odpowiedzialności Creator z GRASP
• Interfejs klasy fabryki może mieć wiele metod, ułatwiających tworzenie konkretnych

obiektów (parametryzacja przez typ metody fabryki, przez wiele metod jednej fabryki);
fabryka może też zwracać obiekt typu pochodnego względem oczekiwanego, w ten sposób
być przygotowana na zmiany funkcjonalności – klient spodziewa się obiektu typu A, dostaje
B dziedziczące z A i korzysta z niego jak z A, ale w rzeczywistości B realizuje swoją
odpowiedzialność być może inaczej niż A

• Fabryka może kontrolować czas życia tworzonych obiektów (zwracając obiekty o różnych
czasach życia)

• Fabryka może być przygotowana na rozszerzenia, w ten sposób realizując postulat Open-
Closed Principle (przykład z wykładu: Factory + FactoryWorker zamiast „switch”)

• W praktyce – zamiast z singletonów i monostates lepiej używać fabryk, są bardziej
uniwersalne w implementacji i zapewniają stabilny interfejs dla klienta (w ten sposób fabryka
realizuje też postulat Protected Variations (Law of Demeter) z GRASP

 class Factory

Client

«interface»
Product

ConcreteProduct Factory

+ CreateFineProduct(string) : Product
+ CreateProduct(int) : Product

Product CreateProduct(int Type) {
 switch (Type) {
 case ProductType.P1 :
 return new ConcreteProduct1();
 case ProductType.P2 :
 return new ConcreteProduct2(); }
}

uses

asks for object

creates

2.4 Factory Method

• Delegowanie tworzenia obiektu użytkowego do metody tworzącej, zwykle abstrakcyjnej

(FactoryMethod)

• Metoda fabrykująca mimo że nie ma implementacji, może już być używana (w
AnOperation)

• Podklasy dostarczają implementacji metody fabrykującej

2.5 Abstract Factory

• Nazywany też „tookit”
• Abstrakcyjna fabryka całej rodziny obiektów – klient nie używa abstrakcji ale potrzebuje

konkretnej implementacji
• Konstrukcja podobna jak w Factory Metod ale inny zasięg:

o w FM klasa użytkowa sama realizuje jakieś funkcjonalności i do nich potrzebuje
obiektu pomocniczego który sama sobie tworzy

o w AF klasa klienta nie tworzy sobie sama obiektu pomocniczego tylko deleguje jego
tworzenie do fabryki

• Potrzeba refaktoryzacji FM do AF pojawia się zwykle wtedy, kiedy w klasie implementującej
FM pojawia się druga/trzecia (i kolejna) potrzeba wykreowania obiektu pomocniczego o
nieznanej implementacji

2.6 Prototype

• Istnieje kilka prototypowych instancji obiektów
• Tworzenie nowych polega na kopiowaniu prototypów

• Nie ma znaczenia kto i jak wyprodukował instancje prototypów

2.7 Object Pool

• Reużywanie / współdzielenie obiektów które są kłopotliwe w tworzeniu (np. czasochłonne)
• Metoda tworzenia/pobierania obiektu bywa parametryzowana

 class Pool

Client

Reusable

ReusablePool

+ AcquireReusable() : Reusable
+ Instance() : ReusablePool
+ ReleaseReusable(Reusable) : void

uses

asks for Reusable

2.8 Builder

• Ukrywanie szczegółów kodu służącego do kreowania obiektu/obiektów
• Ukrywanie wewnętrznej struktury obiektu

• Przykład – XmlTextWriter

• Przykład z wykładu: http://www.wiktorzychla.com/2012/02/simple-fluent-and-recursive-tag-
builder.html

http://www.wiktorzychla.com/2012/02/simple-fluent-and-recursive-tag-builder.html
http://www.wiktorzychla.com/2012/02/simple-fluent-and-recursive-tag-builder.html

