
Projektowanie obiektowe oprogramowania

Zestaw A

Inversion of Control (2)

2017-05-16

Liczba punktów do zdobycia: 6/68
Zestaw ważny do: 2017-05-30

Uwaga! Kontynuacja pracy nad silnikiem Inversion of Control na identycznych zasadach. W
szczególności obowiązkową częścią każdego zadania są testy jednostkowe, nawet jeśli nie wspo-
mina się o tym w treści zadań.

1. (1p) (Wstrzykiwanie instancji)

Silnik IoC rozbudować o możliwość rozwiązywania zadanej instancji danego typu. Uzupeł-
nia to katalog możliwości predefiniowania o zwracanie konkretnych instancji (już zaimple-
mentowane metody rozwiązywania zostają).

Uwaga, w przypadku sekwencyjnej rejestracji typu przez RegisterType/RegisterInstance
kontener zachowuje się jak do tej pory, czyli obowiązuje zasada ostatnia rejestracja jest
wiążąca.

public class SimpleContainer

{

public void RegisterType<T>(bool Singleton) where T : class;

public void RegisterType<From, To>(bool Singleton) where To : From;

// nowe!

public void RegisterInstance<T>(T Instance);

}

SimpleContainer c = new SimpleContainer();

IFoo foo1 = new Foo();

c.RegisterInstance<IFoo>(foo);

IFoo foo2 = c.Resolve<IFoo>();

// foo1 == foo2

2. (5p) (Dependency Injection)

Silnik IoC rozbudować o mechanizm Dependency Injection, zakładając że wstrzykiwaniu
podlegają na razie tylko konstruktory.

To oznacza, że metoda Resolve kontenera nie musi już zakładać, że obiekt ma konstruktor
bezparametrowy.

Zamiast tego kontener ogląda sygnatury konstruktorów, wybiera konstruktor o możliwie
najdłuższej liczbie parametrów (lub konstruktor oznaczony atrybutem [DependencyConstrutor],
pod warunkiem że jest tylko jeden taki) i próbuje rekursywnie rozwikływać obiekty będące

1

parametrami konstruktora, budując w ten sposób drzewo rozwikłań. Taki proces kontynu-
uje się schodząc w dół drzewa, konsekwentnie rozwikłując konstruktory kolejnych obiek-
tów, za każdym rozwikłaniem korzystając z wiedzy jaką ma kontener (czyli dostarczonej
informacji o zarejestrowanych typach / instancjach).

Uwaga. W przypadku dwóch konstruktorów o tej samej, maksymalnej liczbie parametrów
można zachować się na trzy sposoby:

• wyrzucić wyjątek,

• próbować rozwikływać którykolwiek konstruktor,

• próbować rozwikływać wszystkie konstruktory o maksymalnej liczbie parametrów po
kolei, aż do błędu lub udanego rozwikłania któregoś z nich.

Uwaga. Podczas rozwikływania może dojść do sytuacji powstania cyklu w drzewie (najprost-
szy przypadek: obiekt A w konstrukturze żąda obiektu typu A. Kontener powinen wykryć taką
sytuację i zaraportować ją zrozumiałym wyjątkiem.

Przykład 1:

public class A

{

public B b;

public A(B b)

{

this.b = b;

}

}

public class B { }

SimpleContainer c = new SimpleContainer();

A a = c.Resolve<A>();

// kontener wykonstruuje a typu A z wstrzykniętą instancją B. Test [a.b != null] przechodzi.

Przykład 2:

public class X

{

public X(Y d, string s) { };

}

public class Y { }

SimpleContainer c = new SimpleContainer();

X x = c.Resolve<X>();

// wyjątek, string nie ma konstruktora bezparametrowego i nie da się rozwikłać żadnego z konstruktorów

// ... ale

c.RegisterInstance("ala ma kota"); // rejestruje instancję string

X x = c.Resolve<X>();

// jest ok, zarejestrowano instancję string więc rozwikłanie konstruktora X jest możliwe

Wiktor Zychla

2

