Projektowanie obiektowe oprogramowania
Zestaw A

Inversion of Control (2)

2017-05-16

Liczba punktéw do zdobycia: 6/68
Zestaw wazny do: 2017-05-30

Uwaga! Kontynuacja pracy nad silnikiem Inversion of Control na identycznych zasadach. W
szczegolnosci obowigzkowq czescig kazdego zadania sq testy jednostkowe, nawet jesli nie wspo-
mina sie o tym w tresci zadan.

1. (1p) (Wstrzykiwanie instancji)

Silnik IoC rozbudowaé o mozliwosé rozwigzywania zadanej instancji danego typu. Uzupel-
nia to katalog mozliwosci predefiniowania o zwracanie konkretnych instancji (juz zaimple-
mentowane metody rozwiazywania zostaja).

Uwaga, w przypadku sekwencyjnej rejestracji typu przez RegisterType /RegisterInstance
kontener zachowuje sie jak do tej pory, czyli obowiazuje zasada ostatnia rejestracja jest
WiQZQCa.

public class SimpleContainer

{
public void RegisterType<T>(bool Singleton) where T : class;
public void RegisterType<From, To>(bool Singleton) where To : From;
// nowe!
public void RegisterInstance<T>(T Instance);

}

SimpleContainer ¢ = new SimpleContainer();

IFoo fool = new Foo();
c.RegisterInstance<IFoo>(foo);

IFoo foo2 = c.Resolve<IFoo>();

// fool == foo2

2. (5p) (Dependency Injection)

Silnik IoC rozbudowaé o mechanizm Dependency Injection, zakltadajac ze wstrzykiwaniu
podlegaja na razie tylko konstruktory.

To oznacza, ze metoda Resolve kontenera nie musi juz zaktadaé, ze obiekt ma konstruktor
bezparametrowy.

Zamiast tego kontener oglada sygnatury konstruktoréw, wybiera konstruktor o mozliwie

najdluzszej liczbie parametréw (lub konstruktor oznaczony atrybutem [DependencyConstrutor],

pod warunkiem ze jest tylko jeden taki) i prébuje rekursywnie rozwiklywaé obiekty bedace

parametrami konstruktora, budujac w ten sposéb drzewo rozwiktan. Taki proces kontynu-
uje sie schodzac w dét drzewa, konsekwentnie rozwiktujac konstruktory kolejnych obiek-
téw, za kazdym rozwiklaniem korzystajac z wiedzy jaka ma kontener (czyli dostarczonej
informacji o zarejestrowanych typach / instancjach).

Uwaga. W przypadku dwoch konstruktoréw o tej samej, maksymalnej liczbie parametréw
mozna zachowaé sie na trzy sposoby:

o wyrzucié wyjgtek,

e probowad rozwiklywaé ktorykolwiek konstruktor,

o probowadé rozwiklywac wszystkie konstruktory o maksymalnej liczbie parametréow po

kolei, az do bledu lub udanego rozwikiania ktéregos z nich.

Uwaga. Podczas rozwiklywania moze dojsé do sytuacyi powstania cyklu w drzewie (nagprost-
szy przypadek: obiekt A w konstrukturze zZgda obiektu typu A. Kontener powinen wykryc takg
sytuacje i zaraportowac jg zrozumialym wyjgtkiem.

Przyktad 1:

public class A

{
public B b;
public A(B b)
{

this.b = b;

}

}

public class B { }

SimpleContainer ¢ = new SimpleContainer();
A a = c.Resolve<A>();

// kontener wykonstruuje a typu A z wstrzyknietag instancjg B. Test [a.b != null] przechodzi.

Przyktad 2:

public class X
{

public X(Y d, string s) { };
}
public class Y { }

SimpleContainer ¢ = new SimpleContainer();
X x = c.Resolve<X>();

// wyjatek, string nie ma konstruktora bezparametrowego i nie da sie rozwiklaé zadnego z konstruktoréw
// ... ale

c.RegisterInstance("ala ma kota"); // rejestruje instancje¢ string
X x = c.Resolve<X>();

// jest ok, zarejestrowano instancje string wiec rozwiklanie konstruktora X jest mozliwe

Wiktor Zychla

