Projektowanie obiektowe oprogramowania
Wzorce architektury aplikacji (3)
Wyktad 11 — Repository, Unit of Work
Wiktor Zychla 2016

Repository — dodatkowa warstwa abstrakcji na obiektowa warstwe dostgpu do danych. Zwykle
Repository kontroluje dostep do jednej kategorii danych (np. jednej tabeli z bazy danych)

Unit of Work — kompozyt wielu repozytoriow — zarzadza ich czasem zycia i pozwala na dostgp do
nich z jednego miejsca. Dodatkowo bierze na siebie np. zarzadzanie transakcjami.

1 Repository

Zalety wprowadzenia repozytorium jako warstwy abstrakcii:

e Uniezaleznienie warstwy przetwarzania danych (logika biznesowa) od implementacji warstwy
dostepu do danych — wraz ze zmieniajgcymi si¢ technologiami mozna tatwo dostarczacd
nowych, wydajniejszych implementacji repository, uzywajacych zupetnie innych technologii
dostepu do danych (niekoniecznie nawet relacyjnych baz danych! — mozna wyobrazi¢ sobie
implementacje Repository ktore odwotuja sie do baz nierelacyjnych, do ustug katalogowych,
sg implementacje ktore do baz relacyjnych dostajg si¢ za pomoca jakiego$ silnika ORM i sg
tez takie ktore uzywaja niskopoziomowego interfejsu typu ADO.NET do dostepu do danych)

o Umozliwienie tatwego zastepowania implementacji repozytorium — testy jednostkowe warstw
przylegtych bez efektow ubocznych dzigki implementacjom typu fake/stub.

Wady wprowadzenia repozytorium jako warstwy abstrakcji:

e Dodatkowa warstwa w architekturze aplikacji

o Kontrowersje wokot wzorcowego interfejsu jaki powinno implementowac repozytorium
(generic repository vs concrete repository?)

o Jezeli technologia ORM sama z siebie jest juz zaprojektowana wedtug wzorcow Repo/UoW,
to dodatkowe jej opakowywanie moze by¢ dyskusyjne

Dla zadanych klas modelu
public class User { }
public class Account { }

przyktadowy interfejs tzw. ,,generycznego repozytorium” (generic repository):

public interface GenericRepository<T>

{
T New();
void Insert(T item);
void Update(T item);
void Delete(T item);
IQueryable<T> Query { get; }
}

i jego implementacija dla jednej z klas:
public class UserRepository : GenericRepository<User>
{
T GenericRepository<User>.New()

{
}

void GenericRepository<User>.Insert(User item)

{
}

void GenericRepository<User>.Update(User item)

{
}

void GenericRepository<User>.Delete(User item)

{
}

IQueryable<User> GenericRepository<User>.Query

{
}

get { }
}
Alternatywa dla generic repository jest ,,concrete repository”:
public interface ConcreteUserRepository

{

IEnumerable<User> RetrieveAllUsers();
User RetrieveSingle(int Id);

IEnumerable<User> FindAllUsersForStartinglLetter(string FirstSurnamelLetter);

User New();

void Insert(User item);
void Update(User item);
void Delete(User item);

Poréwnanie ,,generic repository” i ,,concrete repository”:

Concrete Repository

Wymaga si¢ tylu réznych konkretnych interfejsow repozytoriow, ile jest klas w modelu
dziedzinowym

Kazdy interfejs udostepnia metody dostgpu do danych specyficzne dla konkretnego typu (na
przyktad uzytkownikéw bedziemy wyszukiwaé wedtug rozbudowanych kryteriow (i kazde
kryterium moze by¢ osobna metoda w kontrakcie repozytorium)

Zaprojektowanie i utrzymanie interfejsow repozytoriow w duzym projekcie jest trudne i
zmudne

Generic Repository

Jest tylko jeden, wspolny, generyczny interfejs repozytorium, ktéry ma wiele implementacji —
jest to mozliwe dlatego, ze wszystkie mozliwe skomplikowane warianty zapytan zamyka tu
kontrakt LINQ (czyli zwracanie klientowi obiektu implementujacego 1Queryable) (w innych
technologiach zapytan mogliby to by¢ inny uniwersalny interfejs zapytan np. JPA).
Problemem generycznego repozytorium jest to, ze rdzne technologie w rézny sposob
implementuja uniwersalne jezyki zapytan (LINQ/JPA/...), w szczegolnosci wyrazenia moga
by¢ poprawnie interpretowane w pewnych implementacjach a w innych nie. I nagle klient
moze si¢ przekona¢ ze dostarczona mu implementacja A jest zbyt uboga zeby wykonad
konkretne zapytanie, gdy tymczasem implementacja B radzi sobie z tym dobrze. To tamie
zasade, w ktorej to dostawca implementacji musi odpowiadac za realizacj¢ kontraktu, a nie
klient by¢ zmuszonym do posiadania wiedzy o stanie implementacji kontraktu przez rézne
mozliwe implementacje.

2 Unit of Work

Unit of Work jest kompozytem wielu repozytoriow:

public interface IUnitOfWork

{

GenericRepository<IUser> UserRepository { get; }
GenericRepository<IAddress> AddressRepository { get; }

void SaveChanges();

// opcjonalne

void BeginTransaction();
void CommitTransaction();
void RollbackTransaction();

Mozna powiedzie¢ w uproszczeniu, ze o ile Repository jest abstrakcja dostepu do pojedynczej tabeli w
bazie relacyjnej, to Unit of Work jest dostgpem do wszystkich repozytoriow z jednego miejsca, czyli
do wszystkich tabel.

Klient zawsze korzysta z instancji Unit of Work tworzac sesje dostepu do danych. W ramach jednego
Unit of Work poszczeg6lne repozytoria wspoldziela ten sam kontekst (czyli jakies niskopoziomowe

szczegobty implementacji, potaczenie do bazy danych, uchwyty itp.)

Interfejs Unit Of Work moze dodatkowo przewidywa¢ m.in. zarzadzanie transakcjami czy
metadanymi bazy danych.

Uwaga! Bywa, ze wzorzec Repository jest opisywany w oderwaniu od Unit of Work, a co za tym
idzie — tak tez bywa implementowany (repozytoria bez Unit of Work). Jest to podejscie btedne i rodzi
niepotrzebne trudnosci przy przekazywaniu repozytoriow do wyzszych warstw aplikacji.

3 Abstrakcje klas modeli

Podczas wyktadu zobaczymy przyklad na zywo budowania warstwy repozytorium dla dwoch
przyktadowych technologii mapowania obiektowo-relacyjnego: Ling2SQL i Entity Framework.
Zasadnicza roznica migdzy tymi technologiami polega na sposobie implementacji klas modeli (patrz
notatki do wykladu o mapowaniu obiektowo-relacyjnym) i wiasciwosci nawigacyjnych w nich
(navigation properties):

e w przypadku Ling2SQL mamy do czynienia z implementacja typu Value Holder. Model jest
generowany przez automat, klasy zawieraja wygenerowany kod wlasciwosci nawigacyjnych,
ktérego nie mozna modyfikowaé

e w przypadku EF mamy do czynienia z implementacja typu Virtual Proxy. Model jest
budowany recznie i oparty na klasach typu POCO.

Wymaganie jakie sobie stawiamy jest takie, ze uzyjemy kontenera 10C do konfiguracji wybranej
implementacji i chcemy aby kod klienta (warstwy logiki biznesowej) w ogole nie zmieniat si¢ przy
wymianie warstwy dostepu do danych.

Podstawowa trudnos¢ jaka pojawia si¢ przy takim wymaganiu zwigzana jest wlasnie ze sposobem
implementacji wtasciwo$ci nawigacyjnych. Skoro raz wlasciwosci nawigacyjne implementuje automat
i sg one jawnie zaimplementowane w kodzie (Ling2SQL) a innym razem implementuje je generator
proxy, to oznacza ze potrzeba dwoch réznych typoéw modeli, kazdemu z podejs¢ odpowiada bowiem
inny model.

A to uniemozliwia spelnienie wymagania o niemodyfikowaniu kodu klienckiego przy wymianie
repozytorium na inne repozytorium.

Jak rozwigza¢ ten problem? Literatura sugeruje zeby postuzy¢ sie wzorcem ViewModel (patrz Mark
Seemann, ,,Dependency Injection in .NET”). W podejsciu tym mamy jeden uniwersalny model,
niezwigzany z modelem utrwalanym (persistence model) — czyli pozwalamy kazdej technologii
mapowania obiektowo relacyjnego mie¢ swoj wlasny zestaw klas modelu, a dodatkowo mamy ten
jeden uniwersalny model i konwersje z niego do kazdego z konkretnych modeli utrwalanych.

Okazuje si¢, ze to nie jest dobry pomyst z uwagi na brak mozliwosci implementacji leniwych
zalezno$ci typu parent-child w Kklasach tego uniwersalnego modelu. Wydaje si¢ to rowniez
nieefektywne z uwagi na koniecznos$¢ ciggltych konwersji z i do modelu uniwersalnego.

Na wyktadzie pokazemy, ze lepszym podejsciem jest opisanie modelu przez interfejsy klas, a
nastepnie implementacji repozytoriow wzgledem interfejsow klas modelu dziedzinowego.

Inne podejscie to ograniczenie si¢ wylacznie do tych implementacji technologii dostepu do danych,
ktore potrafig pracowac na wskazanym modelu obiektowym typu POCO/POJO (Code First).

4 Organizacja struktury repozytoriow i units of work
W $wietle powyzszych rozwazan, wlasciwa struktura projektu powinna wyglada¢ nastepujaco:

Klasy modeli — jeden zbior abstrakcji (interfejsow) opisujacy modele (1User, IAddress).
Wiele zestawow implementujacych abstrakcje modeli, dla kazdego typu repozytorium inna
implementacja (EFUser, EFAddress, LingUser, LingAddress)

Jeden zestaw abstrakcji repozytoriow — w zalezno$ci od wyboru jeden generyczny interfejs
(IGenericRepository<T>) lub interfejsy szczegOlowe (IUserRepository,
|AddressRepository)

Wiele implementacji abstrakcji repozytoriow, dla kazdego typu repozytorium inna
implementacja (EFUserRepository, = EFAddressRepository, LingUserRepository,
LingAddressRepository)

Jedna abstrakcja Unit of Work

Wiele implementacji abstrakcji Unit of Work, dla kazdego typu UoW inna implementacja
(EFUNitOfWork, LinqUnitOfWork)

Local Factory jako API dostgpu do instancji UoW

(opcjonalne) Uzycie kontenera IoC do zarzadzania mapowaniem abstrakcji na implementacje
— w sensie: provider dla Local Factory ktory uzywa loC

