
Projektowanie obiektowe oprogramowania

Wzorce architektury aplikacji (3)

Wykład 11 – Repository, Unit of Work

Wiktor Zychla 2016

Repository – dodatkowa warstwa abstrakcji na obiektową warstwę dostępu do danych. Zwykle

Repository kontroluje dostęp do jednej kategorii danych (np. jednej tabeli z bazy danych)

Unit of Work – kompozyt wielu repozytoriów – zarządza ich czasem życia i pozwala na dostęp do

nich z jednego miejsca. Dodatkowo bierze na siebie np. zarządzanie transakcjami.

1 Repository

Zalety wprowadzenia repozytorium jako warstwy abstrakcji:

 Uniezależnienie warstwy przetwarzania danych (logika biznesowa) od implementacji warstwy

dostępu do danych – wraz ze zmieniającymi się technologiami można łatwo dostarczać

nowych, wydajniejszych implementacji repository, używających zupełnie innych technologii

dostępu do danych (niekoniecznie nawet relacyjnych baz danych! – można wyobrazić sobie

implementacje Repository które odwołują się do baz nierelacyjnych, do usług katalogowych,

są implementacje które do baz relacyjnych dostają się za pomocą jakiegoś silnika ORM i są

też takie które używają niskopoziomowego interfejsu typu ADO.NET do dostępu do danych)

 Umożliwienie łatwego zastępowania implementacji repozytorium – testy jednostkowe warstw

przyległych bez efektów ubocznych dzięki implementacjom typu fake/stub.

Wady wprowadzenia repozytorium jako warstwy abstrakcji:

 Dodatkowa warstwa w architekturze aplikacji

 Kontrowersje wokół wzorcowego interfejsu jaki powinno implementować repozytorium

(generic repository vs concrete repository?)

 Jeżeli technologia ORM sama z siebie jest już zaprojektowana według wzorców Repo/UoW,

to dodatkowe jej opakowywanie może być dyskusyjne

Dla zadanych klas modelu

 public class User { }

 public class Account { }

przykładowy interfejs tzw. „generycznego repozytorium” (generic repository):

 public interface GenericRepository<T>
 {
 T New();

 void Insert(T item);
 void Update(T item);
 void Delete(T item);

 IQueryable<T> Query { get; }
 }

i jego implementacja dla jednej z klas:

 public class UserRepository : GenericRepository<User>
 {
 T GenericRepository<User>.New()
 {
 ...
 }

 void GenericRepository<User>.Insert(User item)
 {
 ...
 }

 void GenericRepository<User>.Update(User item)
 {
 ...
 }

 void GenericRepository<User>.Delete(User item)
 {
 ...
 }

 IQueryable<User> GenericRepository<User>.Query
 {
 get { }
 }
 }

Alternatywą dla generic repository jest „concrete repository”:

 public interface ConcreteUserRepository
 {
 IEnumerable<User> RetrieveAllUsers();
 User RetrieveSingle(int Id);

 IEnumerable<User> FindAllUsersForStartingLetter(string FirstSurnameLetter);

 ...

 User New();

 void Insert(User item);
 void Update(User item);
 void Delete(User item);
 }

Porównanie „generic repository” i „concrete repository”:

Concrete Repository

 Wymaga się tylu różnych konkretnych interfejsów repozytoriów, ile jest klas w modelu

dziedzinowym

 Każdy interfejs udostępnia metody dostępu do danych specyficzne dla konkretnego typu (na

przykład użytkowników będziemy wyszukiwać według rozbudowanych kryteriów (i każde

kryterium może być osobną metodą w kontrakcie repozytorium)

 Zaprojektowanie i utrzymanie interfejsów repozytoriów w dużym projekcie jest trudne i

żmudne

Generic Repository

 Jest tylko jeden, wspólny, generyczny interfejs repozytorium, który ma wiele implementacji –

jest to możliwe dlatego, że wszystkie możliwe skomplikowane warianty zapytań zamyka tu

kontrakt LINQ (czyli zwracanie klientowi obiektu implementującego IQueryable) (w innych

technologiach zapytań mógłby to być inny uniwersalny interfejs zapytań np. JPA).

 Problemem generycznego repozytorium jest to, że różne technologie w różny sposób

implementują uniwersalne języki zapytań (LINQ/JPA/…), w szczególności wyrażenia mogą

być poprawnie interpretowane w pewnych implementacjach a w innych nie. I nagle klient

może się przekonać że dostarczona mu implementacja A jest zbyt uboga żeby wykonać

konkretne zapytanie, gdy tymczasem implementacja B radzi sobie z tym dobrze. To łamie

zasadę, w której to dostawca implementacji musi odpowiadać za realizację kontraktu, a nie

klient być zmuszonym do posiadania wiedzy o stanie implementacji kontraktu przez różne

możliwe implementacje.

2 Unit of Work
Unit of Work jest kompozytem wielu repozytoriów:

 public interface IUnitOfWork
 {
 GenericRepository<IUser> UserRepository { get; }
 GenericRepository<IAddress> AddressRepository { get; }
 ...

 void SaveChanges();

 // opcjonalne
 void BeginTransaction();
 void CommitTransaction();
 void RollbackTransaction();
 }

Można powiedzieć w uproszczeniu, że o ile Repository jest abstrakcją dostępu do pojedynczej tabeli w

bazie relacyjnej, to Unit of Work jest dostępem do wszystkich repozytoriów z jednego miejsca, czyli

do wszystkich tabel.

Klient zawsze korzysta z instancji Unit of Work tworząc sesję dostępu do danych. W ramach jednego

Unit of Work poszczególne repozytoria współdzielą ten sam kontekst (czyli jakieś niskopoziomowe

szczegóły implementacji, połączenie do bazy danych, uchwyty itp.)

Interfejs Unit Of Work może dodatkowo przewidywać m.in. zarządzanie transakcjami czy

metadanymi bazy danych.

Uwaga! Bywa, że wzorzec Repository jest opisywany w oderwaniu od Unit of Work, a co za tym

idzie – tak też bywa implementowany (repozytoria bez Unit of Work). Jest to podejście błędne i rodzi

niepotrzebne trudności przy przekazywaniu repozytoriów do wyższych warstw aplikacji.

3 Abstrakcje klas modeli

Podczas wykładu zobaczymy przykład na żywo budowania warstwy repozytorium dla dwóch

przykładowych technologii mapowania obiektowo-relacyjnego: Linq2SQL i Entity Framework.

Zasadnicza różnica między tymi technologiami polega na sposobie implementacji klas modeli (patrz

notatki do wykładu o mapowaniu obiektowo-relacyjnym) i właściwości nawigacyjnych w nich

(navigation properties):

 w przypadku Linq2SQL mamy do czynienia z implementacją typu Value Holder. Model jest

generowany przez automat, klasy zawierają wygenerowany kod właściwości nawigacyjnych,

którego nie można modyfikować

 w przypadku EF mamy do czynienia z implementacją typu Virtual Proxy. Model jest

budowany ręcznie i oparty na klasach typu POCO.

Wymaganie jakie sobie stawiamy jest takie, że użyjemy kontenera IoC do konfiguracji wybranej

implementacji i chcemy aby kod klienta (warstwy logiki biznesowej) w ogóle nie zmieniał się przy

wymianie warstwy dostępu do danych.

Podstawowa trudność jaka pojawia się przy takim wymaganiu związana jest właśnie ze sposobem

implementacji właściwości nawigacyjnych. Skoro raz właściwości nawigacyjne implementuje automat

i są one jawnie zaimplementowane w kodzie (Linq2SQL) a innym razem implementuje je generator

proxy, to oznacza że potrzeba dwóch różnych typów modeli, każdemu z podejść odpowiada bowiem

inny model.

A to uniemożliwia spełnienie wymagania o niemodyfikowaniu kodu klienckiego przy wymianie

repozytorium na inne repozytorium.

Jak rozwiązać ten problem? Literatura sugeruje żeby posłużyć się wzorcem ViewModel (patrz Mark

Seemann, „Dependency Injection in .NET”). W podejściu tym mamy jeden uniwersalny model,

niezwiązany z modelem utrwalanym (persistence model) – czyli pozwalamy każdej technologii

mapowania obiektowo relacyjnego mieć swój własny zestaw klas modelu, a dodatkowo mamy ten

jeden uniwersalny model i konwersje z niego do każdego z konkretnych modeli utrwalanych.

Okazuje się, że to nie jest dobry pomysł z uwagi na brak możliwości implementacji leniwych

zależności typu parent-child w klasach tego uniwersalnego modelu. Wydaje się to również

nieefektywne z uwagi na konieczność ciągłych konwersji z i do modelu uniwersalnego.

Na wykładzie pokażemy, że lepszym podejściem jest opisanie modelu przez interfejsy klas, a

następnie implementacji repozytoriów względem interfejsów klas modelu dziedzinowego.

Inne podejście to ograniczenie się wyłącznie do tych implementacji technologii dostępu do danych,

które potrafią pracować na wskazanym modelu obiektowym typu POCO/POJO (Code First).

4 Organizacja struktury repozytoriów i units of work
W świetle powyższych rozważań, właściwa struktura projektu powinna wyglądać następująco:

 Klasy modeli – jeden zbiór abstrakcji (interfejsów) opisujący modele (IUser, IAddress).

 Wiele zestawów implementujących abstrakcje modeli, dla każdego typu repozytorium inna

implementacja (EFUser, EFAddress, LinqUser, LinqAddress)

 Jeden zestaw abstrakcji repozytoriów – w zależności od wyboru jeden generyczny interfejs

(IGenericRepository<T>) lub interfejsy szczegółowe (IUserRepository,

IAddressRepository)

 Wiele implementacji abstrakcji repozytoriów, dla każdego typu repozytorium inna

implementacja (EFUserRepository, EFAddressRepository, LinqUserRepository,

LinqAddressRepository)

 Jedna abstrakcja Unit of Work

 Wiele implementacji abstrakcji Unit of Work, dla każdego typu UoW inna implementacja

(EFUnitOfWork, LinqUnitOfWork)

 Local Factory jako API dostępu do instancji UoW

 (opcjonalne) Użycie kontenera IoC do zarządzania mapowaniem abstrakcji na implementacje

– w sensie: provider dla Local Factory który używa IoC

