Projektowanie obiektowe oprogramowania
Wzorce architektury aplikacji (4)
Wyktad 12 — Repository, Unit of Work
Wiktor Zychla 2013

Repository — dodatkowa warstwa izolujaca obiektowa warstwe dostepu do danych. Repository dziata
na poziomie jednej klasy modelu.

Unit of Work — utatwia korzystanie z repository dajac dostep do wszystkich repositories z jednego
miejsca. Dodatkowo bierze na siebie zarzadzanie transakcjami.

Zalety wprowadzenia repozytorium jako warstwy izolujacej dostep do danych:

e Uniezaleznienie warstwy przetwarzania danych (logika biznesowa) od implementacji warstwy
dostepu do danych — wraz ze zmieniajacymi si¢ technologiami mozna tatwo dostarczac
nowych, wydajniejszych implementacji repository, uzywajacych zupekie innych technologii
dostepu do danych (niekoniecznie nawet relacyjnych baz danych!)

e Umozliwienie tatwego zastgpowania implementacji repozytorium — testy jednostkowe warstw
przyleglych bez efektow ubocznych dzigki implementacjom typu fake/stub.

Wady wprowadzenia repozytorium;

o Dodatkowa warstwa w architekturze aplikacji

o Kontrowersje wokot wzorcowego interfejsu jaki powinno implementowaé repozytorium

e Jezeli technologia ORM sama z siebie jest juz ,,repository”, to dodatkowe opakowywanie
repository w inne repository moze by¢ dyskusyjne

Dla zadanych klas modelu
public class User { }
public class Account { }
przyktadowy interfejs tzw. ,,generycznego repozytorium” (generic repository):

public interface GenericRepository<T>

{
void Insert(T item);
void Update(T item);
void Delete(T item);
IQueryable<T> Query { get; }
}

i jego implementacja dla jednej z klas:

public class UserRepository : GenericRepository<User>

{

}

void GenericRepository<User>.Insert(User item)

{
}

void GenericRepository<User>.Update(User item)

{
}

void GenericRepository<User>.Delete(User item)

{
}

IQueryable<User> GenericRepository<User>.Query

{
}

get { }

Alternatywa dla generic repository jest ,,concrete repository”:

public interface ConcreteUserRepository

{

}

IEnumerable<User> RetrieveAllUsers();
User RetrieveSingle(int Id);

IEnumerable<User> FindAllUsersForStartinglLetter(string FirstSurnamelLetter);

void Insert(User item);
void Update(User item);
void Delete(User item);

Porownanie ,,generic repository” i ,,concrete repository”:

Concrete Repository

Wymaga si¢ tylu réznych konkretnych interfejsow repozytoriow, ile jest klas w modelu
dziedzinowym

Kazdy interfejs udostgpnia metody dostgpu do danych specyficzne dla konkretnego typu (na
przyktad uzytkownikow bedziemy wyszukiwa¢ wedhug rozbudowanych kryteriow (i kazde
kryterium moze by¢ osobng metoda w kontrakcie repozytorium)

Zaprojektowanie i utrzymanie interfejsow repozytoriow w duzym projekcie jest trudne i
zmudne

Generic Repository

Jest tylko jeden, wspolny, generyczny interfejs repozytorium, ktory ma wiele implementacji —
jest to mozliwe dlatego, ze wszystkie mozliwe skomplikowane warianty zapytan zamyka tu
kontrakt Ling (czyli zwracanie klientowi obiektu implementujacego 1Queryable)

Problemem generycznego repozytorium jest to, ze rdzne technologie w rézny sposob
implementuja Ling, w szczegolnos$ci wyrazenia moga by¢ poprawnie interpretowane w
pewnych implementacjach a w innych nie. | nagle Klient, ktory dostaje w kontrakcie
zapewnienie ze repozytorium dostarcza obiektu IQueryable, moze si¢ przekonaé¢ ze w
rzeczywisto$ci dostarczona mu implementacja A jest zbyt uboga zeby wykonaé¢ konkretne

zapytanie, gdy tymczasem implementacja B radzi sobie z tym dobrze. To tamie zasade, w
ktorej to dostawca implementacji musi odpowiadaé za realizacje kontraktu, a nie klient by¢
zmuszonym do posiadania wiedzy o stanie implementacji kontraktu przez rdézne mozliwe
implementacje.

Podczas wyktadu zobaczymy przyklad na zywo budowania warstwy repozytorium dla trzech
przyktadowych technologii mapowania obiektowo-relacyjnego : Ling2SQL, Entity Framework i
NHibernate. Uzyjemy kontenera 10C do konfiguracji wybranej implementacji i zobaczymy, ze kod
klienta (warstwy logiki biznesowej) moze w ogdle nie zmienia¢ si¢ przy wymianie warstwy dostepu
do danych.

Podstawowa trudno$¢ jaka pojawia si¢ przy takiej implementacji polega na tym, ze niektore
technologie mapowania OR tworza wlasne klasy modelu dziedzinowego. Z kolei wymienne
repozytorium nie moze wigc zaleze¢ od zadnej konkretnej implementacji klas modelu dziedzinowego.

Jak rozwigza¢ ten problem? Literatura sugeruje zeby postuzy¢ sie wzorcem ViewModel (patrz Mark
Seemann, ,,Dependency Injection in .NET”), jednak to nie jest dobry pomyst z uwagi na brak
mozliwosci implementacji leniwych zaleznos$ci typu parent-child w klasach modelu. Wydaje si¢ to
rowniez nieefektywne.

Na wyktadzie pokazemy, ze jedno z mozliwych rozwigzan polega na opisaniu modelu przez interfejsy
klas, a nastepnie implementacji repozytoriow wzgledem interfejsow klas modelu dziedzinowego. Inne
podejscie to ograniczenie si¢ wylacznie do tych implementacji technologii dostgpu do danych, ktére
potrafig pracowa¢ na wskazanym modelu obiektowym typu POCO/POJO (Code First).

