
Projektowanie obiektowe oprogramowania

Wykład 11 – Architektura aplikacji
Wiktor Zychla 2012

1 Architektura aplikacji

1.1 Diagram referencyjny architektury aplikacji

1.2 Rodzaje aplikacji
Application type Description
Mobile Application • Can be developed as a Web application or a rich client

application.
• Can support occasionally connected scenarios.
• Runs on devices with limited hardware resources.

Rich Client
Application

• Usually developed as a stand-alone application.
• Can support disconnected or occasionally connected
scenarios.

• Uses the processing and storage resources of the local
machine.

Rich Internet
Application

• Can support multiple platforms and browsers.
• Can be deployed over the Internet.
• Designed for rich media and graphical content.
• Runs in the browser sandbox for maximum security.
• Can use the processing and storage resources of the local
machine.

Service Application • Designed to support loose coupling between distributed
components.
• Service operations are called using XML-based messages.
• Can be accessed from the local machine or remotely,
depending on
the transport protocol.

Web Application • Can support multiple platforms and browsers.
• Supports only connected scenarios.
• Uses the processing and storage resources of the server.

1.3 Typy architektury aplikacji
Architecture style Description
Client-Server Segregates the system into two computer programs where one

program, the client, makes a service request to another
program, the server.

Component-Based
Architecture

Decomposes application design into reusable functional or
logical components that are location-transparent and expose
well-defined communication interfaces.

Layered Architecture Partitions the concerns of the application into stacked groups
(layers).

Message-Bus A software system that can receive and send messages that are
based on a set of known formats, so that systems can
communicate with each other without needing to know the
actual recipient.

Model-View-
Controller (MVC)

Separates the logic for managing user interaction from the UI
view and from the data with which the user works.

N-tier / 3-tier Segregates functionality into separate segments in much the
same way as the layered style, but with each segment being a
tier located on a physically separate computer.

Service-Oriented
Architecture (SOA)

Refers to applications that expose and consume functionality as
a service using contracts and messages.

1.4 Kryteria ewaluacji architektury aplikacji
Category Description
Availability Availability defines the proportion of time that the system is

functional and working. It can be measured as a percentage of
the total system downtime over a predefined period.
Availability will be affected by system errors, infrastructure
problems, malicious attacks, and system load.

Conceptual Integrity Conceptual integrity defines the consistency and coherence of
the overall design. This includes the way that components or
modules are designed, as well as factors such as coding style
and variable naming.

Flexibility Flexibility is the ability of a system to adapt to varying
environments and situations, and to cope with changes to
business policies and rules. A flexible system is one that is easy
to reconfigure or adapt in response to different user and system
requirements.

Interoperability Interoperability is the ability of diverse components of a system
or different systems to operate successfully by exchanging
information, often by using services. An interoperable system
makes it easier to exchange and reuse information internally as
well as externally.

Maintainability Maintainability is the ability of a system to undergo changes to
its components, services, features, and interfaces as may be
required when adding or changing the functionality, fixing
errors, and meeting new business requirements.

Manageability Manageability defines how easy it is to manage the application,
usually through sufficient and useful instrumentation exposed
for use in monitoring systems and for debugging and
performance tuning.

Performance Performance is an indication of the responsiveness of a system
to execute any action within a given interval of time. It can be
measured in terms of latency or throughput. Latency is the
time taken to respond to any event. Throughput is the number
of events that take place within given amount of time.

Reliability Reliability is the ability of a system to remain operational over
time. Reliability is measured as the probability that a system will
not fail to perform its intended functions over a specified
interval of time.

Reusability Reusability defines the capability for components and
subsystems to be suitable for use in other applications and in
other scenarios. Reusability minimizes the duplication of
components and also the implementation time.

Scalability Scalability is the ability of a system to function well when there
are changes to the load or demand. Typically, the system will be
able to be extended by scaling up the performance of the
server, or by scaling out to multiple servers as demand and load
increase.

Security Security defines the ways that a system is protected from
disclosure or loss of information, and the possibility of a
successful malicious attack. A secure system aims to protect
assets and prevent unauthorized modification of information.

Supportability Supportability defines how easy it is for operators, developers,
and users to understand and use the application, and how easy
it is to resolve errors when the system fails to work correctly.

Testability Testability is a measure of how easy it is to create test criteria
for the system and its components, and to execute these tests
in order to determine if the criteria are met. Good testability
makes it more likely that faults in a system can be isolated in a
timely and effective manner.

Usability Usability defines how well the application meets the
requirements of the user and consumer by being intuitive, easy
to localize and globalize, able to provide good access for

disabled users, and able to provide a good overall user
experience.

1.5 Kluczowe decyzje projektowe
Category Key problems
Authentication and
Authorization

• How to store user identities
• How to authenticate callers
• How to authorize callers
• How to flow identity across layers and tiers

Caching and State • How to choose effective caching strategies
• How to improve performance by using caching
• How to improve availability by using caching
• How to keep cached data up to date
• How to determine the data to cache
• How to determine where to cache the data
• How to determine an expiration policy and scavenging
mechanism
• How to load the cache data
• How to synchronize caches across a Web or application
farm

Communication • How to communicate between layers and tiers
• How to perform asynchronous communication
• How to communicate sensitive data

Composition • How to design for composition
• How to design loose coupling between modules
• How to handle dependencies in a loosely coupled way

Concurrency and
Transactions

• How to handle concurrency between threads
• How to choose between optimistic and pessimistic
concurrency
• How to handle distributed transactions
• How to handle long-running transactions
• How to determine appropriate transaction isolation levels
• How to determine whether compensating transactions are
required

Configuration
Management

• How to determine the information that must be
configurable
• How to determine location and techniques for storing
configuration information
• How to handle sensitive configuration information
• How to handle configuration information in a farm or
cluster

Coupling and Cohesion • How to separate concerns
• How to structure the application
• How to choose an appropriate layering strategy
• How to establish boundaries

Data Access • How to manage database connections
• How to handle exceptions
• How to improve performance
• How to improve manageability
• How to handle binary large objects (BLOBs)
• How to page records

• How to perform transactions

Exception Management • How to handle exceptions
• How to log exceptions

Logging and
Instrumentation

• How to determine the information to log
• How to make logging configurable

User Experience • How to improve task efficiency and effectiveness
• How to improve responsiveness
• How to improve user empowerment
• How to improve the look and feel

Validation • How to determine location and techniques for validation
• How to validate for length, range, format, and type
• How to constrain and reject input
• How to sanitize output

Workflow • How to handle concurrency issues within a workflow
• How to handle task failure within a workflow
• How to orchestrate processes within a workflow

2 Przykład dobrej architektury aplikacji

2.1 Model-View-Controller vs Model-View-Presenter

2.1.1 Model-View-Controller

 zarezerwowany dla aplikacji web

 Interakcja Controller Model + View

 Kontroler obsługuje logikę i wybiera widok do wyrenderowania (jeden kontroler może

obsługiwać wiele widoków)

2.1.2 Model-View-Presenter

 Interakcja View Presenter model

 Widok i prezenter są połączone 1-1

 Logikę obsługuje prezenter, to on rejestruje się na powiadomienia

 Widok jest wstrzykiwany do prezentera przez interfejs po to żeby można było zrobić IoC na

prezenterze i wstrzykiwać mu inne implementacje tych samych widoków

2.2 Repository
 Strategy na warstwie dostępu do danych

2.3 Przykład na żywo
Repozytorium użytkowników – Windows.Forms, Linq2SQL, Unity, EventAggregator.

Refaktoryzacja warstwy dostępu do danych do wzorca Repository.

Refaktoryzacja warstwy interfejsu użytkownika do wzorca Model-View-Presenter.

Testy jednostkowe.

3 Literatura

Microsoft Patterns & Practices – Application Architecture Guide

