
Programowanie pod Windows

Wersja 0.99

Uwaga: notatki są w fazie rozwoju. Brakujące elementy będą sukcesywnie uzupełniane. Dokument może być

bez zgody autora rozpowszechniany, zabrania się jedynie czerpania z tego korzyści materialnych.

Wiktor Zychla

Instytut Informatyki

Uniwersytetu Wrocławskiego

Wrocław 2003

2

Spis treści

A Wprowadzenie 11
1 Historia systemu operacyjnego Windows . 11
2 Windows z punktu widzenia programisty . 12
3 Narzędzia programistyczne . 13

B Programowanie Win32API 17
1 Fundamentalne idee Win32API . 17
2 Okna . 18

2.1 Tworzenie okien . 18
2.2 Komunikaty . 22
2.3 Okna potomne . 25
2.4 Subclasowanie okien potomnych . 31
2.5 Obsługa grafiki za pomocą GDI . 34
2.6 Tworzenie menu . 38

3 Procesy, wątki, synchronizacja . 40
3.1 Tworzenie wątków i procesów . 40
3.2 Synchronizacja wątków . 42

4 Komunikacja między procesami . 49
4.1 Charakterystyka protokołów sieciowych 49
4.2 Podstawy biblioteki Winsock . 50

5 Inne ważne elementy Win32API . 57
5.1 Biblioteki ładowane dynamicznie . 57
5.2 Różne przydatne funkcje Win32API . 58
5.3 Zegary . 59
5.4 Okna dialogowe . 62

C Świat .NET 69
1 Projektowanie zorientowane obiektowo . 69

1.1 Dlaczego używamy języków obiektowych 69
1.2 Reguły modelowania obiektowego . 69
1.3 Analiza i projektowanie . 70
1.4 Narzędzia wspierające modelowanie obiektowe 72

2 Podstawowe elementy języka C# . 72
2.1 Pierwszy program w C# . 73
2.2 Struktura kodu, operatory . 74
2.3 System typów, model obiektowy . 76
2.4 Typy proste a typy referencyjne, boxing i unboxing 77
2.5 Klasy . 78
2.6 Struktury . 90

3

4 SPIS TREŚCI

2.7 Dziedziczenie . 91
2.8 Niszczenie obiektów . 93
2.9 Interfejsy . 96
2.10 Konwersje między typami . 99
2.11 Wyjątki . 103
2.12 Klasa string . 104
2.13 Delegaci i zdarzenia . 108
2.14 Moduły . 120
2.15 Refleksje . 121
2.16 Atrybuty . 123
2.17 Kod niebezpieczny . 125
2.18 Dokumentowanie kodu . 126
2.19 Dekompilacja kodu . 129
2.20 Porównanie C# z innymi językami . 133

3 Przegląd bibliotek platformy .NET . 135
3.1 Kolekcje wbudowane i System.Collections 135
3.2 Biblioteka funkcji matematycznych . 154
3.3 Biblioteki wejścia/wyjścia . 155
3.4 Dynamiczne tworzenie kodu . 159
3.5 Procesy, wątki . 164
3.6 XML . 166
3.7 Komunikacja między procesami . 173
3.8 Wyrażenia regularne . 176
3.9 Serializacja . 178
3.10 Wołanie kodu niezarządzanego . 181
3.11 Odśmiecacz . 183
3.12 DirectX.NET . 185

4 Aplikacje okienkowe . 193
4.1 Tworzenie okien . 194
4.2 Okna potomne . 195
4.3 Zdarzenia . 196
4.4 Okna dialogowe . 200
4.5 Subclassowanie okien . 201
4.6 Komponenty wizualne . 202
4.7 Rozmieszczanie okien potomnych . 208
4.8 GDI+ . 212
4.9 Zegary . 216
4.10 Menu . 217
4.11 Schowek . 220
4.12 Drag & drop . 221
4.13 Tworzenie własnych komponentów . 221
4.14 Typowe okna dialogowe . 225

5 Ciekawostki .NET . 227
5.1 Błąd odśmiecania we wczesnych wersjach Frameworka 227
5.2 Dostęp do prywatnych metod klasy . 227
5.3 Informacje o systemie . 228
5.4 Własny kształt kursora myszy . 229
5.5 Własne kształty okien . 229
5.6 Podwójne buforowanie grafiki w GDI+ . 229

SPIS TREŚCI 5

5.7 Sprawdzanie uprawnień użytkownika . 230
5.8 Ikona skojarzona z plikiem . 230
5.9 WMI . 231

6 Bazy danych i ADO.NET . 232
6.1 Interfejsy komunikacji z bazami danych 232
6.2 Manualne zakładanie bazy danych . 233
6.3 Nawiązywanie połączenia z bazą danych 235
6.4 Pasywna wymiana danych . 236
6.5 Lokalne struktury danych . 237
6.6 Programowe zakładanie bazy danych . 240
6.7 Transakcje . 241
6.8 Typ DataSet . 241
6.9 Aktywna wymiana danych . 244
6.10 ADO.NET i XML . 245
6.11 Wiązanie danych z komponentami wizualnymi 246

7 Dynamiczne WWW i ASP.NET . 248
7.1 Dlaczego potrzebujemy dynamicznego WWW 248
7.2 Przegląd technologii dynamicznego WWW 248
7.3 Czym jest ASP.NET . 249
7.4 Pierwszy przykład w ASP.NET . 249
7.5 Łączenie stron ASP.NET z dowolnym kodem 250
7.6 Kontrolki ASP.NET . 252
7.7 Inne przykłady ASP.NET . 252
7.8 Narzędzia wspomagające projektowanie stron ASP.NET 255

8 Inne języki platformy .NET . 256
8.1 VB.NET . 256
8.2 ILAsm . 259
8.3 Łączenie kodu z różnych języków . 267

A Przykładowe aplikacje 275
1 Animowany fraktalny zbiór Julii . 275
2 Bezpośredni dostęp do nośnika danych w Windows NT 277

6 SPIS TREŚCI

Zamiast wstępu

Plan wykładu

1. Wprowadzenie (20 luty)

� Historia systemu Windows
� Rozwój metod programowania
� Przegląd języków i narzędzi programistycznych

2. Podstawy programowania systemu Windows (27 luty)

� Tworzenie okien
� Okna macierzyste i okna potomne
� Komunikaty

3. Przegląd bibliotek Win32API (6 marzec)

� Subclassowanie okien potomnych
� GDI
� Zegary
� Menu
� Powłoka systemu

4. Zaawansowane metody programowania Win32API (13 marzec)

� Biblioteki ładowane dynamicznie (DLL)
� Procesy, wątki
� Synchronizacja wątków
� Podstawy biblioteki Winsock

5. Podstawowe elementy języka C# (20 marzec)

� Schemat działania platformy .NET
� Common type system
� Model obiektowy, klasy

6. Podstawowe elementy języka C# (27 marzec)

� Struktury, iterfejsy
� Przeciążanie operatora

7

8 SPIS TREŚCI

� Dokumentowanie kodu

7. Podstawowe elementy języka C# (3 kwiecień)

� Konwersje między typami
� Wyjątki
� Delegaci, zdarzenia
� Moduły
� Refleksje
� Unsafe code
� Dekompilacja

8. Przegląd bibliotek platformy .NET (10 kwiecień)

� Modelowanie obiektowe
� Kolekcje wbudowane
� Wejście / wyjście

9. Przegląd bibliotek platformy .NET (17 kwiecień)

� Wątki, procesy
� Serializacja
� Wyrażenia regularne
� Wołanie kodu natywnego
� Kompilacja w czasie wykonania programu
� XML
� WMI
� DirectX.NET

10. Aplikacje okienkowe (24 kwiecień)

� Tworzenie okien
� Okna macierzyste i okna potomne
� Zdarzenia

11. Aplikacje okienkowe (8 maj)

� Subclassowanie okien potomnych
� Przegląd komponentów
� GDI+

12. Aplikacje okienkowe (15 maj)

� Zegary
� Menu
� Schowek
� Drag & drop

SPIS TREŚCI 9

� Tworzenie własnych komponentów

13. ADO.NET, ASP.NET (22 maj)

14. Inne języki platformy .NET (29 maj)

� ILAsm
� VB.NET
� SML.NET
� Łączenie kodu różnych języków

15. Bezpieczeństwo (5 czerwiec)

� Bezpieczny język pośredni
� Bezpieczne aplikacje

Dla kogo jest ten skrypt

Skrypt skierowany jest do programistów, którzy chcą dowiedzieć się jakich narzędzi i języków
używać aby pisać programy pod Windows oraz jak wygląda sam system widziany oczami progra-
misty. Powstał jako materiał pomocniczny do wykładu ”Programowanie pod Windows”, układ
materiału odpowiada więc przebiegowi wykładu.
Zakładam, że czytelnik potrafi programować w C, wie co to jest kompilator, kod źródłowy

i wynikowy, zna trochę C++ lub Javę. Dość dokładnie omawiam elementy języka C#, można
więc rozdział poświęcony omówieniu tego języka potraktować jako mini-leksykon C#.
Poznawanie nowych języków i metod programwania traktuję jako nie tylko pracę ale i bar-

dzo uzależniające hobby. Ucząc się nowych rzeczy, czytam to co autor ma do powiedzenia na
ich temat, a potem staram się dokładnie analizować listingi przykładowych programów. Nie-
stety, bardzo często zdarza się, że kody przykładowych programów w książkach są koszmarnie
długie! Autorzy przykładów być może kierują się przekonaniem, że przykładowy kod powinien
wyczerpywać demonstrowane zagadnienie w sposób pełny, a ponadto zapoznać czytelnika przy
okazji z paroma dodatkowymi, czasami niezwiązanymi z tematem, elementami. Tylko jak, chcąc
nauczyć się czegoś szybko, znaleźć czas na analizę czasami kilkunastu stron kodu źródłowego,
aby między 430 a 435 wierszem znaleźć interesujący mnie fragment?
Nie potrafię odpowiedzieć na to pytanie. Dlatego kody przykładowych programów w tym

skrypcie są bardzo krótkie, czasami wręcz symboliczne. Zakładam bowiem, że programista który
chce na przykład dowiedzieć się jak działa ArrayList nie potrzebuje jako przykładu 10 stron kodu
źródłowego prostej aplikacji bazodanowej, tylko 10-15 linijek demonstrujących użycie tego a nie
innego obiektu. Mimo to przeważająca większość przykładów to kompletne programy, gotowe
do uruchomienia.
Zapraszam do lektury.

10 SPIS TREŚCI

Rozdział A

Wprowadzenie

1 Historia systemu operacyjnego Windows

Na początku lat 80-tych pierwsze komputery osobiste pracowały pod kontrolą systemu ope-
racyjnego MS-DOS. Swoim użytkownikom DOS oferował prosty interfejs, w którym polecenia
systemowe i programy przywoływało się z linii poleceń. Programiści mieli do dyspozycji zbiór
tzw.przerwań za pomocą których mogli sięgać do urządzeń wejścia/wyjścia. DOS był systemem
jednozadaniowym, to znaczy, że w każdej chwili w systemie aktywny był tylko jeden proces1.

Pierwsza wersja interfejsu graficznego została zapowiedziana w roku 1983, zaś na rynek trafiła
w listopadzie 1985. Windows 1.0 był odpowiedzią Microsoftu na graficzny interfejs jaki zapro-
jektowano w firmie Apple2. W 1987 roku pojawił się Windows 2.0, którego główną innowacją
była możliwość nakładania się okien na siebie (w przeciwieństwie do okien ułożonych obok siebie
w Windows 1.0). Oba systemy pracowały w trybie rzeczywistym procesorów 8086 mając dostęp
do 1 MB pamięci. 22 maja 1990 roku pojawił się Windows 3.0, który potrafił już korzystać z
trybu chronionego procesora 80386, mając dzięki temu dostęp aż do 16MB pamięci operacyjnej.
Dwa lata później, w 1992, pojawił się Windows 3.1, który wprowadził nowe technologie: czcionki
TrueType, OLE oraz obsługę multimediów. W czerwcu 1993 pojawiła się pierwsza wersja sys-
temu Windows NT, którego jądro pracowało w trybie chronionym procesorów 80386, liniowym
trybie adresowania i 32-bitowym trybie adresowania. Windows NT napisano niemal całkowi-
cie od początku w C, dzięki czemu system ten był przenośny i pracował m.in. na platformach
RISC-owych.

Wprowadzony na rynek w roku 1995 Windows 95, choć nieprzenośny i uboższy od NT o
mechanizmy zabezpieczeń, zdobył dużą popularność jako system do użytku domowego. Poja-
wienie się tych dwóch systemów oznacza do dziś zasadniczą linię podziału Windows na dwie
rodziny: rodzinę systemów opartych na jądrze NT (Windows NT, Windows 2000, Windows XP)
oraz rodzinę opartą na uproszczonym jądrze, rozwijanym od czasów Windows 95 (Windows 95,
Windows 98, Windows ME). Zapowiadana kolejna wersja systemu ma ostatecznie połączyć obie
linie.

1Pewnym sposobem na pokonywanie tego ograniczenia było wykorzystanie przerwania zegara, dzięki czemu
było możliwe wykonanie jakiegoś małego fragmentu kodu w regularnych odstępach czasu. Nie zmienia to jednak
faktu, że DOS nie wspierał wielozadaniowości
2Między Microsoftem a Apple regularnie toczyły się spory dotyczące praw do korzystania z różnych elementów

interfejsu graficznego

11

12 ROZDZIAŁ A. WPROWADZENIE

2 Windows z punktu widzenia programisty

System operacyjny Windows zbudowany jest ze współpracujących ze sobą części zarządzających
m.in. pamięcią, interakcją z użytkownikiem, urządzeniami wejścia-wyjścia. Z punktu widzenia
programisty istotne jest w jaki sposób aplikacja może funkcjonować w systemie wchodząc w
interakcje z różnymi jego składnikami. To czego potrzebuje programista, to informacje o tym w
jaki sposób aplikacja ma komunikować się z systemem plików, jak obchodzić się z pamięcią, jak
komunikować się z siecią itd.
Windows jest systemem operacyjnym zbudowanym warstwowo. Tylko najniższe warstwy

systemu mogą operować na poziomie sprzętu - programista takiej możliwości nie ma (poza
wczesnymi implementacjami Windows, w których taki dostęp jest możliwy). Oznacza to, że
nie ma możliwości bezpośredniego odwołania się do pamięci ekranu, czy odczytania wartości
z dowolnie wybranej komórki pamięci. Nie można bezpośrednio operować na strukturze dysku
twardego, ani sterować głowicą drukarki. Zamiast tego programista ma do dyspozycji pewien
ściśle określony zbiór funkcji i typów danych, za pomocą których program może komunikować
się z systemem. O takim zbiorze funkcji i typów mówimy, że jest to interfejs programowania
(ang. Application Programming Interface, API) jaki dany system udostępnia3.
Dzięki takiej konstrukcji systemu operacyjnego programista nie musi martwić się na przykład

o model karty graficznej jaki posiada użytkownik, bowiem z jego punktu widzenia oprogramowa-
nie każdego możliwego typu karty graficznej wygląda dokładnie tak samo. To system operacyjny
zajmuje się (tu: za pomocą sterownika) komunikacją z odpowiednimi częściami komputera i z
punktu widzenia programisty robi to w sposób jednorodny. Co więcej, z punktu widzenia progra-
misty wszelkie możliwe odmiany systemu operacyjnego Windows, choć bardzo różne ”w środku”,
za zewnątrz wyglądają tak samo. Jeśli jakaś funkcja występuje we wszystkich odmianach sys-
temu, to jej działanie jest identyczne, choć mechanizmy jakie pociąga za sobą wywołanie takiej
funkcji w systemie operacyjnym mogą być zupełnie różne4.
Od pierwszej wersji systemu Windows, jego interfejs pozostaje w miarę jednolity, mimo że

w międzyczasie przeszedł ewolucję i z systemu 16-bitowego stał się systemem 32-bitowym. Za-
sadniczo zmienił się sposób adresowania pamięci (w modelu 16-bitowym odwołania do pamięci
miały postać segment:offset i były następnie tłumaczone na adersy fizyczne, model 32-bitowy
zakłada 32-bitowe liniowe adresowanie pamięci, wykorzystujące odpowiednie możliwości proce-
sorów 80386 i wyższych). Mimo tej zmiany interfejs programowania pozostał w dużej części
nienaruszony. Wszystkie, nawet najnowsze, wersje systemu, pozwalają na korzystanie zarówno z
nowego (Win32) jak i starego (Win16) interfejsu. Warto wiedzieć, że w systemach opartych na
jądrze NT wywołania funkcji z Win16API przechodzą przez pośrednią warstwę tłumaczącą je
na funkcje Win32API obsługiwane następnie przez system, zaś w systemach opartych na jądrze
16-bitowym (Windows 95, Windows 98) jest dokładnie odwrotnie - to funkcje z Win32API prze-
chodzą przez warstwę tłumaczącą je na Win16API, które to z kolei funkcje są obsługiwane przez
system operacyjny. Przyjmuje się że obie linie systemów wspierają Win32API, jednak sytuacja
nie jest aż tak różowa - każdy z systemów obsługuje swój własny podzbiór Win32API. Część
wspólna jest jednak na tyle pojemna, że jak już wcześniej wspomniano, możliwe jest pisanie
programów, które działają na każdej odmianie systemu Windows.
W pierwszej wersji systemu do dyspozycji programistów oddano około 450 funkcji. W ostat-

nich wersjach ich liczba znacząco wzrosła (mówi się o tysiącach funkcji), głównie dlatego, że

3Taka konstrukcja oprogramowania, w której wewnętrzne mechanizmy funkcjonowania jakiegoś fragmentu
oprogramowania są ukryte, zaś dostęp do jego funkcji jest możliwy za pomocą jakiegoś interfejsu, jest powszechnie
stosowany w nowoczesnym oprogramowaniu. Istnieją setki specjalizowanych interfejsów programowania przeróż-
nych bibliotek (DirectX, OpenGL), protokołów (sieć, ODBC, OLEDB), czy programów (MySQL).
4Na przykład funkcje do operacji na systemie plików czy rejestrze systemu w systemach opartych na jądrze

NT muszą dodatkowo wykonać pracę związaną ze sprawdzaniem przywilejów użytkownika.

3. NARZĘDZIA PROGRAMISTYCZNE 13

Rysunek A.1: DevC++ pozwala pisać programy w C i wspiera Win32API.

znacząco wzrosła liczba możliwości jakimi nowe odmiany systemu dysponują. Każda kolejna
warstwa, zbudowana nad Win32API, musi z konieczności być w jakiś sposób ograniczona. MFC,
VCL, QT, GTK czy środowisko uruchomieniowe .NET Framework nie są tu wyjątkami: zdarza-
ją się sytuacje, kiedy zachodzi konieczność sięgnięcia ”głębiej” niż pozwalają na to wymienione
interfejsy, aż do poziomu Win32API. Zrozumienie zasad Win32API pozwala więc przezwyciężać
ograniczenia interfejsów wyższego poziomu5. Pełna dokumentacja wszystkich funkcji systemo-
wych dostępnych we wszystkich interfejsach zaprojektowanych przez Microsoft oraz mnóstwo
artykułów z poradami na temat programowania pod Windows dostępna jest on-line pod adre-
sem http://msdn.microsoft.com.

3 Narzędzia programistyczne

Repertuar języków programowania, które pozwalają na pisanie programów pod Windows jest
bogaty i każdy znajdzie tu coś dla siebie. Win32API przygotowano jednak z myślą o języku
C i to właśnie pisząc programy w języku C można od systemu Windows otrzymać najwięcej.
Programiści mają do wyboru nie tylko Microsoft Visual C++, który jest częścią Visual Studio,
ale także kilka niezłych darmowych kompilatorów rozpowszechnianych na licencji GNU (wśród
nich wyróżnia się DevC++, do pobrania ze strony http://www.bloodshed.net).
Dużą popularność zdobył sobie język Delphi zaprojektowany przez firmę Borland jako rozsze-

rzenie Pascala. Wydaje się jednak, że znaczenie tego języka będzie coraz mniejsze. Marginalizuje
się również znaczenie wielu innych interfejsów takich jak MFC czy VCL.
Pojawienie się języka Java, zaprojektowanego przez firmę Sun, oznaczało dla społeczności

programistów nową epokę. Projektantom Javy przyświecała idea Jeden język - wiele platform,
zgodnie z którą programy napisane w Javie miały być przenośne między różnymi systemami ope-
racyjnymi. W praktyce okazało się, że Java nie nadaje się do pisania dużych aplikacji, osadzonych

5Tak będziemy mówić o interfejsach zbudowanych na Win32API

14 ROZDZIAŁ A. WPROWADZENIE

w konkretnych systemach operacyjnych. Na przykład oprogramowanie interfejsu użytkownika w
Javie polega na skorzystaniu z komponentów specyficznych dla Javy, nie zaś dla konkretnego
systemu operacyjnego. Odpowiadając na zarzuty programistów o ignorowanie istnienia w syste-
mach operacyjnych specjalizowanych komponentów, Microsoft przygotował swoją wersję Javy,
którą wyposażył w bibliotekę WFC (Windows Foundation Classes), związującą Visual J++ z
platformą Windows. W 1997 Sun wytoczył Microsoftowi proces, który ostatecznie doprowadził
do zaniechania przez Microsoft rozwijania J++ i podjęcia pracy nad nowym językiem, pozba-
wionym wad Javy, który osadzony byłby na nowej platformie, pozbawionej wad środowiska
uruchomieniowego Javy. Prace te zaowocowały pojawieniem się w okoliach roku 2000 pierw-
szych testowych wersji środowiska uruchomieniowego, nazwanego .NET Framework, dla którego
zaprojektowano nowy język nazwany C#. Dla wielu programistów używających Javy jedną z
kropel w kielichu goryczy jest niezgodność semantyczna zachowania się maszyn wirtualnych
pochodzących z różnych źródeł6.
.NET Framework opiera się na idei odwrotnej niż Java. Ta idea to Jedna platforma - wiele ję-

zyków. Specyfikacja języka pośredniego, nazwanego IL (Intermediate Language) jest otwarta dla
wszystkich twórców kompilatorów. Co otrzymują w zamian? Wspólny system typów, pozwalają-
cy na komunikację programów pochodzących z różnych języków, rozbudowaną bibliotekę funkcji,
wspólny mechanizm obsługi wyjątków oraz odśmiecacz. Ze swojej strony Microsoft przygotował
5 języków programowania platformy .NET. Są to:

� C#, w pełni obiektowy język programowania o składni C-podobnej

� J++, Java dla platformy .NET

� C++, który w nowej wersji potrafi korzystać z dobrodziejstw platformy .NET

� VB.NET, nowa wersja Visual Basica o znacznie większych możliwościach niż poprzednia
wersja

� IL Assembler, niskopoziomowy język programowania w kodzie pośrednim platformy .NET

Poza Microsoftem pojawiają się kompilatory innych języków dla platformy .NET. W tej
chwili dostępne są m.in.:

� Ada

� COBOL

� Perl

� Python

� SmallTalk

� SML.NET

Trwają prace nad .NETową wersją Prologa, Delphi oraz wielu innych języków.
Kompilatory dla trzech języków (C#, VB.NET, IL Assembler) wchodzą w skład środowiska

uruchomieniowego .NET Framework, czyli są darmowe. Również bez wnoszenia opłat można
pobrać ze stron Microsoftu pakiet dla J++. Sam .NET Framework można pobrać również bez-
płatnie ze strony http://msdn.microsoft.com/netframework/downloads/howtoget.asp. Pakiet in-
stalacyjny zajmuje około 20MB. Programiści mogą pobrać .NET Framework SDK, który oprócz

6Zdarza się również, że maszyny wirtualne tego samego producenta zachowują się inaczej na różnych systemach
operacyjnych

3. NARZĘDZIA PROGRAMISTYCZNE 15

Rysunek A.2: SharpDevelop oferuje m.in. autouzupełnianie kodu i wizualny edytor form.

środowiska uruchomieniowego zawiera setki przykładów i tysiące stron dokumentacji technicznej.
.NET Framework SDK to około 120MB. Samo środowisko uruchomieniowe można zainstalować
na systemach Windows począwszy od Windows 98. .NET Framework SDK, podobnie jak Visu-
al Studio .NET wymagają już co najmniej Windows 2000, jednak rozwijane w Windows 2000
programy dadzą się oczywiście uruchomić w Windows 98 z zainstalowanym środowiskiem uru-
chomieniowym .NET (pod warunkiem nie wykorzystywania klas specyficznych dla Windows
2000, np. FileSystemWatcher).
Do dyspozycji programistów oddano oczywiście nową wersję środowiska developerskiego Vi-

sual Studio .NET (oczywiście ono nie jest już darmowe). Dostępne są za to środowiska darmo-
we, rozwijane poza Microsoftem. Najlepiej zapowiada się SharpDevelop (do pobrania ze strony
http://www.icsharpcode.net).
Specyfikacja platformy .NET jest publiczna, ogłoszona poprzez ECMA-International (Eu-

ropean Computer Manufacturer Association International, http://www.ecma-international.org),
nic więc dziwnego, że powstają wersje pod inne niż Windows systemy operacyjne. Najbardziej
zaawansowany jest w tej chwili projekt Mono (http://www.go-mono.com), dostępny na kilka
systemów operacyjnych (w tym Linux i Windows).
Platforma .NET jest dobrze udokumentowana, powstają coraz to nowe strony, gdzie develo-

perzy dzielą się przykładowymi kodami i wskazówkami. Warto zaglądać na http://msdn.microsoft.com,
http://www.c-sharpcorner.com, http://www.gotdotnet.com czy http://www.codeproject.com.

16 ROZDZIAŁ A. WPROWADZENIE

Rozdział B

Programowanie Win32API

1 Fundamentalne idee Win32API

Interfejs programowania Win32API można podzielić na spójne podzbiory funkcji przeznaczonych
do podobnych celów. Dokumentacja systemu mówi o 6 kategoriach:

Usługi podstawowe Ta grupa funkcji pozwala aplikacjom na korzystanie z takich możliwo-
ści systemu operacyjnego jak zarządzanie pamięcią, obsługa systemu plików i urządzeń
zewnętrznych, zarządzanie procesami i wątkami.

Biblioteka Common Controls Ta część Win32API pozwala obsługiwać zachowanie typo-
wych okien potomnych, takich jak proste pola edycji i comboboxy czy skomplikowane
ListView i TreeView.

GDI GDI (Graphics Device Interface) dostarcza funkcji i struktur danych, które mogą być
wykorzystane do tworzenia efektów graficznych na urządzeniach wyjściowych takich jak
monitory czy drukarki. GDI pozwala rysować kształty takie jak linie, krzywe oraz figury
zamknięte, pozwala także na rysowanie tekstu.

Usługi sieciowe Za pomocą tej grupy funkcji można obsługiwać warstwę komunikacji siecio-
wej, na przykład tworzyć współdzielone zasoby sieciowe czy diagnozować stan konfiguracji
sieciowej.

Interfejs użytkownika Ta grupa funkcji dostarcza środków do tworzenia i zarządzania inter-
fejsem użytkownika: tworzenia okien i interakcji z użytkownikiem. Zachowanie i wygląd
tworzonych okien jest uzależnione od właściwości tzw.klas okien.

Powłoka systemu To funkcje pozwalające aplikacjom integrować się z powłoką systemu, na
przykład uruchomić dany dokument ze skojarzoną z nim aplikacją, dowiadywać się o ikony
skojarzone z plikami i folderami czy odczytywać położenie ważnych folderów systemowych.

Programowanie systemu Windows wymaga przyswojenia sobie trzech istotnych elementów.
Po pierwsze - wszystkie elementy interfejsu użytkownika, pola tekstowe, przyciski, combobo-

xy, radiobuttony1, wszystkie one z punktu widzenia systemu są oknami. Jak zobaczymy, Win-
dows traktuje wszystkie te elementy w sposób jednorodny, przy czym niektóre okna mogą być
tzw. oknami potomnymi innych okien. Windows traktuje okna potomne w sposób szczególny,

1’Angielskawe’ brzmienie tych terminów może być trochę niezręczne, jednak ich polskie odpowiedniki bywają
przerażające. Pozostaniemy więc przy terminach powszechnych wśród programistów.

17

18 ROZDZIAŁ B. PROGRAMOWANIE WIN32API

zawsze umieszczając je w obszarze okna macierzystego oraz automatycznie przesuwając je, gdy
użytkownik przesuwa okno macierzyste2.
Po drugie - z perspektywy programisty wszystkie okna zachowują się prawie dokładnie tak

samo jak z perspektywy użytkownika. Użytkownik, za pomocą myszy, klawiatury lub innego
wskaźnika, wykonuje różne operacje na widocznych na pulpicie oknach. Każde zdarzenie w sys-
temie, bez względu na źródło jego pochodzenia, powoduje powstanie tzw. komunikatu, czyli
pewnej informacji mającej swój cel i niosącej jakąś określoną informację. Programista w kodzie
swojego programu tak naprawdę zajmuje się obsługiwaniem komunikatów, które powstają w
systemie przez interakcję użytkownika3.
Po trzecie - do identyfikacji obiektów w systemie, takich jak okna, obiekty GDI, pliki, bibliote-

ki, wątki itd., Windows korzysta z tzw. uchwytów (czyli 32-bitowych identyfikatorów). Mnóstwo
funkcji Win32API przyjmuje jako jeden z parametrów uchwyt (czyli identyfikator) obiektu sys-
temowego, przez co wykonanie takiej funkcji odnosi się do wskazanego przez ten uchwyt obiektu.
W języku C różne uchwyty zostały różnie nazwane (HWND, HDC, HPEN, HBRUSH, HICON,
HANDLE itd.) choć tak naprawdę są one najczęściej wskaźnikami na miejsce w pamięci gdzie
znajduje się pełny opis danego obiektu. Z perspektywy programisty, są one, jak już powiedziano,
unikatowymi identyfikatorami obiektów systemowych.
Dokładne poznanie i zrozumienie trzech wymienionych wyżej elementów stanowi istotę po-

znania i zrozumienia Win32API. Idee które leżą u podstaw wyżej wymienionych elementów są
jednakowe we wszystkich wersjach systemu Windows i z dużą dozą prawdopodobieństwa można
powiedzieć, że nie ulegną zasadnicznym zmianom w kolejnych wersjach systemu. Programista
może oczywiście znać mniej lub więcej funkcji Win32API, umieć posługiwać się mniejszą lub
większą ilością komunikatów, znać mniej lub więcej typów uchwytów, jednak bez zrozumienia
zasad, wedle jakich wszystkie te elementy składają się na funkcjonowanie systemu operacyjnego
Windows, programista pisząc program będzie często bezradny.

2 Okna

2.1 Tworzenie okien

Zarządzanie oknami i tworzenie grafiki to jedne z najważniejszych zadań przy programowaniu
pod Windows, wymagające bardzo dokładnego poznania. Interfejs użytkownika jest pierwszym
elementem programu, z jakim styka się użytkownik, co więcej - interfejs jest tym elementem,
któremu użytkownik zwykle poświęca najwięcej czasu i uwagi. Programista musi więc bardzo
dokładnie poznać możliwości jakimi dysponuje w tym zakresie system operacyjny.
Przeanalizujmy bardzo prosty programi Windowsowy, który na pulpicie pokaże okno.

/*
*
* Tworzenie okna aplikacji
*
*/
#include <windows.h>

/* Deklaracja wyprzedzająca: funkcja obsługi okna */
LRESULT CALLBACK WindowProcedure(HWND, UINT, WPARAM, LPARAM);
/* Nazwa klasy okna */
char szClassName[] = "PRZYKLAD";

int WINAPI WinMain(HINSTANCE hInstance,

2To dość ważne. Gdyby programista musiał dbać o przesuwanie się okien potomnych za przesuwającym się
oknem macierzystym, byłoby to niesłychanie niewygodne.
3I nie tylko - komunikaty mogą mieć swoje źródło w samym systemie. Komunikaty wysyłają do siebie na

przykład okna i okna potomne, źródłem komunikatów mogą być zegary itd.

2. OKNA 19

HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nShowCmd)

{
HWND hwnd; /* Uchwyt okna */
MSG messages; /* Komunikaty okna */
WNDCLASSEX wincl; /* Struktura klasy okna */

/* Klasa okna */
wincl.hInstance = hInstance;
wincl.lpszClassName = szClassName;
wincl.lpfnWndProc = WindowProcedure; // wskaźnik na funkcję obsługi okna
wincl.style = CS_DBLCLKS;
wincl.cbSize = sizeof(WNDCLASSEX);

/* Domyślna ikona i wskaźnik myszy */
wincl.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wincl.hIconSm = LoadIcon(NULL, IDI_APPLICATION);
wincl.hCursor = LoadCursor(NULL, IDC_ARROW);
wincl.lpszMenuName = NULL;
wincl.cbClsExtra = 0;
wincl.cbWndExtra = 0;
/* Jasnoszare tło */
wincl.hbrBackground = (HBRUSH)GetStockObject(LTGRAY_BRUSH);

/* Rejestruj klasę okna */
if(!RegisterClassEx(&wincl)) return 0;

/* Twórz okno */
hwnd = CreateWindowEx(

0, szClassName,
"Przykład",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT, CW_USEDEFAULT,
512, 512,
HWND_DESKTOP, NULL,
hInstance, NULL);

ShowWindow(hwnd, nShowCmd);
/* Pętla obsługi komunikatów */
while(GetMessage(&messages, NULL, 0, 0))
{

/* Tłumacz kody rozszerzone */
TranslateMessage(&messages);
/* Obsłuż komunikat */
DispatchMessage(&messages);

}

/* Zwróć parametr podany w PostQuitMessage() */
return messages.wParam;

}

/* Tę funkcję woła DispatchMessage() */
LRESULT CALLBACK WindowProcedure(HWND hwnd, UINT message,

WPARAM wParam, LPARAM lParam)
{
switch (message)
{

case WM_DESTROY:
PostQuitMessage(0);
break;

default:
return DefWindowProc(hwnd, message, wParam, lParam);

}
return 0;

}

Z punktu widzenia syntaktyki - jest to zwykły program w języku C. Być może rozczarowujące
jest to, że program ten jest aż tak długi. Okazuje się jednak, że prościej się po prostu nie da.

20 ROZDZIAŁ B. PROGRAMOWANIE WIN32API

Rysunek B.1: Efekt działania pierwszego przykładowego programu

Jeżeli w jakimkolwiek innym języku programowania lub przy użyciu jakichś bibliotek da się
napisać prostszy program tworzący okno (a jak zobaczmy w rozdziale 4.1 analogiczny program
w C# zajmuje mniej więcej 10 linii kodu), będzie to zawsze oznaczało, że część kodu jest po
prostu ukryta przed programistą.
Z tego właśnie powodu mówimy, że interfejs Win32API jest ”najbliżej” systemu operacyjnego

jak tylko jest to możliwe (czasem mówi się też, że jest on ”najniższym” interfejsem programowa-
nia). Każda inna biblioteka umożliwiająca tworzenie okien musi korzystać z funkcji Win32API,
opakowując je ewentualnie w jakiś własny interfejs programowania.
Wielu programistów znających bardzo dobrze Win32API uważa to za jego najwięszą zaletę.

To właśnie bowiem Win32API daje największą kontrolę nad tym jak wygląda okno i jak się
zachowuje.
Ale wróćmy do naszego programu. Pierwsza ważna różnica między programem Windowso-

wym a zwykłym programem w języku C, to brak funkcji main, zastąpionej przez WinMain.
Tradycyjnie funkcja ta ma następujący prototyp:

int
WINAPI
WinMain(

HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nShowCmd
);

W tej deklaracji

� WINAPI oznacza konwencję przekazywania parametrów do funkcji. Zwykle w którymś z
plików nagłówkowych znajdziemy po prostu #define WINAPI stdcall4

4O innych konwencjach przekazywania parametrów do fukcji (stdcall, cdecl, pascal) warto poczytać,
ponieważ niezgodność konwencji bywa źródłem problemów przy łączeniu bibliotek napisanych w różnych językach,
np. Delphi i Visual Basicu.

2. OKNA 21

� hInstance, jak sugeruje typ, jest uchwytem. W tym przypadku jest to uchwyt do bieżącej
instancji aplikacji.

� hPrevInstance to uchwyt do poprzedniej instancji tej aplikacji. W Win16API za pomo-
cą tego uchwytu można było zidentyfikować istniejącą już w systemie instancję aplikacji i
uaktywnić ją w razie potrzeby. W Win32API ten parametr jest zawsze równy NULL i za-
chowano go tylko ze względów historycznych. Do identyfikowania innych instancji aplikacji
w Win32API należy użyć jakichś trwałych obiektów, na przykład Mutexów5.

� lpCmdLine to lista parametrów programu. W programie Windowsowym, w przeciwień-
stwie do zwykłego programu w języku C, wszystkie parametry przekazywane są w tej jednej
tablicy. Oznacza to, że programista musi sam zatroszczyć się o wyłowienie kolejnych pa-
rametrów z listy. Inaczej też niż w zwykłym programie w C można uzyskać informację o
lokalizacji bieżącej aplikacji w systemie plików: zamiast odczytać zerowy parametr na liście
parametrów, programista woła funkcję API GetModuleFileName.

� Windows może aktywować okno na różne sposoby, m.in.:

– SW HIDE, ukrywa okno

– SW MINIMIZE, okno jest zminimalizowane

– SW RESTORE, SW SHOWNORMAL, aktywuje okno w jego oryginalnych rozmia-
rach

– SW SHOW, aktywuje okno w jego bieżących rozmiarach

– SW SHOWMAXIMIZED, okno jest zmaksymalizowane

nShowCmd sugeruje aplikacji sposób pokazania głównego okna. Programista może oczy-
wiście tę informację zlekceważyć, jednak nie jest to dobrą praktyką.

Druga ważna różnica różnica między programem Windowsowym a zwykłym programem w
języku C, to mnóstwo nowych funkcji i struktur od jakich roi się w programie Windowsowym.
Zauważmy, że samo utworzenie okna jest procesem o tyle skomplikowanym, że wymaga wcześniej
utworzenia tzw.klasy okna. Chodzi o to, by wszystkie okna o podobnych właściwościach mogły
mieć tę samą funkcję obsługi komunikatów (o komunikatach za chwilę). Na przykład wszystkie
przyciski są okami utworzonymi na bazie klasy BUTTON, wskazującej na odpowiednią funkcję
obsługi zachowań przycisku. Aplikacja może tworzyć dowolną ilość okien bazujących na tej samej
klasie, za każdym razem konkretyzując pewne dodatkowe cechy każdego nowego okna.
Aby zarejestrować w systemie nową klasę okna należy skorzystać z funkcji

ATOM RegisterClassEx(

CONST WNDCLASSEX *lpwcx
);

Klasa okna utworzona przez aplikację jest automatycznie wyrejestrowywania przy zakończe-
niu aplikacji. Okna tworzy się za pomocą funkcji

HWND CreateWindowEx(

DWORD dwExStyle,// rozszerzony styl okna
LPCTSTR lpClassName,// nazwa klasy okna
LPCTSTR lpWindowName,// nazwa okna
DWORD dwStyle,// styl okna

5Więcej o Mutexach na stronie 44

22 ROZDZIAŁ B. PROGRAMOWANIE WIN32API

int x,// pozycja okna
int y,
int nWidth,// szerokość
int nHeight,// wysokość
HWND hWndParent,// uchwyt okna macierzystego
HMENU hMenu,// uchwyt menu lub identyfikator okna potomnego
HINSTANCE hInstance,// instancja aplikacji
LPVOID lpParam
)

Zapamiętajmy przy okazji prawidłowość: wiele funkcji API istnieje w dwóch wariantach,
podstawowym i rozszerzonym. Bardzo często funkcje podstawowe oczekują pewnej ściśle okre-
ślonej ilości parametrów, natomiast funkcje rozszerzone oczekują jednego parametru, którym
jest struktura z odpowiednio wypełnionymi polami6.

2.2 Komunikaty

W przykładzie z poprzedniego rozdziału widzieliśmy, że funkcja obsługi okna zajmuje się obsługą
komunikatów docierających do okna. Komunikaty pełnią w systemie Windows główną rolę jako
środek komunikacji między różnymi obiektami. Jeżeli gdziekolwiek w systemie dzieje się coś, co
wymaga poinformowania jakiegoś innego obiektu, najprawdopodobniej ta informacja przepłynie
w postaci komunikatu.
Obsługą komunikatów, ich rozdzielaniem do odpowiednich obiektów zajmuje się jądro syste-

mu. W praktyce każde okno ma swoją własną kolejkę komunikatów, w której system umieszcza
kolejne komunikaty, które mają swoje źródło gdzieś w systemie, a ich przeznaczeniem jest dane
okno.
Programista może kazać oknu przechwytywać odpowiednie komunikaty, może również inicjo-

wać komunikaty i kierować je do wybranych okien. W funkcji obsługi komunikatów programista
sam decyduje o tym, na które komunikaty okno powinno reagować. Najczęściej są to komunikaty
typowe. Programista nie ma obowiązku reagować na wszystkie możliwe komunikaty.

. . .

Komunikat X
Komunikat Y
Komunikat Z

↓
Okno

Tabela B.1: Z każdym oknem system kojarzy kolejkę komunikatów dla niego przeznaczonych

Oto lista ważniejszych komunikatów, jakie mogą docierać do okna.

WM CHAR Dociera do aktywnego okna po tym, jak komunikat WM KEYDOWN zostanie
przetłumaczony w funkcji TranslateMessage().

chCharCode = (TCHAR) wParam; Znakowy kod wciśniętego klawisza.

lKeyData = lParam; Ilość powtórzeń, kody rozszerzone.

WM CLOSE Dociera do aktywnego okna przed jego zamknięciem. Jest to chwila kiedy można
jeszcze anulować zamknięcie okna.

6Nie jest to jednak regułą

2. OKNA 23

WM COMMAND Dociera do aktywnego okna przy wyborze pozycji z menu lub jako powia-
domienie od okna potomnego.

wNotifyCode = HIWORD(wParam); Kod powiadomienia.

wID = LOWORD(wParam); Identyfikator pozycja menu lub okna potomnego.

hwndCtl = (HWND) lParam; Uchwyt okna potomnego.

WM CREATE Dociera do okna po jego utworzeniu za pomocą CreateWindow() ale przed jego
pierwszym pojawieniem się. Jest zwykle wykorzystywany na tworzenie okien potomnych,
inicjowanie menu czy inicjowanie podsystemów OpenGL, DirectX itp.

lpcs = (LPCREATESTRUCT) lParam; Informacje o utworzonym oknie.

typedef struct tagCREATESTRUCT { // cs
LPVOID lpCreateParams;
HINSTANCE hInstance;
HMENU hMenu;
HWND hwndParent;
int cy;
int cx;
int y;
int x;
LONG style;
LPCTSTR lpszName;
LPCTSTR lpszClass;
DWORD dwExStyle;

} CREATESTRUCT;

WM KEYDOWN Dociera do aktywnego okna gdy zostanie naciśnięty klawisz niesystemowy
(czyli dowolny klawisz bez wciśniętego klawisza ALT).

nVirtKey = (int) wParam; Kod klawisza.

lKeyData = lParam; Ilość powtórzeń, kody rozszerzone.

WM KEYUP Dociera do aktywnego okna gdy zostanie zwolniony klawisz niesystemowy (czyli
dowolny klawisz bez wciśniętego klawisza ALT).

nVirtKey = (int) wParam; Kod klawisza.

lKeyData = lParam; Ilość powtórzeń, kody rozszerzone.

WM KILLFOCUS Dociera do aktywnego okna przed przekazaniem aktywności innemu oknu.

hwndGetFocus = (HWND) wParam; Uchwyt okna, ktróre stanie się aktywne.

lKeyData = lParam; Ilość powtórzeń, kody rozszerzone.

WM LBUTTONDBLCLK Dociera do aktywnego okna gdy jego obszar zostanie dwuklik-
nięty.

fwKeys = wParam; Informuje o tym, czy jednocześnie są wciśnięte klawisze systemowe:
SHIFT, CTRL.

xPos = LOWORD(lParam); Współrzędna X dwuklikniętego punktu względem punk-
tu w lewym górnym rogu obszaru klienckiego okna.

24 ROZDZIAŁ B. PROGRAMOWANIE WIN32API

yPos = HIWORD(lParam); Współrzędna Y dwuklikniętego punktu względem punk-
tu w lewym górnym rogu obszaru klienckiego okna.

WM LBUTTONDOWN Dociera do aktywnego okna gdy jego obszar zostanie kliknięty za
pomocą lewego przycisku.

fwKeys = wParam; Informuje o tym, czy jednocześnie są wciśnięte klawisze systemowe:
SHIFT, CTRL.

xPos = LOWORD(lParam); Współrzędna X dwuklikniętego punktu względem punk-
tu w lewym górnym rogu obszaru klienckiego okna.

yPos = HIWORD(lParam); Współrzędna Y dwuklikniętego punktu względem punk-
tu w lewym górnym rogu obszaru klienckiego okna.

WM LBUTTONUP Dociera do aktywnego okna gdy użytkownik zwalna lewy przycisk my-
szy, a wskaźnik znajduje się nad obszarem klienckim okna.

fwKeys = wParam; Informuje o tym, czy jednocześnie są wciśnięte klawisze systemowe:
SHIFT, CTRL.

xPos = LOWORD(lParam); Współrzędna X dwuklikniętego punktu względem punk-
tu w lewym górnym rogu obszaru klienckiego okna.

yPos = HIWORD(lParam); Współrzędna Y dwuklikniętego punktu względem punk-
tu w lewym górnym rogu obszaru klienckiego okna.

WM MOVE Dociera do okna po tym jak zmieniło się jego położenie.

xPos = LOWORD(lParam); Nowa współrzędna X okna.

yPos = HIWORD(lParam); Nowa współrzędna Y okna.

WM PAINT Dociera do okna gdy jego obszar kliencki wymaga odrysowania. Więcej o tym
komunikacie na stronie 34.

WM SIZE Dociera do okna, gdy zmienił się jego rozmiar.

nWidth = LOWORD(lParam); Nowa szerokość okna.

nHeight = HIWORD(lParam); Nowa wysokość okna.

WM QUIT Powoduje zakończenie pętli komunikatów i tym samym zakończenie aplikacji.

nExitCode = (int) wParam; Kod zakończenia.

WM SYSCOLORCHANGE Dociera do wszystkich okien po tym, gdy zmienią się ustawie-
nia kolorów pulpitu.

WM TIMER Dociera do aktywnego okna od ustawionego przez aplikację zegara. Więcej o
zegarach na stronie 59.

wTimerID = wParam; Identyfikator zegara.

tmprc = (TIMERPROC *) lParam; Adres funkcji obsługi zdarzenia.

WM USER Pozwala użytkownikowy definiować własne komunikaty. Użytkownik tworzy ko-
munikat za pomocą funkcji

2. OKNA 25

UINT RegisterWindowMessage(

LPCTSTR lpString
);

Zaproponowana w przykładzie konstrukcja pętli obsługi komunikatów jest bardzo charakte-
rystyczna.

/* Pętla obsługi komunikatów */
while(GetMessage(&messages, NULL, 0, 0))
{

/* Tłumacz kody rozszerzone */
TranslateMessage(&messages);
/* Obsłuż komunikat */
DispatchMessage(&messages);

}

Funkcja GetMessage czeka na pojawienie się komunikatu w kolejce komunikatów, zaś Di-
spatchMessage wysyła komunikat do funkcji obsługi komunikatów.
Funkcja GetMessage jest jednak funkcją blokującą, to znaczy że wykonanie programu zostanie

wstrzymane na tak długo, aż jakaś wiadomość pojawi się w kolejce komunikatów okna aplikacji.
Najczęściej aplikacja wstrzymywana jest na kilka czy kilkanaście milisekund, bowiem komunikaty
napływają do okna dość często, oznacza to jednak, że część cennego czasu aplikacja marnuje na
biernym oczekiwaniu na komunikaty.
Takie zachowanie nie byłoby wskazane dla aplikacji, która miałaby działać w sposób ciągły, na

przykład tworząc grafikę czy inne efekty w czasie rzeczywistym. Rozwiązaniem jest zastosowanie
innej postaci pętli obsługi komunikatów, alternatywnej dla pokazanej powyżej, wykorzystującej
nieblokującą funkcję PeekMessage, która po prostu sprawdza czy w kolejce komunikatów jest
jakiś komunikat, a jeśli nie - oddaje sterowanie do pętli obsługi komunikatów. Wybór pomiędzy
oboma funkcjami (a co za tym idzie - między dwoma możliwościami konstrukcji pętli obsługi
komunikatów) należy do programisty.

/* Pętla obsługi komunikatów */
while (TRUE)
{

/* Sprawdź czy są jakieś komunikaty do obsłużenia */
if (PeekMessage (&msg, NULL, 0, 0, PM_REMOVE))
{

if (msg.message == WM_QUIT)
break ;

TranslateMessage (&msg) ;
DispatchMessage (&msg) ;

}
else
{

// "czas wolny" aplikacji do wykorzystania do innych celów
// niż obsługa komunikatów -
}

}

2.3 Okna potomne

Tworzenie okien potomnych

Główne okno aplikacji, jak również każde kolejne okno z którym styka się użytkownik, zwy-
kle posiada jakieś okna potomne (zwane inaczej kontrolkami), za pomocą których użytkownik
mógłby komunikować się z aplikacją.
Dwa najprostsze rodzaje okien potomnych to pole tekstowe i przycisk. Okazuje się jednak,

że klasa okna (na przykład klasa BUTTON definiująca przyciski), tak naprawdę definiuje nie

26 ROZDZIAŁ B. PROGRAMOWANIE WIN32API

jeden typ okna potomnego, ale całą rodzinę okien potomnych, różniących się właściwościami.
Odpowiedni styl okna podaje się jako jeden z parametrów do funkcji CreateWindow.
Zobaczmy prosty przykład tworzenia okien potomnych o różnych stylach:

/*
*
* Tworzenie okien potomnych
*
*/
#include <windows.h>
#include <string.h>

/* Deklaracja wyprzedzająca: funkcja obsługi okna */
LRESULT CALLBACK WindowProcedure(HWND, UINT, WPARAM, LPARAM);
/* Nazwa klasy okna */
char szClassName[] = "PRZYKLAD";

struct
{

TCHAR * szClass;
int iStyle ;
TCHAR * szText ;

} button[] =
{

"BUTTON" , BS_PUSHBUTTON , "PUSHBUTTON",
"BUTTON" , BS_AUTOCHECKBOX , "CHECKBOX",
"BUTTON" , BS_RADIOBUTTON , "RADIOBUTTON",
"BUTTON" , BS_GROUPBOX , "GROUPBOX",
"EDIT" , WS_BORDER , "TEXTBOX",
"STATIC" , WS_BORDER , "STATIC",

} ;

#define NUM (sizeof button / sizeof button[0])

int WINAPI WinMain(HINSTANCE hThisInstance, HINSTANCE hPrevInstance,
LPSTR lpszArgument, int nFunsterStil)

{
HWND hwnd; /* Uchwyt okna */
MSG messages; /* Komunikaty okna */
WNDCLASSEX wincl; /* Struktura klasy okna */

/* Klasa okna */
wincl.hInstance = hThisInstance;
wincl.lpszClassName = szClassName;
wincl.lpfnWndProc = WindowProcedure; // wskaźnik na funkcję obsługi okna
wincl.style = CS_DBLCLKS;
wincl.cbSize = sizeof(WNDCLASSEX);

/* Domyślna ikona i wskaźnik myszy */
wincl.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wincl.hIconSm = LoadIcon(NULL, IDI_APPLICATION);
wincl.hCursor = LoadCursor(NULL, IDC_ARROW);
wincl.lpszMenuName = NULL;
wincl.cbClsExtra = 0;
wincl.cbWndExtra = 0;
/* Jasnoszare tło */
wincl.hbrBackground = (HBRUSH)GetStockObject(LTGRAY_BRUSH);

/* Rejestruj klasę okna */
if(!RegisterClassEx(&wincl)) return 0;

/* Twórz okno */
hwnd = CreateWindowEx(

0,
szClassName,
"PRZYKLAD",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,

2. OKNA 27

CW_USEDEFAULT,
HWND_DESKTOP,
NULL,
hThisInstance,
NULL
);

ShowWindow(hwnd, nFunsterStil);
/* Pętla obsługi komunikatów */
while(GetMessage(&messages, NULL, 0, 0))
{

/* Tłumacz kody rozszerzone */
TranslateMessage(&messages);
/* Obsłuż komunikat */
DispatchMessage(&messages);

}

/* Zwróć parametr podany w PostQuitMessage() */
return messages.wParam;

}

int xSize, ySize;

/* Tę funkcję woła DispatchMessage() */
LRESULT CALLBACK WindowProcedure(HWND hwnd, UINT message,

WPARAM wParam, LPARAM lParam)
{
static HWND hwndButton[NUM];
static int cxChar, cyChar;
static RECT r;
HDC hdc;
int i;
PAINTSTRUCT ps;

TCHAR szFormat[] = TEXT ("%-16s Akcja: %04X, ID:%04X, hWnd:%08X");
TCHAR szBuffer[80];

switch (message)
{

case WM_CREATE :
cxChar = LOWORD (GetDialogBaseUnits ()) ;
cyChar = HIWORD (GetDialogBaseUnits ()) ;

for (i = 0 ; i < NUM ; i++)
hwndButton[i] = CreateWindow (button[i].szClass,

button[i].szText,
WS_CHILD | WS_VISIBLE | button[i].iStyle,
cxChar, cyChar * (1 + 2 * i),
20 * cxChar, 7 * cyChar / 4,
hwnd, (HMENU) i,
((LPCREATESTRUCT) lParam)->hInstance, NULL) ;

break;
case WM_DESTROY:
PostQuitMessage(0);
break;

case WM_SIZE:
xSize = LOWORD(lParam);
ySize = HIWORD(lParam);

r.left = 24 * cxChar ;
r.top = 2 * cyChar ;
r.right = LOWORD (lParam) ;
r.bottom = HIWORD (lParam) ;

break;
case WM_COMMAND:
hdc = GetDC (hwnd);

ScrollWindow (hwnd, 0, -cyChar, &r, &r) ;

28 ROZDZIAŁ B. PROGRAMOWANIE WIN32API

Rysunek B.2: Okna potomne komunikują się z oknem macierzystym za pomocą powiadomień

SelectObject (hdc, GetStockObject (SYSTEM_FIXED_FONT)) ;

SetBkMode (hdc, TRANSPARENT) ;
TextOut (hdc, 24 * cxChar, cyChar * (r.bottom / cyChar - 1),

szBuffer,
wsprintf (szBuffer, szFormat,
"WM_COMMAND",
HIWORD (wParam), LOWORD (wParam), lParam));

ReleaseDC(hwnd, hdc);
return DefWindowProc(hwnd, message, wParam, lParam);

case WM_PAINT:
hdc = BeginPaint (hwnd, &ps);
EndPaint(hwnd, &ps);
break;

default:
return DefWindowProc(hwnd, message, wParam, lParam);

}
return 0;

}

Aktywowanie i deaktywowanie okien potomnych

Programista może w każdej chwili uaktywnić bądź deaktywować okno7 za pomocą funkcji

BOOL EnableWindow(

HWND hWnd, // uchwyt okna
BOOL bEnable // aktywacja bądź deaktywacja
);

7Okno potomne, które jest nieaktywne zwykle ma szary kolor i nie przyjmuje fokusa.

2. OKNA 29

Komunikacja między oknem potomnym a macierzystym

Komunikacja między oknem potomnym a oknem macierzystym odbywa się za pomocą komu-
nikatów przesyłanych między nimi. Komunikaty te pojawiają się w oknie macierzystym jako
WM COMMAND z dodatkowymi informacjami na temat powiadomienia od okna potomnego.
Spójrzmy przykładowo na powiadomienia, jakie oknu macierzystemu przysyła przycisk:

� BN CLICKED : 0, przycisk został naciśnięty

� BN PAINT : 1, przycisk powinien zostać narysowany

� BN PUSHED : 2, przycisk został wciśnięty

� BN UNPUSHED : 3, przycisk został wyciśnięty

� BN DISABLE : 4, przycisk został deaktywowany

� BN DBLCLK : 5, przycisk został podwójnie naciśnięty

� BN SETFOCUS : 6, przycisk otrzymał fokusa

� BN KILLFOCUS : 7, przycisk stracił fokusa

Pole tekstowe przysyła oknu macierzystemu następujące powiadomienia:

� EN SETFOCUS : 0x100, Pole tekstowe otrzymało fokusa

� EN KILLFOCUS : 0x200, Pole tekstowe straciłofokusa

� EN CHANGE : 0x300, Pole tekstowe zmieni zawartość

� EN UPDATE : 0x400, Pole tekstowe zmieniło zawartość

� EN ERRSPACE : 0x500, Pole tekstowe nie może zaallokować pamięci

� EN MAXTEXT : 0x501, Pole tekstowe przekroczyło rozmiar przy wskawianiu tekstu

� EN HSCROLL : 0x601, Pole tekstowe jest skrolowane w poziomie

� EN VSCROLL : 0x602, Pole tekstowe jest skrolowane w pionie

Okno główne może żądać od okien potomnych wykonania właściwych im operacji. Każda
klasa okna potomnego charakteryzuje się specyficznymi możliwościami. Okno główne wysyła do
okien potomnych takie żądania za pomocą funkcji:

LRESULT SendMessage(

HWND hWnd,// uchwyt okna
UINT Msg,// komunikat
WPARAM wParam,// parametr
LPARAM lParam // parametr
);

Możliwości okien potomnych są naprawdę duże. Wspomnijmy tylko o kilku, natomiast pełna
ich lista dostępna jest w dokumentacji. Na przykład do pola tekstowego można wysłać komuni-
kat:

EM_FINDTEXT
wParam = (WPARAM) (UINT) fuFlags;
lParam = (LPARAM) (FINDTEXT FAR *) lpFindText;

30 ROZDZIAŁ B. PROGRAMOWANIE WIN32API

gdzie:

� fuFlags : zero, FT MATCHCASE lub FT WHOLEWORD

� lpFindText : wskaźnik do struktury FINDTEXT zawierającej informacje o szukanym tek-
ście

� wynik : -1 jeśli nie znaleziono tekstu, w przeciwnym razie indeks pozycji szukanego tekstu

oraz około 30 innych, odpowiadających m.in. za kolor, ograniczenie długości, przesuwanie
zawartości, undo itd.
Do comboboxa można wysyłać komunikaty (łącznie około 20):

� CB GETCOUNT : zwraca liczbę elementów

� CB FINDSTRING : szuka tekstu wśród elementów listy

� CB GETITEMDATA, CB SETITEMDATA : zwraca lub ustawia wartość związaną z ele-
mentem listy

� CB GETTOPINDEX, CB SETTOPINDEX : zwraca lub ustawia indeks pierwszego wi-
docznego elementu listy

� . . .

Do ListView można wysyłać komunikaty (łacznie około 30):

� LVM DELETECOLUMN

� LVM ENSUREVISIBLE

� LVM GETCOLUMNWIDTH, LVM SETCOLUMNWIDTH

� LVM GETITEM, LVM SETITEM

� LVM SORTITEMS

� . . .

Znając indentyfikator okna potomnego można łatwo uzyskać jego uchwyt i odwrotnie - znając
uchwyt można łatwo uzyskać identyfikator.

id = GetDlgCtrlID (hwndChild) ;
hwndChild = GetDlgItem (hwndParent, id) ;

Przykład użycia comboboxa:

// Przygotuj kombo
hwndChild = CreateWindow ("COMBOBOX",

"",
WS_CHILD | WS_VISIBLE | CBS_DROPDOWNLIST,
posX, posxY,
width, height,
hwnd, (HMENU) (1),
((LPCREATESTRUCT) lParam)->hInstance, NULL) ;

SendMessage(hwndChild, CB_ADDSTRING, 0, "Item1");
SendMessage(hwndChild, CB_ADDSTRING, 0, "Item2");

2. OKNA 31

Rysunek B.3: Rozwijalny combobox z dwoma elementami

2.4 Subclasowanie okien potomnych

W poprzednich przykładach widzeliśmy, że okna potomne informują o zdarzeniach, które zaszły
w ich obszarze roboczym za pomocą powiadomień. Niestety, ilość możliwych powiadomień przy-
syłanych przez okna potomne jest śmiesznie mała w porównaniu z możliwościami jakie dawałoby
samodzielne oprogramowanie pętli komunikatów okna potomnego.
Problem w tym, że okna potomne są egzemplarzami klas już opisanych, w związku z czym

mają już swoje funkcje obsługi. Czy jest możliwe samodzielne obsługiwanie komunikatów okna
potomnego, dzięki czemu możnaby na przykład dowiedzieć się o dwukliku w jego obszar roboczy?
Okazuje się, że taka możliwość istnieje i nosi nazwę subclasowania8 okna. Programista może

okreslić własną funkcję obsługi okna za pomocą funkcji:

LONG GetWindowLong(

HWND hWnd,
int nIndex
);

LONG SetWindowLong(

HWND hWnd,
int nIndex,
LONG dwNewLong
);

odczytując i zapamiętując najpierw wskaźnik na już istniejącą funkcję obsługi komunikatów,
a następnie podając wskaźnik na nową. Należy pamiętać o tym, aby nowa funkcja obsługi ko-
munikatów, po obsłużeniu przekazywała wszystkie komunikaty do starej funkcji (chyba że taka
sytuacja jest niepożądana). Chodzi o to, aby okno nie straciło dotychczasowej funkcjonalności,

8Nie znam sensownego polskiego odpowiednia. Słyszałem już różne propozycje, na przykład mylnie kojarzące
się z obiektowością ”przeciążanie”, czy przegadane ”przeciążanie funkcji obsługi okna”. Termin subclassowanie
jest zwięzły i precyzyjny, z pewnością będzie jednak raził purystów językowych.

32 ROZDZIAŁ B. PROGRAMOWANIE WIN32API

a nowa funkcja obsługi komunikatów tylko ją rozszerzała. Dysponując wskaźnikiem na starą
funkcję obsługi komunikatów, należy skorzystać z funkcji CallWindowProc aby wywołać ją z
odpowiednimi parametrami.

/*
*
* Subclassing
*
*/
#include <windows.h>
#include <string.h>

/* Deklaracja wyprzedzająca: funkcja obsługi okna */
WNDPROC lpEditOldWndProc = NULL;
LRESULT CALLBACK WindowProcedure(HWND, UINT, WPARAM, LPARAM);
LRESULT CALLBACK EditWindowProcedure(HWND hwnd, UINT message,

WPARAM wParam, LPARAM lParam);

/* Nazwa klasy okna */
char szClassName[] = "PRZYKLAD";

int WINAPI WinMain(HINSTANCE hThisInstance, HINSTANCE hPrevInstance,
LPSTR lpszArgument, int nFunsterStil)

{
HWND hwnd; /* Uchwyt okna */
MSG messages; /* Komunikaty okna */
WNDCLASSEX wincl; /* Struktura klasy okna */

/* Klasa okna */
wincl.hInstance = hThisInstance;
wincl.lpszClassName = szClassName;
wincl.lpfnWndProc = WindowProcedure; // wskaźnik na funkcję obsługi okna
wincl.style = CS_DBLCLKS;
wincl.cbSize = sizeof(WNDCLASSEX);

/* Domyślna ikona i wskaźnik myszy */
wincl.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wincl.hIconSm = LoadIcon(NULL, IDI_APPLICATION);
wincl.hCursor = LoadCursor(NULL, IDC_ARROW);
wincl.lpszMenuName = NULL;
wincl.cbClsExtra = 0;
wincl.cbWndExtra = 0;
/* Jasnoszare tło */
wincl.hbrBackground = (HBRUSH)GetStockObject(LTGRAY_BRUSH);

/* Rejestruj klasę okna */
if(!RegisterClassEx(&wincl)) return 0;

/* Twórz okno */
hwnd = CreateWindowEx(

0,
szClassName,
"PRZYKLAD",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
HWND_DESKTOP,
NULL,
hThisInstance,
NULL
);

ShowWindow(hwnd, nFunsterStil);
/* Pętla obsługi komunikatów */
while(GetMessage(&messages, NULL, 0, 0))
{

/* Tłumacz kody rozszerzone */
TranslateMessage(&messages);

2. OKNA 33

/* Obsłuż komunikat */
DispatchMessage(&messages);

}

/* Zwróć parametr podany w PostQuitMessage() */
return messages.wParam;

}

int xSize, ySize;

/* Tę funkcję woła DispatchMessage() */
LRESULT CALLBACK WindowProcedure(HWND hwnd, UINT message,

WPARAM wParam, LPARAM lParam)
{
static HWND hwndEdit;
static int cxChar, cyChar;
static RECT r;
HDC hdc;
int i;
PAINTSTRUCT ps;

TCHAR szFormat[] = TEXT ("%-16s Akcja: %04X, ID:%04X, hWnd:%08X");
TCHAR szBuffer[80];

switch (message)
{

case WM_CREATE :
cxChar = LOWORD (GetDialogBaseUnits ()) ;
cyChar = HIWORD (GetDialogBaseUnits ()) ;

hwndEdit = CreateWindow ("EDIT",
"TEXTBOX",
WS_CHILD | WS_VISIBLE | WS_BORDER | ES_MULTILINE,
cxChar, cyChar,
20 * cxChar, 7 * cyChar,
hwnd, (HMENU)1,
((LPCREATESTRUCT) lParam)->hInstance, NULL) ;

// zapamiętaj starą i ustal nową funkcję
// obsługi komunikatów

lpEditOldWndProc = GetWindowLong(hwndEdit, GWL_WNDPROC);
SetWindowLong(hwndEdit, GWL_WNDPROC, EditWindowProcedure);

break;
case WM_DESTROY:
PostQuitMessage(0);
break;

case WM_SIZE:
xSize = LOWORD(lParam);
ySize = HIWORD(lParam);

r.left = 24 * cxChar ;
r.top = 2 * cyChar ;
r.right = LOWORD (lParam) ;
r.bottom = HIWORD (lParam) ;

break;
case WM_COMMAND:
hdc = GetDC (hwnd);

ScrollWindow (hwnd, 0, -cyChar, &r, &r) ;
SelectObject (hdc, GetStockObject (SYSTEM_FIXED_FONT)) ;

SetBkMode (hdc, TRANSPARENT) ;
TextOut (hdc, 24 * cxChar, cyChar * (r.bottom / cyChar - 1),

szBuffer,
wsprintf (szBuffer, szFormat,
"WM_COMMAND",
HIWORD (wParam), LOWORD (wParam), lParam));

34 ROZDZIAŁ B. PROGRAMOWANIE WIN32API

ReleaseDC(hwnd, hdc);
return DefWindowProc(hwnd, message, wParam, lParam);

case WM_PAINT:
hdc = BeginPaint (hwnd, &ps);
EndPaint(hwnd, &ps);
break;

default:
return DefWindowProc(hwnd, message, wParam, lParam);

}
return 0;

}

LRESULT CALLBACK EditWindowProcedure(HWND hwnd, UINT message,
WPARAM wParam, LPARAM lParam)

{
switch (message)
{

case WM_RBUTTONDOWN :
SetWindowText(hwnd, "NOWYTEXT");
break;

case WM_LBUTTONDBLCLK :
MessageBox(0, "DoubleClick", "", 0);
break;

}
return CallWindowProc(lpEditOldWndProc, hwnd, message, wParam, lParam);

}

2.5 Obsługa grafiki za pomocą GDI

Podstawy GDI

Podsystem GDI odpowiada za rysowanie elementów graficznych w specjalnie utworzonych kon-
tekstach urządzeń (DC, Device Contexts). Kontekst urządzenia może być skojarzony nie tylko z
okiem, ale także na przykład z wirtualnym obrazem strony tworzonej na drukarce. Dzięki takie-
mu podejściu programista może użyć dokładnie tych samych mechanizmów do tworzenia obrazu
na w oknie i na drukarce.
GDI jest jednym z najlepszych przykładów na to, że z perspektywy programisty nie tyl-

ko każda odmiana systemu Windows zachowuje się tak samo, ale również każdy model PCta,
choć przecież zbudowany z innych podzespołów, identycznie reaguje na polecenia programisty.
Nie ważne, czy w komputerze mam najnowszy model karty graficznej, czy zwykłą kartę VGA,
Windows na polecenie narysowania linii na ekranie zareaguje tak samo.
Dzieje się tak dlatego, że między wywołaniem funkcji przez programistę, a pojawieniem się jej

efektów, system operacyjny wykonuje mnóstwo pracy, o której nawet programista nie ma pojęcia.
W przypadku GDI, Windows wysyła odpowiednie polecenia do sterownika ekranu, który, co
nie powinno dziwić, również ma swój interfejs programowania, służący do porozumiewania się
sterownika z systemem, tyle że ukryty przed programistą pracującym z Win32API.
Zobaczmy przykład użycia GDI:

/*
*
* Tworzenie grafiki za pomocą GDI
*
*/
#include <windows.h>
#include <string.h>

/* Deklaracja wyprzedzająca: funkcja obsługi okna */
LRESULT CALLBACK WindowProcedure(HWND, UINT, WPARAM, LPARAM);
/* Nazwa klasy okna */
char szClassName[] = "PRZYKLAD";

2. OKNA 35

int WINAPI WinMain(HINSTANCE hThisInstance, HINSTANCE hPrevInstance,
LPSTR lpszArgument, int nFunsterStil)

{
HWND hwnd; /* Uchwyt okna */
MSG messages; /* Komunikaty okna */
WNDCLASSEX wincl; /* Struktura klasy okna */

/* Klasa okna */
wincl.hInstance = hThisInstance;
wincl.lpszClassName = szClassName;
wincl.lpfnWndProc = WindowProcedure; // wskaźnik na funkcję obsługi okna
wincl.style = CS_DBLCLKS;
wincl.cbSize = sizeof(WNDCLASSEX);

/* Domyślna ikona i wskaźnik myszy */
wincl.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wincl.hIconSm = LoadIcon(NULL, IDI_APPLICATION);
wincl.hCursor = LoadCursor(NULL, IDC_ARROW);
wincl.lpszMenuName = NULL;
wincl.cbClsExtra = 0;
wincl.cbWndExtra = 0;
/* Jasnoszare tło */
wincl.hbrBackground = (HBRUSH)GetStockObject(LTGRAY_BRUSH);

/* Rejestruj klasę okna */
if(!RegisterClassEx(&wincl)) return 0;

/* Twórz okno */
hwnd = CreateWindowEx(

0,
szClassName,
"PRZYKLAD",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
512,
512,
HWND_DESKTOP,
NULL,
hThisInstance,
NULL
);

ShowWindow(hwnd, nFunsterStil);
/* Pętla obsługi komunikatów */
while(GetMessage(&messages, NULL, 0, 0))
{

/* Tłumacz kody rozszerzone */
TranslateMessage(&messages);
/* Obsłuż komunikat */
DispatchMessage(&messages);

}

/* Zwróć parametr podany w PostQuitMessage() */
return messages.wParam;

}

int xSize, ySize;

/* Tę funkcję woła DispatchMessage() */
LRESULT CALLBACK WindowProcedure(HWND hwnd, UINT message,

WPARAM wParam, LPARAM lParam)
{
char sText[] = "Przykład 1, witam";
HDC hdc ; // kontekst urządzenia
int i ;
PAINTSTRUCT ps ;
RECT r;

HPEN hPen;

36 ROZDZIAŁ B. PROGRAMOWANIE WIN32API

HBRUSH hBrush;

switch (message)
{

case WM_DESTROY:
PostQuitMessage(0);
break;

case WM_SIZE:
xSize = LOWORD(lParam);
ySize = HIWORD(lParam);

GetClientRect(hwnd, &r);
InvalidateRect(hwnd, &r, 1);

break;
case WM_PAINT:
hdc = BeginPaint (hwnd, &ps) ;

// linie
hPen = CreatePen (PS_SOLID, 3, RGB (255, 0, 0)) ;
SelectObject(hdc, hPen);
for (i=0; i<xSize; i+=xSize/40)
{
MoveToEx(hdc, xSize/2, 0, NULL);
LineTo(hdc, i, ySize);

}
DeleteObject(hPen);

// kształty
SetBkColor(hdc, RGB(0, 255, 0));
hBrush = CreateHatchBrush (HS_CROSS, RGB (0, 0, 255)) ;
SelectObject(hdc, hBrush);
r.left = 10;
r.top = 10;
r.right = 50;
r.bottom = 50;
FillRect(hdc, &r, hBrush);
DeleteObject(hBrush);

// tekst
if (xSize > 0 && ySize > 0)
{
SetTextAlign(hdc, TA_CENTER | VTA_CENTER);
SetBkMode(hdc, TRANSPARENT);
TextOut(hdc, xSize / 2, 20, sText, strlen(sText));

}

EndPaint(hwnd, &ps);
break;

default:
return DefWindowProc(hwnd, message, wParam, lParam);

}
return 0;

}

Jak widać obiektów GDI używa się w sposób dość prosty. Obiekt jest najpierw tworzony za
pomocą odpowiedniej funkcji (na przykład CreatePen), następnie jest ustawiany jako bieżący
(za pomocą funkcji SelectObject), zaś po użyciu jest niszczony (DeleteObject).

Uchwyty do kontekstów urządzeń

Wszystkie funkcje GDI, które odpowiadają za tworzenie obrazu, przyjmują jako pierwszy pa-
rametr uchwyt do kontekstu urządzenia. Dzięki temu system wie do jakiego obiektu (okna,
drukarki) odnosi się aktualna funkcja.
W przypadku rysowania w oknach, kontekst urządzenia można uzyskać na dwa sposoby.

2. OKNA 37

Rysunek B.4: Obsługa grafiki okna za pomocą GDI

Wewnątrz WM PAINT W kodzie obsługującym komunikat WM PAINT uchwyt kontekstu
można pobrać i zwolnić za pomocą funkcji

HDC BeginPaint(

HWND hwnd,
LPPAINTSTRUCT lpPaint
);

BOOL EndPaint(

HWND hWnd,
CONST PAINTSTRUCT *lpPaint
);

Poza WM PAINT Poza kodem obsługującym komunikat WM PAINT uchwyt kontekstu moż-
na pobrać i zwolnić za pomocą funkcji

HDC GetDC(

HWND hWnd
);

HDC GetWindowDC(

HWND hWnd
);

int ReleaseDC(

HWND hWnd,
HDC hDC
);

Skąd system Windows wie, kiedy do okna przesłać komunikat WM PAINT oznaczający
konieczność odświeżenia zawartości okna? Otóż z każdym oknem system kojarzy informację o
tym, czy jego zawartość jest ważna, czy nie.

38 ROZDZIAŁ B. PROGRAMOWANIE WIN32API

Po zakończeniu rysowania i wywołaniu funkcji EndPaint, zawartość okna jest ważna. Kiedy
okno zostanie na przykład przykryte innym oknem, a następnie odsłonięte z powrotem lub na
przykład zminimalizowane a następnie przywołane z powrotem, Windows automatycznie wysyła
do okna komunikat WM PAINT, uznając powierzchnię okna za nieważną.
Bardzo często okazuje się, że programista chce powierzchnię okna unieważniać częściej niż

gdyby miało dziać się to automatycznie. Na przykład wtedy, kiedy zawartość okna musi być
odświeżana regularnie, ponieważ zawiera jakieś chwilowe, ulotne informacje. W takim przypadku
obszar okna może być unieważniany bądź zatwierdzany za pomocą funkcji:

BOOL InvalidateRect(

HWND hWnd,
CONST RECT *lpRect,
BOOL bErase
);

BOOL ValidateRect(

HWND hWnd,
CONST RECT *lpRect
);

Pierwsza z tych funkcji powoduje natychmiastowe wysłanie do okna komunikatu WM PAINT,
druga zaś powoduje zatwierdzenie obszaru okna. System traktuje komunikat WM PAINT w spo-
sób trochę szczególny, bowiem wysyłanie tego komunikatu cześciej niż jest on obsługiwany nie
ma żadnego efektu - w kolejce komunikatów do okna może znajdować się w danej chwili tylko
jeden komunikat WM PAINT.

Własne kroje pisma

Własne kroje pisma można tworzyć za pomocą funkcji

HFONT CreateFont(

int nHeight,
int nWidth,
int nEscapement,
int nOrientation,
int fnWeight,
DWORD fdwItalic,
DWORD fdwUnderline,
DWORD fdwStrikeOut,
DWORD fdwCharSet,
DWORD fdwOutputPrecision,
DWORD fdwClipPrecision,
DWORD fdwQuality,
DWORD fdwPitchAndFamily,
LPCTSTR lpszFace
);

Aby utworzona czcionka stała się aktywna należy oczywiście wybrać ją w jakimś kontekście
graficznym za pomocą funkcji SelectObject.

2.6 Tworzenie menu

Do tworzenia menu przeznaczone są funkcje CreateMenu, AppendMenu i SetMenu.

#include <windows.h>

/* Deklaracja wyprzedzająca: funkcja obsługi okna */
LRESULT CALLBACK WindowProcedure(HWND, UINT, WPARAM, LPARAM);
void CreateMyMenu(HWND hwnd);

2. OKNA 39

/* Nazwa klasy okna */
char szClassName[] = "PRZYKLAD";

int WINAPI WinMain(HINSTANCE hThisInstance, HINSTANCE hPrevInstance,
LPSTR lpszArgument, int nFunsterStil)

{
HWND hwnd; /* Uchwyt okna */
MSG messages; /* Komunikaty okna */
WNDCLASSEX wincl; /* Struktura klasy okna */

/* Klasa okna */
wincl.hInstance = hThisInstance;
wincl.lpszClassName = szClassName;
wincl.lpfnWndProc = WindowProcedure; // wskaźnik na funkcję obsługi okna
wincl.style = CS_DBLCLKS;
wincl.cbSize = sizeof(WNDCLASSEX);

/* Domyślna ikona i wskaźnik myszy */
wincl.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wincl.hIconSm = LoadIcon(NULL, IDI_APPLICATION);
wincl.hCursor = LoadCursor(NULL, IDC_ARROW);
wincl.lpszMenuName = NULL;
wincl.cbClsExtra = 0;
wincl.cbWndExtra = 0;
/* Jasnoszare tło */
wincl.hbrBackground = (HBRUSH)GetStockObject(LTGRAY_BRUSH);

/* Rejestruj klasę okna */
if(!RegisterClassEx(&wincl)) return 0;

/* Twórz okno */
hwnd = CreateWindowEx(

0,
szClassName,
"Przykład",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
512,
512,
HWND_DESKTOP,
NULL,
hThisInstance,
NULL
);

CreateMyMenu(hwnd);
ShowWindow(hwnd, nFunsterStil);
/* Pętla obsługi komunikatów */
while(GetMessage(&messages, NULL, 0, 0))
{

/* Tłumacz kody rozszerzone */
TranslateMessage(&messages);
/* Obsłuż komunikat */
DispatchMessage(&messages);

}

/* Zwróć parametr podany w PostQuitMessage() */
return messages.wParam;

}

/* Tę funkcję woła DispatchMessage() */
LRESULT CALLBACK WindowProcedure(HWND hwnd, UINT message,

WPARAM wParam, LPARAM lParam)
{
switch (message)
{

case WM_DESTROY:
PostQuitMessage(0);
break;

40 ROZDZIAŁ B. PROGRAMOWANIE WIN32API

case WM_COMMAND:
switch(LOWORD(wParam))
{

case 101 : SendMessage(hwnd, WM_CLOSE, 0, 0);break;
}

default:
return DefWindowProc(hwnd, message, wParam, lParam);

}
return 0;

}

void CreateMyMenu(HWND hwnd)
{
HMENU hMenu;
HMENU hSubMenu;

hMenu = CreateMenu () ;

hSubMenu = CreateMenu () ;
AppendMenu (hSubMenu, MF_STRING , 100, "&Nowy") ;
AppendMenu (hSubMenu, MF_SEPARATOR, 0 , NULL) ;
AppendMenu (hSubMenu, MF_STRING , 101, "&Koniec") ;
AppendMenu (hMenu, MF_POPUP, hSubMenu, "&Plik") ;

hSubMenu = CreateMenu () ;
AppendMenu (hSubMenu, MF_STRING, 102, "&Undo") ;
AppendMenu (hSubMenu, MF_SEPARATOR, 0, NULL) ;
AppendMenu (hSubMenu, MF_STRING, 103, "Re&do") ;
AppendMenu (hMenu, MF_POPUP, hSubMenu, "&Edycja") ;

SetMenu(hwnd, hMenu);
}

Menu utworzone w taki sposób może być również wykorzystywane jak menu kontekstowe:

case WM_RBUTTONUP:
point.x = LOWORD (lParam) ;
point.y = HIWORD (lParam) ;
ClientToScreen (hwnd, &point) ;

TrackPopupMenu (hMenu, TPM_RIGHTBUTTON, point.x, point.y,
0, hwnd, NULL) ;

return 0 ;

3 Procesy, wątki, synchronizacja

3.1 Tworzenie wątków i procesów

Zadaniem systemu operacyjnego jest wykonywanie programów, przechowywanych najczęściej
na różnego rodzaju nośnikach. Z punktu widzenia systemu operacyjnego, program to więc nic
więcej niż plik, w którym przechowywany jest obraz kodu wynikowego programu.
Program uaktywnia się w wyniku jawnego utworzenia przez system operacyjny procesu,

który odpowiada obrazowi programu. W systemie Windows do tworzenia procesu służy funkcja:

BOOL CreateProcess(

LPCTSTR lpApplicationName,// nazwa modułu wykonywalnego
LPTSTR lpCommandLine,// linia poleceń
LPSECURITY_ATTRIBUTES lpProcessAttributes,// atrybuty bezpieczeństwa procesu
LPSECURITY_ATTRIBUTES lpThreadAttributes,// atrybuty bezpieczeństwa wątku
BOOL bInheritHandles,// dziedziczenie uchwytów
DWORD dwCreationFlags,// dodatkowe flagi, np. priorytet
LPVOID lpEnvironment,// środowisko
LPCTSTR lpCurrentDirectory,
LPSTARTUPINFO lpStartupInfo,// własciwości startowe okna
LPPROCESS_INFORMATION lpProcessInformation // zwraca informacje o procesie i wątku
);

3. PROCESY, WĄTKI, SYNCHRONIZACJA 41

Proces po załadowaniu do systemu nie wykonuje kodu, dostarcza jedynie przestrzeni adreso-
wej wątkom. To wątki są jednostkami, którym system przydziela czas procesora. Każdy proces
w systemie ma niejawnie utworzony jeden wątek wykonujący kod programu. Każdy następny
wątek w obrębie jednego procesu musi być utworzony explicite.
Tworzenie wielu wątków w obrębie jednego procesu jest czasami bardzo przydatne. Wątki

mogą na przykład przejmować na siebie długotrwałe obliczenia nie powodując ”zamierania”
całego procesu. Ponieważ wątki współdzielą zmienne globalne procesu, możliwa jest niednoczesna
praca wielu wątków na jakimś zbiorze danych procesu.
Podsumujmy związek pomiędzy procesami a wątkami:
� Proces nie wykonuje kodu, proces jest obiektem dostarczającym wątkowi przestrzeni ad-
resowej,

� Kod zawarty w przestrzeni adresowej procesu jest wykonywany przez wątek,

� Pierwszy wątek procesu tworzony jest implicite przez system operacyjny, każdy następny
musi być utworzony explicite,

� Wszystkie wątki tego samego procesu dzielą wirtualną przestrzeń adresową i mają dostęp
do tych samych zmiennych globalnych i zasobów systemowych.

Do tworzenia dodatkowych wątków w obrębie jednego procesu służy funkcja:

HANDLE CreateThread(

LPSECURITY_ATTRIBUTES lpThreadAttributes,// atrybuty bezpieczeństwa wątku
DWORD dwStackSize,// rozmiar stosu (0 - domyślny)
LPTHREAD_START_ROUTINE lpStartAddress,// wskaźnik na funkcję wątku
LPVOID lpParameter,// wskaźnik na argument
DWORD dwCreationFlags,// dodatkowe flagi
LPDWORD lpThreadId // zwraca identyfikator wątku
);

Po utworzeniu nowy wątek jest wykonywany równolegle z pozostałymi wątkami w systemie.

/*
* Tworzenie wątków
*/
#include <windows.h>
#include <stdio.h>
#include <stdlib.h>

DWORD WINAPI ThreadProc(LPVOID* theArg);

int main(int argc, char *argv[])
{
DWORD threadID;
DWORD thread_arg = 4;

HANDLE hThread = CreateThread(NULL, 0,
(LPTHREAD_START_ROUTINE)ThreadProc,

&thread_arg, 0, &threadID);

WaitForSingleObject(hThread, INFINITE);

return 0;
}

DWORD ThreadProc(LPVOID* theArg)
{
DWORD timestoprint = (DWORD)*theArg;
for (int i = 0; i<timestoprint; i++)
printf("Witam %d \n", i);
return TRUE;

}

42 ROZDZIAŁ B. PROGRAMOWANIE WIN32API

Programista ma do dyspozycji kilka dodatkowych funkcji do manipulacji tworzonymi wąt-
kami i procesami, m.in.:

� Ustalanie priorytetu wątku.

BOOL SetThreadPriority(

HANDLE hThread,// handle to the thread
int nPriority // thread priority level
);

� Ustalanie procesora na którym wykonuje się wątek w systemach wieloprocesorowych.

DWORD SetThreadAffinityMask (

HANDLE hThread,// handle to the thread of interest
DWORD dwThreadAffinityMask // a thread affinity mask
);

3.2 Synchronizacja wątków

Sytuacja w której wiele wątków jednocześnie operuje na danych globalnych procesu może rodzić
problemy. Wyobraźmy sobie bowiem dwa wątki mające dostęp do zmiennej globalnej. Niech
pierwszy z wątków wykonuje następujący kod :

i = 0;
// !
if (i == 0)
{
...
}

a drugi:

i = 1;
// *
if (i == 1)
{
...
}

Jeśli któryś z wątków zostanie przez system operacyjny wywłaszczony w miejscu oznaczonym
w kodzie znakiem ”*”, drugi wątek stanie się aktywnym i wykona swoją instrukcję przypisania,
po czym ponownie pierwszy wątek stanie się aktywny, to operacja porównania zakończy się
niepowodzeniem, najprawdopodobniej wbrew intencjom programisty. To czego potrzeba, aby
unikać tego typu problemów, to jakaś forma kontroli nad przełączaniem wątków przez system.
Win32API udostępnia 5 sposoby synchronizacji wątków. Są to:

� zdarzenia,

� mutexy,

� semafory,

� sekcje krytyczne,

� zegary oczekujące

Mechanizm sekcji krytycznej możliwy jest do wykorzystania tylko w obrębie jednego proce-
su (do synchronizacji wątków), jednak jest to metoda najszybsza i najwydajniejsza. Pozostałe
metody mogą być stosowane również dla wielu procesów.

3. PROCESY, WĄTKI, SYNCHRONIZACJA 43

Zdarzenia

Win32API umożliwia definiowanie własnych zdarzeń za pomocą funkcji

HANDLE CreateEvent(

LPSECURITY_ATTRIBUTES lpEventAttributes,// atrybuty bezpieczeństwa
BOOL bManualReset,// flaga ręcznego resetowania
BOOL bInitialState,// flaga początkowego stanu
LPCTSTR lpName // nazwa
);

Każdy oczekujący wątek widzi zdarzenie jako pewną dwustanową flagę: zdarzenie jest zgło-
szone albo odwołane. Za pomocą funkcji

BOOL SetEvent(

HANDLE hEvent // uchwyt zdarzenia
);

informujemy system o zaistnieniu zdarzenia. Od tej pory zdarzenie jest zgłoszone i wszystkie
wątki oczekujące do tej pory na jego zgłoszenie mogą wznowić działanie. Zdarzenie zostaje
odwołane, kiedy zostanie wywołana funkcja

BOOL ResetEvent(

HANDLE hEvent // uchwyt zdarzenia
);

Na zaistnienie wydarzenia w systemie wątki oczekują za pomocą funkcji

DWORD WaitForSingleObject(

HANDLE hHandle, // uchwyt obiektu synchronizacji
DWORD dwMilliseconds // czas oczekiwania (INFINITE czeka aż do

// zajścia zdarzenia)
);

Zdarzenie utworzone z ustawioną flagą ręcznego odwoływania (CreateEvent(...,TRUE,...,...))
wymaga odwołania explicite (przez ResetEvent()), natomiast zdarzenie utworzone z flagą au-
tomatycznego odwoływania (CreateEvent(...,FALSE,...,...)) zostaje odwołane automatycznie po
przepuszczeniu jednego wątku przez funkcję oczekującą.
Warto również omówić działanie funkcji

BOOL PulseEvent(

HANDLE hEvent // uchwyt zdarzenia
);

Otóż powoduje ona zgłoszenie zdarzenia, po czym natychmiastowe jego odwołanie. Działanie
oczekujących wątków zależy od tego, czy zdarzenie jest odwoływane automatycznie czy ręcznie
(patrz paragraf wyżej): jeśli zdarzenie odwoływane jest ręcznie, to funkcja PulseEvent() prze-
puszcza wszystkie wątki oczekujące w danej chwili na zdarzenie, po czym odwołuje zdarzenie,
jeśli zaś zdarzenie odwoływane jest automatycznie, to funkcja PulseEvent() przepuszcza tylko
jeden wątek z puli oczekujących w danej chwili wątków, po czym odwołuje zdarzenie.

/*
* Wykorzystanie zdarzeń do synchronizacji wątków
*/
void main(void)
{

44 ROZDZIAŁ B. PROGRAMOWANIE WIN32API

HANDLE hThread[2];
DWORD threadID1, threadID2;
char szFileName="c:\\myfolder\\myfile.txt";

hEvent=CreateEvent(NULL, TRUE, FALSE, "FILE_EXISTS");

// tworzymy dwa wątki które czekają na utworzenie pliku
hThread[0]=CreateThread(NULL, 0, ThreadProc1, szFileName, 0, &threadID1);
hThread[1]=CreateThread(NULL, 0, ThreadProc2, szFileName, 0, &threadID1);

HANDLE hFile=CreateFile(szFileName, GENERIC_WRITE, 0, &security, . . .);

// kod wypełniający plik danymi np. WriteFile(...)

// sygnalizacja wątkom tego, że dane są gotowe
// wątki od ich utworzenia tylko na to czekały
SetEvent(hEvent);
WaitForMultipleObjects(2, hThread, TRUE, _czas_czekania_);

CloseHandle(hEvent);
CloseHandle(hFile);
CloseHandle(hThread[0]);
CloseHandle(hThread[1]);

}

DWORD ThreadProc1(LPVOID* arg)
{

char szFileName = (char*)arg;
// tutaj wątek otwiera zdarzenie określone w module głównym
HANDLE hEvent = OpenEvent(SYNCHRONIZE, FALSE, "FILE_EXISTS");
// czeka na jego pojawienie się
WaitForSingleObject(hEvent, INFINITE);
// i czyta dane zapisane do pliku
HANDLE hAnswerFile = ::CreateFile(szFileName, GENERIC_READ, 0, NULL,

OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

// przetwarzaj dane
// ...
return TRUE;

}

DWORD ThreadProc2(LPVOID* arg)
{

char szFileName = (char*)arg;
// tutaj wątek otwiera zdarzenie określone w module głównym
HANDLE hEvent = OpenEvent(SYNCHRONIZE, FALSE, "FILE_EXISTS");
// czeka na jego pojawienie się
WaitForSingleObject(hEvent, INFINITE);
// i czyta dane zapisane do pliku
HANDLE hAnswerFile = ::CreateFile(szFileName, GENERIC_READ, 0, NULL,

OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

// przetwarzaj dane
// ...
return TRUE;

}

Mutexy

Nazwa mutex pochodzi od angielskiego terminu mutually exclusive (wzajemnie wykluczający
się). Mutex jest obiektem służącym do synchronizacji. Jego stan jest ustawiony jako ”sygna-
lizowany”, kiedy żaden wątek nie sprawuje nad nim kontroli oraz ”niesygnalizowany” kiedy
jakiś wątek sprawuje nad nim kontrolę. Synchronizację za pomocą mutexów realizuje się tak, że
każdy wątek czeka na objęcie mutexa w posiadanie, zaś po zakończeniu operacji wymagającej
wyłączności, wątek uwalnia mutexa.
W celu stworzenia mutexa, wątek woła funkcję

3. PROCESY, WĄTKI, SYNCHRONIZACJA 45

HANDLE CreateMutex(

LPSECURITY_ATTRIBUTES lpMutexAttributes,// atrybuty bezpieczeństwa
BOOL bInitialOwner,// flaga własności przy tworzeniu
LPCTSTR lpName // nazwa
);

W chwili tworzenia wątek może zażądać natychmiastowego prawa własności do mutexa. Inne
wątki (nawet innych procesów) uzyskują uchwyt mutexa za pomocą funkcji

HANDLE OpenMutex(

DWORD dwDesiredAccess,// flaga dostępu
BOOL bInheritHandle,// uchwyt dziedziczony na procesy tworzone

// przez CreateProcess
LPCTSTR lpName // nazwa
);

Następnie czekają na objęcie mutexa w posiadanie (za pomocą WaitForSingleObject()). Do
uwalniania mutexów służy funkcja

BOOL ReleaseMutex(

HANDLE hMutex // handle of mutex object
);

Jeśli wątek kończy się bez uwalniania mutexów, które posiadał, takie mutexy uważa się za
porzucone. Każdy czekający wątek może objąć takie mutexy w posiadanie, zaś funkcja czekają-
ca na przydział mutexa (WaitForSingleObject(), jak widać bardzo uniwersalna funkcja) zwraca
wartość WAIT ABANDONED. W takiej sytuacji warto zastanowić się, czy gdzieś nie wystąpił
jakiś błąd (skoro wątek, który był w posiadaniu mutexa nie oddał go explicite przez ReleaseMu-
tex(), to najprawdopodobniej został zakończony w jakiś nieprzewidziany sposób). Mutexy są w
działaniu bardzo podobne do semaforów.

/*
* Wykorzystanie mutexów do synchronizacji wątków
*/
void main(void)
{

HANDLE hThread[2];
DWORD threadID1, threadID2;

char szFileName="c:\\myfolder\\myfile.txt";

hMutex=CreateMutex(NULL, TRUE, "FILE_EXISTS");

// tworzymy dwa wątki które czekają na utworzenie pliku

hThread[0]=CreateThread(NULL, 0, ThreadProc1, &hMutex, 0, &threadID1);
hThread[1]=CreateThread(NULL, 0, ThreadProc2, &hMutex, 0, &threadID1);

HANDLE hFile=CreateFile(szFileName, GENERIC_WRITE, 0, &security, . . .);

// kod wypełniający plik danymi np. WriteFile(...)

// sygnalizacja wątkom tego, że dane są gotowe
// wątki od ich utworzenia tylko na to czekały

ReleaseMutex(hMutex);
WaitForMultipleObjects(2, hThread, TRUE, _czas_czekania_);

CloseHandle(hMutex);
CloseHandle(hFile);
CloseHandle(hThread[0]);

46 ROZDZIAŁ B. PROGRAMOWANIE WIN32API

CloseHandle(hThread[1]);
}

DWORD ThreadProc1(LPVOID* arg)
{

HANDLE hMutex = (HANDLE)(*arg);
WaitForSingleObject(hMutex, INFINITE);

// i czyta dane zapisane do pliku
HANDLE hAnswerFile = ::CreateFile(szFileName, GENERIC_READ, 0, NULL, ...);

// przetwarzaj dane
ReleaseMutex(hMutex);
return TRUE;

}

DWORD ThreadProc2(LPVOID* arg)
{

HANDLE hMutex = (HANDLE)(*arg);
WaitForSingleObject(hMutex, INFINITE);

// i czyta dane zapisane do pliku
HANDLE hAnswerFile = ::CreateFile(szFileName, GENERIC_READ, 0, NULL, ...);

// przetwarzaj dane
ReleaseMutex(hMutex);
return TRUE;

}

Semafory

Semafory mogą być wykorzystywane tam, gdzie zasób dzielony jest na ograniczoną ilość użyt-
kowników. Semafor działa jak furtka kontrolująca ilość wątków wykonujących jakiś fragment
kodu. Za pomocą semaforów aplikacja może kontrolować na przykład maksymalną ilość otwar-
tych plików, czy utworzonych okien. Semafory są w działaniu bardzo podobne do mutexów.
Nowy semafor tworzony jest w funkcji

HANDLE CreateSemaphore(

LPSECURITY_ATTRIBUTES lpSemaphoreAttributes,
LONG lInitialCount,// początkowa wartość licznika
LONG lMaximumCount,// maksymalna wartość licznika
LPCTSTR lpName // nazwa
);

Wątek tworzący semafor specyfikuje wartość wstępną i maksymalną licznika. Inne wątki
uzyskują dostęp do semafora za pomocą funkcji

HANDLE OpenSemaphore(

DWORD dwDesiredAccess,// dostęp
BOOL bInheritHandle,// dziedziczenie
LPCTSTR lpName // nazwa
);

i czekają na wejście za pomocą funkcji ... (to już powinno być jasne jakiej).
Po zakończeniu pracy w sekcji krytycznej wątek uwalnia semafor za pomocą funkcji

BOOL ReleaseSemaphore(

HANDLE hSemaphore,// uchwyt
LONG lReleaseCount,// wartość dodawana do licznika
LPLONG lpPreviousCount // otrzymuje poprzednią wartość licznika
);

3. PROCESY, WĄTKI, SYNCHRONIZACJA 47

Wątki nie wchodzą w posiadanie semaforów! W przypadku mutexów, jeśli wątek zażąda
po raz kolejny dostępu do tego mutexu, którego jest już właścicielem, dostęp taki zostaje mu
przyznany natychmiast.
Jeśli wątek nagle rozpocznie czekanie na ten sam semafor, to semafor zachowuje się tak,

jakby wejścia zażądał każdy inny wątek. Inaczej wygląda także sprawa uwalniania semaforów
i mutexów: mutex może być uwolniony tylko przez wątek, który jest jego właścicielem, licznik
semafora może być zwiększony przez dowolny wątek, który z tego semafora korzysta.

/*
* Wykorzystanie semaforów do synchronizacji wątków
*/
void main(void)
{

HANDLE hThread[2];
DWORD threadID1, threadID2;
char szFileName="c:\\myfolder\\myfile.txt";

hSemaphore=CreateSemaphore(NULL, 0, 1, "FILE_EXISTS");

// tworzymy dwa wątki które czekają na utworzenie pliku
hThread[0]=CreateThread(NULL, 0, ThreadProc1, &hSemaphore, 0, &threadID1);
hThread[1]=CreateThread(NULL, 0, ThreadProc2, &hSemaphore, 0, &threadID1);

HANDLE hFile=CreateFile(szFileName, GENERIC_WRITE, 0, &security, . . .);

// kod wypełniający plik danymi np. WriteFile(...)

// sygnalizacja wątkom tego, że dane są gotowe
// wątki od ich utworzenia tylko na to czekały

ReleaseSemaphore(hSemaphore, 1, NULL);
WaitForMultipleObjects(2, hThread, TRUE, _czas_czekania_);

CloseHandle(hSemaphore);
CloseHandle(hFile);
CloseHandle(hThread[0]);
CloseHandle(hThread[1]);

}

DWORD ThreadProc1(LPVOID* arg)
{

HANDLE hSem = OpenSemaphore(SEMAPHORE_ALL_ACCESS, "FILE_EXISTS");
WaitForSingleObject(hSem, INFINITE);

// i czyta dane zapisane do pliku

HANDLE hAnswerFile = ::CreateFile(szFileName, GENERIC_READ, 0, NULL, ...);

// przetwarzaj dane

ReleaseSemaphore(hSem, 1, NULL);
return TRUE;

}

DWORD ThreadProc2(LPVOID* arg)
{

HANDLE hSem = OpenSemaphore(SEMAPHORE_ALL_ACCESS, "FILE_EXISTS");
WaitForSingleObject(hSem, INFINITE);

// i czyta dane zapisane do pliku

HANDLE hAnswerFile = ::CreateFile(szFileName, GENERIC_READ, 0, NULL, ...);

// przetwarzaj dane

ReleaseSemaphore(hSem, 1, NULL);
return TRUE;

}

48 ROZDZIAŁ B. PROGRAMOWANIE WIN32API

Sekcja krytyczna

Interfejs programowania Win32API udostępnia typ danych CRITICAL SECTION, który wraz
z odpowiednim zestawem funkcji może być wykorzystany do implementacji sekcji krytycznej.

/*
* Wykorzystanie sekcji krytycznej do synchronizacji wątków
*/
#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

#define MAXTRY 3

CRITICAL_SECTION cs; // dzielona na wszystkie wątki

// główny wątek programu
void ThreadMain(char *name)
{

int i;

for (i=0; i<MAXTRY; i++)
{

EnterCriticalSection(&cs);

/* proszę spróbować też zamiast
powyższej linii napisać

while (TryEnterCriticalSection(&cs)==FALSE)
{
printf(\%s, czekam na wejście\n", name);
Sleep(5);

}

uwaga! - tylko na WinNT
*/

printf(\%s, jestem w sekcji krytycznej!\n", name);
Sleep(5);
LeaveCritcalSection(&cs);

printf(\%s, wyszedłem z sekcji krytycznej!\n", name);
}

}

// tworzy wątek potomny

HANDLE CreateChild(char* name)
{

HANDLE hThread; DWORD dwId;
hThread = CreateThread(NULL, 0,

(LPTHREAD_START_ROUTINE)ThreadMain,
(LPVOID)name, 0, &dwId);

assert(hThread!=NULL); return hThread;
}

int main(void)
{

HANDLE hT[4];

InitializeCriticalSection(&cs);

hT[0]=CreateChild(\Jurek");
hT[1]=CreateChild(\Ogórek");
hT[2]=CreateChild(\Kiełbasa");
hT[3]=CreateChild(\Sznurek");

4. KOMUNIKACJA MIĘDZY PROCESAMI 49

WaitForMultipleObjects(4, hT, TRUE, INFINITE);

CloseHandle(hT[0]);CloseHandle(hT[1]);
CloseHandle(hT[2]);CloseHandle(hT[3]);

DeleteCriticalSection(&cs);

return 0;
}

4 Komunikacja między procesami

Zajmiemy się dokładniej komunikacją za pomocą tzw. gniazd. Sama idea gniazd została opra-
cowana na Uniwersytecie Kalifornijskim w Berkley w celu zapewnienia możliwości komunika-
cyjnych w systemie Unix. Opracowany tam interfejs programowania nosi nazwę ”Berkley socket
interface” i jest stopniowo z mniejszymi lub większymi zmianami przejmowany przez kolejne
systemy operacyjne.
Największa zaleta jaką daje korzystanie z gniazd to w miarę prosty i przejrzysty interfejs

niezależny od warstwy komunikacyjnej (oczywiście stosunkowo najmniej wygodnie korzysta się
z interfejsu gniazd w czystym C, w Javie czy C# jest jeszcze prościej).

4.1 Charakterystyka protokołów sieciowych

Skoro gniazda są tylko interfejsem programowania służącym do oprogramowania transmisji sie-
ciowych, to zajmijmy się przez chwilę samymi protokołami9 i ich charakterystykami.
Bez wchodzenia w szczegóły, możemy podzielić protokoły na

� oparte o wiadomości (ang. message-oriented). Takim mianem określamy protokoły, które
przesyłają dane w paczkach o skończonej pojemności. Nadawca wielokrotnie wysyła małe
paczki informacji, odbiorca zaś musi wielokrotnie te paczki odczytywać. Wyobraźmy so-
bie, że nadawca wysyła 10 paczek po 64 znaki. Mimo że w warstwie transmisji protokół
może zdecydować o połączeniu tych wiadomości w jedną paczkę, po dotarciu do odbiorcy
wiadomości mogą być rozdzielone i przekazane w takich samych paczkach, w jakich były
nadawane (choć niekoniecznie).

� strumieniowe (ang. stream-based). Tutaj proces nadawania trwa nieustannie, zaś odbiorca
w danej chwili dostaje tylko informacji, ile w danej chwili do niego dotarło.

Inna ważna linia dzieli protokoły na

� wykorzystujące bezpośrednie połączenie (ang. connection-oriented). Te protokoły przed
wysłaniem czy odebraniem jakichkolwiek informacji nawiązują bezpośrednie połączenie
między nadawcą i odbiorcą. Chodzi o zagwarantowanie tego, że oba zainteresowane pod-
mioty istnieją i są połączone ścieżką gotową do transmisji danych.

� bezpołączeniowe (ang. connectionless). Nadawca nie ma tutaj nawet gwarancji, że odbiorca
istnieje. Trochę przypomina to usługi poczty - nadawca adresuje wiadomość i wysyła ją,
nie wie jednak czy odbiorca na tę wiadomość czeka ani czy wiadomość do odbiorcy dotrze.

Każdy protokół może charakteryzować się posiadaniem lub brakiem następujących cech:

� wiarygodność (ang. reliability). Wiarygodny protokół musi zapewniać dotarcie każdego
bajtu informacji od nadawcy do odbiorcy,

9Mowa na razie o protokołach fizycznych, czyli sposobach transmisji danych między różnymi maszynami w
sieci. Jeśli przesyłane dane są w jakiś sposób interpretowane, to mamy do czynienia z protokołem logicznym.

50 ROZDZIAŁ B. PROGRAMOWANIE WIN32API

� zachowywanie porządku (ang. ordering). Protokół który zachowuje porządek, dba o to by
informacje docierały do odbiorcy w takiej samej kolejności w jakiej były nadawane,

� łagodne zakończenie (ang. graceful close). Kiedy któraś ze stron zamierza zamknąć połą-
czenie, protokół może dać obu stronom szansę na doczytanie informacji, które są jeszcze
w drodze.

� otwarta transmisja (ang. broadcast data). Protokół może transmitować dane tak, aby do-
cierały do wszystkich maszyn w sieci. Wada takich protokołów polega na tym, że wszystkie
maszyny w sieci muszą tracić czas na analizę przesyłanych informacji, mimo że niekoniecz-
nie muszą być nimi zainteresowane.

� niezależność od warstwy komunikacyjnej (ang. routability). Transmisja w takich protoko-
łach nie zależy od tego ile i jakie maszyny stoją pomiędzy nadawcą i odbiorcą. Możliwe
jest nawet, by kolejne informacje docierały do odbiorcy inną drogą.

4.2 Podstawy biblioteki Winsock

Gniazda zaadaptowano do systemu Windows pod nazwą Winsock. Za pomocą tej biblioteki moż-
na tworzyć aplikacje korzystające z wielu protokołów sieciowych. Dzięki prostemu interfejsowi,
z perspektywy programisty korzystanie z różnych protokołów wygląda niemal identycznie.
Przy nawiązywaniu połączeń jedna strona jest ”serwerem”, który oczekuje połączenia, druga

strona jest ”klientem”, który nawiązuje połączenie z ”serwerem”. Protokół fizyczny określa spo-
sób transmisji danych między klientem a serwerem (sposób w jaki dane są przesyłane). Protokół
fizyczny to jednak nie wszystko - gwarancja, że dane zostały przesłane nie oznacza, że przekaz
został zrozumiany. Wyobraźmy sobie na przykład, że klient i serwer komunikują się za pomocą
protokołu fizycznego TCP/IP i że klient wysłał do serwera strumień danych ”QWERTY”. Co
serwer ma zrobić z takim przekazem? Otóż za interpretację przesyłanych danych odpowiadaja
coś co moglibyśmy nazwać protokołem logicznym, czyli pewien umówiony zestaw komunikatów
rozumianych przez obie strony transmisji. Kilka powszechnie znanych przykładów protokołów
logicznych to HTTP, FTP, TELNET.
Jeden fizyczny komputer może pełnić rolę serwera sieciowego dla wielu różnych protokołów

logicznych. W przypadku protokołu TCP/IP istnieje możliwość zdefiniowania aż 65535 rozłącz-
nych serwerów wirtualnych, oczekujących na połączenia z klientami. Numer takiego wirtualnego
serwera zwykle nazywa się portem10.
Aby uporządkować możliwy bałagan jaki daje dowolność wyboru portu dla serwera nasłu-

chującego połączeń, usługi typowe mają ściśle przyporządkowane numery portów. Na przykład
łącząc się z jakąś maszyną na port o numerze 80 możemy być niemal pewni, że skomunikujemy
się z serwerem HTTP, zaś na porcie 21 oczekuje TELNET, a na porcie 25 FTP11. Zobaczmy
więc najpierw jak przeglądnąć porty lokalnej maszyny w poszukiwaniu serwerów oczekujących
na połączenia.

#include <stdio.h>
#include <winsock2.h>

int ssocket,new_socket;
WSADATA wsd;
struct sockaddr_in addr;

10Słowo port określa tu więc tylko numer za pomocą którego klienci mogą rozróżniać wirtualne serwery ocze-
kujące na połączenia na tej samej maszynie. Nie ma to nic wspólnego z żadnymi fizycznymi portami komputera.
11Jest to jednak tylko umowa. Nie ma przeszkód w uruchomieniu serwera HTTP na porcie powiedzmy 3333.
Przeglądarki Internetowe domyślnie łączą się właśnie do portu 80 maszyny docelowej, jednak istnieje możliwość
wymuszenia innego numeru portu, na przykład http://www.qwe.com:3333.

4. KOMUNIKACJA MIĘDZY PROCESAMI 51

int sourceport;

int main()
{
printf("TCP/IP port status:\n");

if (WSAStartup(MAKEWORD(2,2), &wsd) != 0)
{
printf("Błąd ładowania Winsock 2.2!\n");
return 1;
}

for (sourceport=0; sourceport<65535; sourceport++)
{
ssocket=socket(AF_INET,SOCK_STREAM,IPPROTO_TCP);
addr.sin_family=AF_INET;
addr.sin_addr.s_addr=htonl(INADDR_ANY);
addr.sin_port=htons((unsigned short)sourceport);

if (bind(ssocket,(struct sockaddr*)&addr,sizeof(addr)))
{
printf("Otwarty port %d\n", sourceport);
}
shutdown(ssocket, SD_BOTH);
closesocket(ssocket);
}

return 0;
}

Jeśli próba połączenia gniazda z adresem o ustalonym porcie kończy się niepowodzeniem,
to przyjmujemy, że port jest zajęty12, jednak nie ma możliwości określenia jakiego protokołu
logicznego spodziewa się serwer nasłuchujący na określonym porcie. Jak zobaczymy bowiem w
poniższym przykładzie, serwer może w ogóle nie posługiwać się żadnym protokołem logicznym.
Kod programu serwera:

// prosty moduł serwera
// komunikacji za pomocą Winsock
// użycie: server.exe

#include <winsock2.h>
#include <stdio.h>
#include <stdlib.h>

#define DEFAULT_PORT 5000
#define DEFAULT_BUFFER 4096

// tylko Visual C++
#pragma comment(lib, "ws2_32.lib")

// funkcja: wątek do komunikacji z klientem
DWORD WINAPI ClientThread(LPVOID lpParam)
{
SOCKET sock = (SOCKET)lpParam;
char szBuf[DEFAULT_BUFFER];
int ret,
nLeft,
idx;

// serwer będzie oczekiwał na informacje od klienta
while(1)
{
// najpierw odbierz dane
ret = recv(sock, szBuf, DEFAULT_BUFFER, 0);
if (ret == 0)
break;

12Tak naprawdę mogą być inne przyczyny błędu funkcji bind(), jednak możemy je pominąć.

52 ROZDZIAŁ B. PROGRAMOWANIE WIN32API

else if (ret == SOCKET_ERROR)
{
printf("błąd funkcji recv(): %d\n", WSAGetLastError());
break;

}

szBuf[ret] = ’\0’;
printf("RECV: ’%s’\n", szBuf);

// następnie odeślij te dane, poporcjuj jeśli trzeba
// (niestety send() może nie wysłać wszystkiego)
nLeft = ret;
idx = 0;
while(nLeft > 0)
{
ret = send(sock, &szBuf[idx], nLeft, 0);
if (ret == 0)
break;

else if (ret == SOCKET_ERROR)
{
printf("błąd funkcji send(): %d\n", WSAGetLastError());
break;

}
nLeft -= ret;
idx += ret;

}
}
return 0;
}

int main(int argc, char *argv[])
{
WSADATA wsd;
SOCKET sListen,
sClient;
int iAddrSize;
HANDLE hThread;
DWORD dwThreadID;
struct sockaddr_in local, client;
struct hostent *host = NULL;

// inicjuj Winsock 2.2
if (WSAStartup(MAKEWORD(2,2), &wsd) != 0)
{
printf("Błąd ładowania Winsock 2.2!\n");
return 1;

}

// twórz gniazdo do nasłuchu połączeń klientów
sListen = socket(AF_INET, SOCK_STREAM, IPPROTO_IP);
if (sListen == SOCKET_ERROR)
{
printf("Błąd funkcji socket(): %d\n", WSAGetLastError());
return 1;

}

// wybierz interfejs (warstwę komunikacyjną)
local.sin_addr.s_addr = htonl(INADDR_ANY);
local.sin_family = AF_INET;
local.sin_port = htons(DEFAULT_PORT);
if (bind(sListen, (struct sockaddr *)&local, sizeof(local)) == SOCKET_ERROR)
{
printf("Błąd funkcji bind(): %d\n", WSAGetLastError());
return 1;

}

// nasłuch
host = gethostbyname("localhost");
if (host == NULL)
{

4. KOMUNIKACJA MIĘDZY PROCESAMI 53

printf("Nie udało się wydobyć nazwy serwera\n");
return 1;

}

listen(sListen, 8);
printf("Serwer nasłuchuje.\n");
printf("Adres: %s, port: %d\n", host->h_name, DEFAULT_PORT);

// akceptuj nadchodzące połączenia
while (1)
{
iAddrSize = sizeof(client);
sClient = accept(sListen, (struct sockaddr *)&client, &iAddrSize);
if (sClient == INVALID_SOCKET)
{
printf("Błąd funkcji accept(): %d\n", WSAGetLastError());
return 1;

}
printf("Zaakceptowano połączenie: serwer %s, port %d\n",
inet_ntoa(client.sin_addr), ntohs(client.sin_port));

hThread = CreateThread(NULL, 0, ClientThread,
(LPVOID)sClient, 0, &dwThreadID);

if (hThread == NULL)
{
printf("Błąd funkcji CreateThread(): %d\n", WSAGetLastError());
return 1;

}
CloseHandle(hThread);

}
closesocket(sListen);

WSACleanup();
return 0;
}

Kod programu klienta:

// prosty moduł klienta
// komunikacji za pomocą Winsock
// użycie: klient.exe -s:IP

#include <winsock2.h>
#include <stdio.h>
#include <stdlib.h>

#define DEFAULT_COUNT 5
#define DEFAULT_PORT 5000
#define DEFAULT_BUFFER 4096
#define DEFAULT_MESSAGE "Wiadomość testowa"

// tylko Visual C++
#pragma comment(lib, "ws2_32.lib")

char szServer[128], szMessage[1024];

// funkcja sposob_uzycia
void sposob_uzycia()
{
printf("Klient.exe -s:IP\n");
ExitProcess(1);

}

void WalidacjaLiniiPolecen(int argc, char **argv)
{
int i;

if (argc < 2)
{
sposob_uzycia();

}

54 ROZDZIAŁ B. PROGRAMOWANIE WIN32API

for (i=1; i<argc; i++)
{
if (argv[i][0] == ’-’)
{
switch (tolower(argv[i][1]))
{
case ’s’:
if (strlen(argv[i]) > 3)
strcpy(szServer, &argv[i][3]);
break;

default:
sposob_uzycia();
break;

}
}

}
}

int main(int argc, char *argv[])
{
WSADATA wsd;
SOCKET sClient;
char szBuffer[DEFAULT_BUFFER];
int ret, i;
struct sockaddr_in server;
struct hostent *host = NULL;

// linia poleceń

WalidacjaLiniiPolecen(argc, argv);

// inicjuj Winsock 2.2
if (WSAStartup(MAKEWORD(2,2), &wsd) != 0)
{
printf("Błąd ładowania Winsock 2.2!\n");
return 1;

}

strcpy(szMessage, DEFAULT_MESSAGE);

// twórz gniazdo do nasłuchu połączeń klientów
sClient = socket(AF_INET, SOCK_STREAM, IPPROTO_IP);
if (sClient == INVALID_SOCKET)
{
printf("Błąd funkcji socket(): %d\n", WSAGetLastError());
return 1;

}

// wybierz interfejs
server.sin_addr.s_addr = inet_addr(szServer);
server.sin_family = AF_INET;
server.sin_port = htons(DEFAULT_PORT);

// jeśli adres nie był w postaci xxx.yyy.zzz.ttt
// to spróbuj go wydobyć z postaci słownej

if (server.sin_addr.s_addr == INADDR_NONE)
{
host = gethostbyname(szServer);
if (host == NULL)
{
printf("Nie udało się wydobyć nazwy serwera: %s\n", szServer);
return 1;

}
CopyMemory(&server.sin_addr, host->h_addr_list[0], host->h_length);

}

if (connect(sClient, (struct sockaddr *)&server, sizeof(server)) == SOCKET_ERROR)
{

4. KOMUNIKACJA MIĘDZY PROCESAMI 55

printf("Błąd funkcji connect(): %d\n", WSAGetLastError());
return 1;

}

// wysyłaj i odbieraj dane

for (i=0; i<DEFAULT_COUNT; i++)
{
ret = send(sClient, szMessage, strlen(szMessage), 0);
if (ret == 0)
break;

else if (ret == SOCKET_ERROR)
{
printf("Błąd funkcji send(): %d\n", WSAGetLastError());
return 1;

}
printf("Wysłano %d bajtów\n", ret);

ret = recv(sClient, szBuffer, DEFAULT_BUFFER, 0);
if (ret == 0)
break;

else if (ret == SOCKET_ERROR)
{
printf("Błąd funkcji recv(): %d\n", WSAGetLastError());
return 1;

}
szBuffer[ret] = ’\0’;
printf("RECV [%d bajtów]: ’%s’\n", ret, szBuffer);

}
closesocket(sClient);

WSACleanup();
return 0;
}

Serwer w pętli oczekuje na klientów i po nawiązaniu połączenia tworzy nowy wątek, który
zajmuje się odbieraniem komunikatów i odsyłaniem ich z powrotem (to tylko przykład!). Klient
wymaga oczywiście parametru, którym jest nazwa serwera. Klient nawiązuje połączenie i wysyła
do serwera komunikat, po czym czeka na jego echo.
Struktura obu programów jest dość podobna. Oba tworzą odpowiednie gniazda, przy czym:

� serwer najpierw przypisuje gniazdu adres (za pomocą funkcji bind()), a następnie wchodzi
w tryb nasłuchu (listen()), gdzie zatrzymuje się czekając na połączenia klientów (accept()).

� klient nawiązuje połączenie z serwerem za pomocą funkcji connect().

Oba programy wymieniają się krótkimi informacjami za pomocą funkcji send() i recv(). Ser-
wer nasłuchuje na zadanym porcie, zaś po nawiązaniu połączenia z klientem tworzy nowe gniazdo
i nowy wątek, po czym komunikuje się przez nowo utworzone gniazdo w nowym wątku. Dzięki
temu serwer może obsługiwać wielu klientów jednocześnie, bez względu na to jak długo trwa-
łoby obsługiwanie pojedyńczego klienta. Podsumowanie schematów działania serwera i klienta
znajdują się w tabelach B.2 i B.3.
Jak w związku z tym napisać własną przegląrarkę Internetową? Otóż kod programu klienta

musiałby łączyć się do wybranego serwera do portu 80, a następnie wysyłać polecenia protokołu
HTTP, na przykład GET index.html, po którym serwer odpowiedziałby przesyłając strumień
danych, będący kodem strony index.html. Kod tej strony należałoby następnie sparsować i
udostępnić użytkownikowi, wyławiając przy okazji hyperlinki, dzięki którym użytkownik mógłby
wydawać programowi kolejne polecenia.
A jak napisać własny serwer WWW? Otóz kod programu serwera musiałby oczekiwać na

połączenia klientów i reagować na dobrze sformułowane polecenia protokołu HTTP. Na przykład,

56 ROZDZIAŁ B. PROGRAMOWANIE WIN32API

socket()
↓

Tworzenie gniazda
↓
bind()
↓

Przypisywanie adresu
↓

listen()
↓

Nasłuch połączeń od klientów
↓

accept()
↓

Akceptacja połączenia klienta
↓

send(), recv()

Tabela B.2: Schemat serwera TCP korzystającego z gniazd

socket()
↓

Tworzenie gniazda
↓

connect()
↓

Połączenie z serwerem
↓

send(), recv()

Tabela B.3: Schemat klienta TCP korzystającego z gniazd

gdyby polecenie od klienta brzmiało GET index.html, serwer musiałby z dysku odczytać
zawartość pliku index.html i wysłać go do połączonego klienta.
W praktyce napisanie dobrej przeglądarki Internetowej czy dobrego serwera WWW mogłoby

być dość żmudne, jednak bardzo ograniczone możliwości można uzyskać niewielkim nakładem
pracy.

Gniazda asynchroniczne

Wywołania funkcji operujących na gniazdach są najczęściej blokujące, to znaczy że wykonanie
kodu zatrzymuje się na wywołaniu funkcji na tak długo, aż działanie takiej funkcji zakończy się.
Może to powodować mnóstwo kłopotów przy tworzeniu programów okienkowych - okno prze-
stanie reagować na komunikaty, ponieważ kod zatrzyma się na wykonaniu funkcji obsługującej
gniazda.
Aby poradzić sobie z tym problemem można zażądać od WinSock asynchronicznej obsługi

gniazd, to znaczy informowania o zdarzeniach związanych z gniazdami za pomocą komunikatów.
Asynchroniczny tryb pracy WinSock ustala się za pomocą funkcji

5. INNE WAŻNE ELEMENTY WIN32API 57

int WSAAsyncSelect (

SOCKET s,
HWND hWnd,
unsigned int wMsg,
long lEvent
);

5 Inne ważne elementy Win32API

5.1 Biblioteki ładowane dynamicznie

Oprócz statycznego łączenia bibliotek podczas linkowania programu, w Windows istnieje możli-
wość ładowania kodu w trakcie działania aplikacji. Wiele z dotyczchczas wykorzystywanych funk-
cji znajduje się w takich właśnie modułach: KERNEL32.DLL, GDI32.DLL, czy USER32.DLL.
Tworzenie bibliotek funkcji zasadne jest tam, gdzie pewna funkcjonalność może być współdzielo-
na przez wiele różnych modułów. Zastosowanie bibliotek oznacza zmieniejszenie zapotrzebowa-
nia pamięci, ponieważ system potrafi zoptymalizować przydział pamięci dla biblioteki dołączanej
dynamicznie.
Przykład biblioteki:

/* Wiktor Zychla 2003 */
#include <windows.h>

#ifdef __cplusplus
#define EXPORT extern "C" __declspec (dllexport)
#else
#define EXPORT __declspec (dllexport)
#endif

EXPORT int MojaFunkcja();

BOOL WINAPI DllMain(HINSTANCE hinstDLL, DWORD fwdreason, LPVOID lpvReserved)
{

return 1;
}

int MojaFunkcja()
{

return 1;
}

Program, który korzysta z biblioteki:

/* Wiktor Zychla 2003 */
#include <windows.h>
#include <stdio.h>

const char libName[] = "abcLib.dll";

int main()
{
typedef int(*pfPInt)();
pfPInt myFunc;

HMODULE hLibrary;

hLibrary = LoadLibrary(libName);

if (hLibrary == NULL)
{
MessageBox(NULL, "Blad ladowania biblioteki", "", MB_OK);
return 1;

}

58 ROZDZIAŁ B. PROGRAMOWANIE WIN32API

myFunc = (pfPInt)GetProcAddress(hLibrary, "MojaFunkcja");

if (myFunc == NULL)
{
MessageBox(NULL, "Blad ladowania funkcji", "", MB_OK);
return 1;

}

char buf[80];

int res = myFunc();
sprintf(buf, "Wynik : %d", res);
MessageBox(NULL, buf, "", MB_OK);

FreeLibrary(hLibrary);

return 0;

}

5.2 Różne przydatne funkcje Win32API
� Typowe okno informacyjne tworzy się za pomocą funkcji

int MessageBox(

HWND hWnd, // uchwyt okna-właściciela
LPCTSTR lpText, // treść komunikatu
LPCTSTR lpCaption, // treść opisu komunikatu
UINT uType // styl komunikatu (dodatkowe ikony, przyciski)
);

� Tekst pokazywany na belce okien macierzystych oraz tekst pokazywany wewnątrz okien
potomnych można odczytywać i ustawiać za pomocą funkcji

int GetWindowText(

HWND hWnd,// uchwyt okna
LPTSTR lpString,// adres bufora, który przyjmie tekst
int nMaxCount // maksymalna ilość znaków do skopiowania
);

BOOL SetWindowText(

HWND hWnd,// uchwyt okna
LPCTSTR lpString // nowy tekst
);

Taki sam efekt można uzyskać wysyłając do okna komunikaty WM GETTEXT iWM SETTEXT.

� Stan klawiatury i myszy można odczytać w każdym momencie pracy programu, nie tylko
obsługując odpowiednie komunikaty. Jest to wyjątowo przydatne w programach iterak-
tywnych.

BOOL GetKeyboardState(

PBYTE lpKeyState // adres 256 bajtowej tablicy, która
// otrzyma informację o stanie klawiatury

);

BOOL GetCursorPos(

LPPOINT lpPoint // pozycja kursora myszy
);

5. INNE WAŻNE ELEMENTY WIN32API 59

� Niektóre funkcje API korzystają ze współrzędnych punktu odniesionych do punktu w le-
wym górnym rogu okna, inne ze współrzędnych ekranu. Przeliczanie współrzędnych między
tymi układami odniesienia jest łatwe dzięki funkcjom

BOOL ClientToScreen(

HWND hWnd, // uchwyt okna
LPPOINT lpPoint // punkt we współrzędnych obszaru klienckiego
);

BOOL ScreenToClient(

HWND hWnd, // uchwyt okna
LPPOINT lpPoint // punkt we współrzędnych ekranu
);

5.3 Zegary

Aplikacje DOSowe mogły polegać jedynie na przerwaniu BIOSu, które niezależnie od prędkości
procesora pojawiało się regularnie 18.2 raza na sekundę. Windows udostępnia mechanizm zega-
rów systemowych, które zajmują się informowaniem aplikacji o upłynięciu jakiegoś okresu czasu.
Aplikacja tworzy zegar za pomocą funkcji

UINT SetTimer(

HWND hWnd, // uchwyt okna, które będzie otrzymywać komunikaty zegara
UINT nIDEvent, // identyfikator zegara
UINT uElapse, // interwał czasowy
TIMERPROC lpTimerFunc // adres funkcji obsługi zdarzenia zegara
);

Istnieją dwie możliwości użycia tej funkcji:

1. Podanie pustego wskaźnika na funkcję obsługi, na przykład SetTimer(hwnd, 1, 1000,
NULL), spowoduje że okno aplikacji będzie otrzymywało komunikaty WM TIMER w usta-
lonych odstępach czasu. System nie przysyła aplikacji komunikatów WM TIMER częściej
niż aplikacja jest w stanie je obsłużyć (18 razy na sekundę w przypadku Windows 98 i
około 100 razy na sekundę w Windows NT).

2. Podanie wskaźnika na istniejącą w kodzie programu funkcję postaci

VOID CALLBACK TimerProc (HWND hwnd, UINT message, UINT iTimerID, DWORD dwTime)
{

[obsłuż komunikat WM_TIMER]
}

spowoduje wysyłanie komunikatów WM TIMER do tej funkcji. Parametr iTimerID odpo-
wiada za identyfikator zegara, zaś dwTime jest równy bieżącej wartości funkcji GetTick-
Count().

Dobrą praktyką jest explicite niszczenie zegara przy zakończeniu aplikacji za pomocą funkcji

BOOL KillTimer(

HWND hWnd,// uchwyt okna które instalowało zegar
UINT uIDEvent // identyfikator zegara
);

Poniższy przykład, oprócz zegara, pokazuje również sposób użycia kilku nieomawianych do
tej pory funkcji GDI.

60 ROZDZIAŁ B. PROGRAMOWANIE WIN32API

Rysunek B.5: Zegar elektroniczny, bardzo łatwo byłoby zrobić z niego budzik

/*
*
* Zegar
*
*/
#include <windows.h>

#define ID_TIMER 1

int xSize, ySize;

/* Deklaracje wyprzedzające */
LRESULT CALLBACK WindowProcedure(HWND, UINT, WPARAM, LPARAM);
void PaintCurrentTime(HDC hdc);

/* Nazwa klasy okna */
char szClassName[] = "PRZYKLAD";

int WINAPI WinMain(HINSTANCE hThisInstance, HINSTANCE hPrevInstance,
LPSTR lpszArgument, int nFunsterStil)

{
HWND hwnd; /* Uchwyt okna */
MSG messages; /* Komunikaty okna */
WNDCLASSEX wincl; /* Struktura klasy okna */

/* Klasa okna */
wincl.hInstance = hThisInstance;
wincl.lpszClassName = szClassName;
wincl.lpfnWndProc = WindowProcedure; // wskaźnik na funkcję obsługi okna
wincl.style = CS_DBLCLKS;
wincl.cbSize = sizeof(WNDCLASSEX);

/* Domyślna ikona i wskaźnik myszy */
wincl.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wincl.hIconSm = LoadIcon(NULL, IDI_APPLICATION);
wincl.hCursor = LoadCursor(NULL, IDC_ARROW);
wincl.lpszMenuName = NULL;
wincl.cbClsExtra = 0;
wincl.cbWndExtra = 0;
/* Jasnoszare tło */
wincl.hbrBackground = (HBRUSH)GetStockObject(LTGRAY_BRUSH);

/* Rejestruj klasę okna */
if(!RegisterClassEx(&wincl)) return 0;

/* Twórz okno */

5. INNE WAŻNE ELEMENTY WIN32API 61

hwnd = CreateWindowEx(
0,
szClassName,
"Przykład",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
512,
256,
HWND_DESKTOP,
NULL,
hThisInstance,
NULL
);

ShowWindow(hwnd, nFunsterStil);
/* Pętla obsługi komunikatów */
while(GetMessage(&messages, NULL, 0, 0))
{

/* Tłumacz kody rozszerzone */
TranslateMessage(&messages);
/* Obsłuż komunikat */
DispatchMessage(&messages);

}

/* Zwróć parametr podany w PostQuitMessage() */
return messages.wParam;

}

/* Tę funkcję woła DispatchMessage() */
LRESULT CALLBACK WindowProcedure(HWND hwnd, UINT message,

WPARAM wParam, LPARAM lParam)
{
PAINTSTRUCT ps;
RECT r;

HDC hdc;

switch (message)
{
case WM_CREATE:
SetTimer(hwnd, ID_TIMER, 500, NULL);
break;

case WM_TIMER:
GetClientRect(hwnd, &r);
InvalidateRect(hwnd, &r, 1);

break;
case WM_PAINT:
hdc = BeginPaint(hwnd, &ps);

PaintCurrentTime(hdc);
EndPaint(hwnd, &ps);
break;

case WM_SIZE:
xSize = LOWORD(lParam);
ySize = HIWORD(lParam);

break;
case WM_DESTROY:
KillTimer(hwnd, ID_TIMER);
PostQuitMessage(0);
break;

default:
return DefWindowProc(hwnd, message, wParam, lParam);

}
return 0;

}

/* Maluj aktualny czas na ekranie */
void PaintCurrentTime(HDC hdc)
{
char sTime[256];
SYSTEMTIME time;

62 ROZDZIAŁ B. PROGRAMOWANIE WIN32API

HFONT hFont;
SIZE size;

// pobierz aktualny czas systemowy
// i konwertuj go na zadany format
GetSystemTime(&time);
GetTimeFormat(LOCALE_SYSTEM_DEFAULT, 0, &time,

"HH’:’mm’:’ss", sTime, 256);

// twórz font logiczny
hFont = CreateFont(112, 0, 0, 0,

FW_NORMAL, 0, 0, 0,
DEFAULT_CHARSET, OUT_DEFAULT_PRECIS,
CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
DEFAULT_PITCH, "LED");

SelectObject(hdc, hFont);

// licz rozmiar tekstu
GetTextExtentPoint32 (hdc, sTime, lstrlen (sTime), &size) ;

// rozpocznij ścieżkę graficzną
BeginPath (hdc) ;

SetBkMode(hdc, TRANSPARENT);
TextOut(hdc, (xSize-size.cx)/2, (ySize-size.cy)/2,

sTime, strlen(sTime));

// zakończ ścieżkę
EndPath (hdc) ;

// rysuj ścieżkę odpowiednim pędzlem
SelectObject (hdc, CreateHatchBrush (HS_DIAGCROSS, RGB (0, 0, 255))) ;
SetBkColor (hdc, RGB (255, 0, 0)) ;
SetBkMode (hdc, OPAQUE) ;
StrokeAndFillPath (hdc) ;

DeleteObject (SelectObject (hdc, GetStockObject (WHITE_BRUSH)));
SelectObject (hdc, GetStockObject (SYSTEM_FONT)) ;
DeleteObject (hFont) ;

}

5.4 Okna dialogowe

Aplikacja złożona z jednego okna dialogowego jest oczywiście rzadkością. Zwykle zaprojektowa-
nie interfejsu użytkownika odpowiadającego modelowanemu problemowi wymaga od kilku do
nawet kilkuset róznych okien dialogowych. Programista tworzy nowe okno dialogowe za pomocą
jednej z funkcji:

int DialogBox(

HINSTANCE hInstance,// instancja aplikacji
LPCTSTR lpTemplate,// szablon okna
HWND hWndParent,// okno macierzyste
DLGPROC lpDialogFunc // funkcja obsługi okna
);

HWND CreateDialog(

HINSTANCE hInstance,// instancja aplikacji
LPCTSTR lpTemplate,// szablon okna
HWND hWndParent,// okno macierzyste
DLGPROC lpDialogFunc // funkcja obsługi okna
);

Funkcja DialogBox() tworzy tzw. modalne okno dialogowe, tzn. takie, które nie pozwala użyt-
kownikowi na uaktywnienie żadnego innego okna aplikacji do czasu zamknięcia okna dialogowego.

5. INNE WAŻNE ELEMENTY WIN32API 63

Funkcja CreateDialog() tworzy niemodalne okno dialogowe, tzn. okno z własną, niezależną pętlą
obsługi komunikatów.
Obie z tych funkcji oczekują wskazania odpowiedniego szablonu okna. Szablon taki dodaje się

do zasobów aplikacji (zwykle ma rozszerzenie *.rc). Szablony okien dialogowych mają swoją spe-
cjalną składnię i choć można wykonstruować okno bez dodawania szablonu do zasobów (szablon
tworzy się dynamicznie, a następnie korzysta się z funkcji CreateDialogIndirect() lub Dialog-
BoxIndirect(), zaś okna potomne dodaje się przy obsłudze komunikatu WM INITDIALOG), to
korzystanie z nich znacznie ułatwia cały proces.

/* EX.C */
/*
*
* Okna dialogowe
*
*/
#include <windows.h>

/* Deklaracja wyprzedzająca: funkcja obsługi okna */
LRESULT CALLBACK WindowProcedure(HWND, UINT, WPARAM, LPARAM);
BOOL DialogBoxWindowProcedure(HWND, UINT, WPARAM, LPARAM);
void CreateMyMenu(HWND hwnd);
/* Nazwa klasy okna */
char szClassName[] = "PRZYKLAD";

int WINAPI WinMain(HINSTANCE hThisInstance, HINSTANCE hPrevInstance,
LPSTR lpszArgument, int nFunsterStil)

{
HWND hwnd; /* Uchwyt okna */
MSG messages; /* Komunikaty okna */
WNDCLASSEX wincl; /* Struktura klasy okna */

/* Klasa okna */
wincl.hInstance = hThisInstance;
wincl.lpszClassName = szClassName;
wincl.lpfnWndProc = WindowProcedure; // wskaźnik na funkcję obsługi okna
wincl.style = CS_DBLCLKS;
wincl.cbSize = sizeof(WNDCLASSEX);

/* Domyślna ikona i wskaźnik myszy */
wincl.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wincl.hIconSm = LoadIcon(NULL, IDI_APPLICATION);
wincl.hCursor = LoadCursor(NULL, IDC_ARROW);
wincl.lpszMenuName = NULL;
wincl.cbClsExtra = 0;
wincl.cbWndExtra = 0;
/* Jasnoszare tło */
wincl.hbrBackground = (HBRUSH)GetStockObject(LTGRAY_BRUSH);

/* Rejestruj klasę okna */
if(!RegisterClassEx(&wincl)) return 0;

/* Twórz okno */
hwnd = CreateWindowEx(

0,
szClassName,
"Przykład",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
512,
512,
HWND_DESKTOP,
NULL,
hThisInstance,
NULL
);

CreateMyMenu(hwnd);

64 ROZDZIAŁ B. PROGRAMOWANIE WIN32API

ShowWindow(hwnd, nFunsterStil);
/* Pętla obsługi komunikatów */
while(GetMessage(&messages, NULL, 0, 0))
{

/* Tłumacz kody rozszerzone */
TranslateMessage(&messages);
/* Obsłuż komunikat */
DispatchMessage(&messages);

}

/* Zwróć parametr podany w PostQuitMessage() */
return messages.wParam;

}

/* Tę funkcję woła DispatchMessage() */
LRESULT CALLBACK WindowProcedure(HWND hwnd, UINT message,

WPARAM wParam, LPARAM lParam)
{
static HINSTANCE hInstance ;

switch (message)
{

case WM_CREATE :
hInstance = ((LPCREATESTRUCT) lParam)->hInstance ;
break;

case WM_DESTROY:
PostQuitMessage(0);
break;

case WM_COMMAND:
switch(LOWORD(wParam))
{

case 100 : DialogBox(hInstance, MAKEINTRESOURCE(501),
hwnd, DialogBoxWindowProcedure); break;

case 101 : SendMessage(hwnd, WM_CLOSE, 0, 0);break;
}

default:
return DefWindowProc(hwnd, message, wParam, lParam);

}
return 0;

}

void CreateMyMenu(HWND hwnd)
{
HMENU hMenu;
HMENU hSubMenu;

hMenu = CreateMenu () ;

hSubMenu = CreateMenu () ;
AppendMenu (hSubMenu, MF_STRING , 100, "&Okno dialogowe") ;
AppendMenu (hSubMenu, MF_SEPARATOR, 0 , NULL) ;
AppendMenu (hSubMenu, MF_STRING , 101, "&Koniec") ;
AppendMenu (hMenu, MF_POPUP, (unsigned int)hSubMenu, "&Plik") ;

SetMenu(hwnd, hMenu);
}

BOOL DialogBoxWindowProcedure(HWND hwnd, UINT message,
WPARAM wParam, LPARAM lParam)

{
switch (message)
{

case WM_INITDIALOG:
return TRUE ;

case WM_COMMAND :
switch (LOWORD (wParam))
{
case IDOK : case IDCANCEL :
EndDialog (hwnd, 0) ;
return TRUE ;

5. INNE WAŻNE ELEMENTY WIN32API 65

}
}
return 0;

}

/* EX.RC */
#include <windows.h>

501 DIALOG 32, 32, 180, 40
STYLE WS_VISIBLE | WS_SYSMENU | WS_POPUP | WS_CAPTION | DS_MODALFRAME
CAPTION "Okno dialogowe"
FONT 12,"Times New Roman"
BEGIN
DEFPUSHBUTTON "OK",IDOK,66,80,50,14
CTEXT "O programie...",-1,40,12,100,8

END

Zauważmy, że funkcja obsługi komunikatów nie jest zwykłą funkcją obsługi komunikatów
okna Tak naprawdę obsługą komunikatów okna dialogowego zajmuje się domyślna funkcja ob-
sługi komunikatów okien dialogowych, istniejąca w systemie

BOOL CALLBACK DialogProc(

HWND hwndDlg,// handle to dialog box
UINT uMsg,// message
WPARAM wParam,// first message parameter
LPARAM lParam // second message parameter
);

i to ona przekazuje komunikaty do funkcji obsługi komunikatów w oknie dialogowym.
Istnieją cztery zasadnicze różnice między zwykła funkcją obsługi okna, a funkcją obsługi

okna dialogowego:

� zwykła funkcja obsługi okna zwraca wartość typu LRESULT, funkcja obsługi okna dialo-
gowego zwraca BOOL

� w przypadku nieobsługiwania jakiegoś komunikatu zwykła funkcja obsługi okna woła do-
myślną funkcję obsługi okien (DefWindowProc), zaś funkcja obsługi okna dialogowego
zwraca wartość TRUE kiedy obsługuje jakiś komunikat i FALSE jeśli go nie obsługuje

� funkcja obsługi okna dialogowego nie musi obsługiwać komunikatówWM PAINT i WM DESTROY

� funkcja obsługi okna dialogowego nie otrzymuje komunikatuWM CREATE, tylko WM INITDIALOG

Szablon okna dialogowego, oprócz opisu stylu okna i cech okien potomnych może zawierać
m.in.

� wskazanie menu (MENU menu-name)

� wskazanie czcionki (FONT font)

� wskazanie klasy (CLASS ”klasa”)

Istnieje ponadto możliwość skorzystania z typowych okien dialogowych. Każde z tych okien
po zamknięciu zwraca zestaw parametrów niezbędnych do zidentyfikowania wyboru użytkownika.

� Okna do wyboru nazwy pliku

BOOL GetOpenFileName(

LPOPENFILENAME lpofn
);

66 ROZDZIAŁ B. PROGRAMOWANIE WIN32API

BOOL GetSaveFileName(

LPOPENFILENAME lpofn
);

� Typowe okno wyboru koloru

BOOL ChooseColor(

LPCHOOSECOLOR lpcc
);

� Typowe okno wyboru czcionki

BOOL ChooseFont(

LPCHOOSEFONT lpcf
);

� Typowe okno ustalania parametrów drukowania

BOOL PrintDlg(

LPPRINTDLG lppd
);

Przykład użycia okna do wyboru koloru:

#include <windows.h>
#include <commdlg.h>
#include <stdio.h>

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
PSTR szCmdLine, int iCmdShow)

{
char buf[80];
char *msgTpl = "Wybrano kolor o składowych: [%d, %d, %d]";

static CHOOSECOLOR cc ;
static COLORREF crCustColors[16] ;

cc.lStructSize = sizeof (CHOOSECOLOR) ;
cc.hwndOwner = NULL ;
cc.hInstance = NULL ;
cc.rgbResult = RGB (0x80, 0x80, 0x80) ;
cc.lpCustColors = crCustColors ;
cc.Flags = CC_RGBINIT | CC_FULLOPEN ;
cc.lCustData = 0 ;
cc.lpfnHook = NULL ;
cc.lpTemplateName = NULL ;

if (ChooseColor (&cc))
{
sprintf(buf, msgTpl,

GetRValue(cc.rgbResult),
GetGValue(cc.rgbResult),
GetBValue(cc.rgbResult));

MessageBox(0, buf, "", 0);
};

}

Powłoka systemu

Programista ma dostęp do powłoki systemu dzięki funkcji

5. INNE WAŻNE ELEMENTY WIN32API 67

HINSTANCE ShellExecute(

HWND hwnd,// okno macierzyste
LPCTSTR lpOperation,// rodzaj operacji
LPCTSTR lpFile,// nazwa pliku
LPCTSTR lpParameters,// parametry
LPCTSTR lpDirectory,// domyślny katalog
INT nShowCmd // flaga otwarcia okna
);

Powłoka potrafi wykonać na zadanym pliku kilka rodzajów operacji:

� ”open”

� ”print”

� ”explore”

� ”properties”

68 ROZDZIAŁ B. PROGRAMOWANIE WIN32API

Rozdział C

Świat .NET

1 Projektowanie zorientowane obiektowo

1.1 Dlaczego używamy języków obiektowych

C# jest kolejnym językiem obiektowym, jaki w ciągu ostatnich lat został udostępniony pro-
gramistom. Można więc zapytać: czy kod obiektowy tworzy się szybciej niż kod nieobiektowy
albo czy programy obiektowe działają szybciej niż nieobiektowe? Okazuje się, że niekoniecznie.
Dlaczego więc języki obiektowe uznawane są za tak ważne?
Odpowiedź jest wbrew pozorom dość prosta. Otóż to właśnie języki obiektowe najlepiej

nadają się do modelowania problemów z otaczającego nas świata. Możliwość zamykania jakiejś
ustalonej funkcjonalności w obiekcie dysponującym określonym interfejsem, czyli sposobem w
jaki ten obiekt komunikuje się z innymi, pozwala programiście łatwiej skupić się na modelowanym
problemie.
Języki obiektowe doskonale sprawdzają się tam, gdzie programista stoi przed zadaniem na-

pisania programu użytkowego, który pozwalałby na rejestrowanie i analizę procesów, o zależ-
nościach pomiędzy którymi coś już wiadomo. Język obiektowy doskonale sprawdzą się więc w
aplikacji do zarządzania jakimiś instytucjami, w aplikacjach finansowo-księgowych, w aplikacjach
dla służb medycznych czy oświaty. Ale to nie wszystko - dzięki prostej składni języki obiekto-
we równie dobrze radzą sobie tam, gdzie zwykle używamy prostszych języków imperatywnych,
czyli na przykład w aplikacjach obliczeniowych, aplikacjach o złożonych strukturach danych i
skomplikowanych algorytmach operujących na tych strukturach.
Na języki obiektowe należy więc patrzeć jak na naturalne rozszerzenie prostych języków

imperatywnych. Tam gdzie celem jest bardzo bliska interakcja ze sprzętem (na przykład przy
programowaniu sterowników urządzeń) lub tam gdzie wydajność jest celem nadrzędnym, tam
programista powinien zdecydować się na język maszynowy lub prosty język imperatywny o
wydajności zbliżonej do języka maszynowego, na przyład C. Tam gdzie celem jest dokładność
zamodelowania jakiegoś problemu oraz łatwość konserwacji kodu i podatność na modyfikacje,
zwykle najlepszy okaże się język obiektowy.

1.2 Reguły modelowania obiektowego

W inżynierii oprogramowania zazwyczaj wyróżnia się kilka faz tworzenia oprogramowania.

1. Poznawanie i analiza problemu

2. Tworzenie modelu obiektowego, projektowanie interfejsu i funkcji programu

3. Implementacja

69

70 ROZDZIAŁ C. ŚWIAT .NET

4. Testowanie

Podczas pracy nad projektem żadna z tych faz nie może być pominięta, nie powinno się też
zamieniać kolejności poszczególnych etapów. Nie jest możliwe tworzenie modelu bez dokładnego
poznania problemu. Nie można pisać kodu, jednocześnie tworząc model obiektowy. Trudno jest
w końcu prowadzić miarodajne testy, kiedy program jest w początkowej fazie rozwoju.
W praktyce jednak praca nad projektem w różnych fazach napotyka na różne trudności,

najczęściej wynikające z dostosowywania pierwotnych założeń do możliwości ich wykonania.
Dlatego też poszczególne fazy przeplatają się, bardzo często następuje powrót do wcześniej
rozważanych zagadnień.
W większych zespołach programistycznych istnieje ścisły podział funkcji związany z realizacją

poszczególnych faz projektu. W mniejszych zespołach zdarza się, że jedna osoba pełni kilka
funkcji. W szczególnych przypadkach jedna osoba może być odpowiedzialna za wszystkie fazy
tworzenia oprogramowania1.

Konsultant Osoba (najczęściej oddelegowana przez zleceniodawcę) znająca wszelkie szczegóły
związane z merytoryczną stroną problemu, którego ma dotyczyć aplikacja (faza 1).

Analityk Zajmuje się poznawaniem i analizą potrzeb zlecieniodawcy i tworzeniem zarysów
modelu obiektowego (fazy 1-2).

Projektant Zajmuje się tworzeniem modelu obiektowego, projektowaniem funkcji programu
oraz kształtem interfejsu użytkownika.

Programista Bieże udział w projektowaniu modelu obiektowego, a następnie zajmuje się two-
rzeniem kodu (fazy 2-3).

Tester Zajmuje się testowaniem programu.

1.3 Analiza i projektowanie

Analiza problemu zwyke rozpoczyna się od określenia przez użytkownika jego wizji i oczekiwań
związanych z tworzonym oprogramowaniem. Analityk musi zwrócić uwagę na główne potrzeby
systemu, na przypadki szczególne oraz na to które elementy modelu pozostaną względnie stałe,
a które mogą podlegać zmianom, związanym z różnymi czynnikami2.
Analityk w trakcie kontaktów z użytkownikiem powinien zwracać uwagę na dwie płaszczyzny

funkcjonowania systemu

część statyczną czyli zakres gromadzonych informacji i sposób ich przechowywania

część dynamiczną czyli tworzenie zależności między danymi

Pierwszy model obiektowy może powstać według następującego algorytmu:

1. Podczas kontaktu z użytkownikiem rób jak najwięcej notatek dotyczących istotnych dla
problemu zagadnień

2. Przejrzyj notatki, podkreślając w nich wszystkie rzeczowniki, bezpośrednio odnoszące się
do problemu

1Takie podejście bywa zgubne. Łatwo wskazać programy, w których mimo znakomitego rozpoznania problemu
kuleje strona programistyczna oraz takie, które są bardzo zaawansowane programistycznie, a słabe pod względem
merytorycznym.
2Prawo zmienia się, niestety, dość często. Bezpośrednio wpływa to na sposoby funkcjonowania systemów in-

formatycznych.

1. PROJEKTOWANIE ZORIENTOWANE OBIEKTOWO 71

3. Utwórz klasę dla każdego podkreślonego rzeczownika

4. Określ wszystkie właściwości utworzonych klas i utwórz w klasach odpowiednie pola. Jeśli
jakaś właściwość dotyczy klasy jako całości, utwórz pole statyczne w klasie.

5. Przejrzyj notatki, podkreślając w nich wszystkie czasowniki związane z wyodrębnionymi
rzeczownikami.

6. Utwórz metody w klasach dla każdego podkreślonego czasownika. Jeśli jakaś akcja dotyczy
klasy jako całości, utwórz metodę statyczną.

Model obiektowy utworzony według powyższego algorytmu powinien być rozszerzony o infor-
macje o wzajemnych relacjach między klasami. Istnieją cztery rodzaje relacji między obiektami.

Relacja jest rodzajem

Relacja jest rodzajem oznacza, że jedna klasa jest uszczegółowioną wersją innej. W praktyce
oznacza to, że między klasami zachodzi relacja dziedziczenia.

public class Student
{
}

public class StudentInformatyki : Student
{
}

Relacja zawiera

Jeśli obiekt jednego typu może zawierać obiekt innego typu, to zależność taką uwzględnia się
przez dodanie w klasie odpowiedniego pola.

public class ArkuszOcen
{
}

public class Student
{
ArkuszOcen arkuszOcen
}

Jeżeli jedna z klas nie jest klasą samodzielną, to znaczy nie ma potrzeby tworzenia obiektów
tej klasy przez inne klasy, to można utworzyć klasę wewnętrzną, niedostępną z zewnątrz.

public class Student
{
public class ArkuszOcen
{
}

ArkuszOcen arkuszOcen
}

Relacja używa

Jeśli obiekty jednego typu podczas wykonywania jakichś akcji korzystają z innych obiektów, to
taką relację implementuje się tworząc metody o odpowiednich parametrach.

72 ROZDZIAŁ C. ŚWIAT .NET

public class Ocena
{
}

public class Student
{
void uzyskalOcene(Ocena ocena);
}

Relacja tworzy

Jeśli w wyniku jakichś działań inicjowanych przez obiekt danej klasy powstaje obiekt innej klasy,
mamy do czynienia z relacją tworzy. Relację taką implementuje się tworząc odpowiednie metody.

public class PracaMagisterska
{
}

public class Student
{
PracaMagisterska piszePraceMagisterska()
{
PracaMagisterska m = new PracaMagisterska();
...
return m;
}
}

1.4 Narzędzia wspierające modelowanie obiektowe

2 Podstawowe elementy języka C#

Język C# jest językiem obiektowym. Z dotychczas znanych języków najbardziej przypomina
Javę, jednak kilka istotnych ułomności Javy zostało w C# poprawionych, czyniąc C# jednym
z najelegantszych dotychczas zaprojektowanych języków programowania3. Autorzy projektu ję-
zyka wyraźnie i często podkreślają, że wybranie takiej a nie innej składni podstawowych kon-
strukcji języka oznacza nie tylko dużą łatwość pracy dla programistów znających wcześniej Javę
czy C++, ale oznacza również możliwość łatwej konwersji już istniejącego kodu4.
Jak już wcześniej powiedziano, kompilator C# jest częścią środowiska uruchomieniowego

.NET Framework. Do tworzenia i uruchamiania programów nadaje się każdy system Windows,
począwszy od Windows 98. Również niektóre darmowe środowiska developerskie można urucho-
mić na Windows 98 i wyższych. Jedynie Visual Studio .NET wymaga co najmniej Windows 2000,
jednak rozwijane w nim programy uruchomią się na Windows 98 z zainstalowanym środowiskiem
uruchomieniowym .NET.
Kompilator C# tworzy kod wynikowy w języku pośrednim, zwanym IL i umieszcza go w

em module binarnym. Moduł może być aplikacją konsolową lub okienkową (pliki *.exe) lub
biblioteką klas (pliki *.dll). NETFramework traktuje każdy moduł w sposób jednakowy - podczas
uruchamiania kodu zawartego w module, uruchamiany jest kompilator JIT (Just-In-Time), który
tworzy kod natywny systemu operacyjnego, po czym uruchamia ten kod jak zwykłą aplikację
w systemie operacyjnym. Dzięki temu prędkość działania aplikacji C#-owej w systemie jest
porównywalna z prędkością aplikacji napisanej w C++.
3Ze zdziwieniem słucham opinii niektórych programistów, że podobieństwo C# do Javy oznacza jego ułomność.

Takie opinie powtarzają najczęściej ci, którzy C# nie znają. Z tych samych powodów nie warto zapewne zajmować
się Javą, bo jest bardzo podobna do C++, nie warto zajmować się C++ bo jest bardzo podobny do C itd. Wedle
tej logiki zapewne w ogóle nie warto zajmować się programowaniem, bo wszystko jest do czegoś podobne.
4Microsoft rozpowszechnia darmowy konwerter kodu Javy do C#, który zadziwiająco dobrze radzi sobie z

nawet skomplikowanymi programami. Program można bezpłatnie pobrać ze stron MSDN.

2. PODSTAWOWE ELEMENTY JĘZYKA C# 73

Kod źródłowy w Javie
↓

Kompilacja
↓

Kod pośredni (Java Bytecode)
↓

Interpretacja kodu przez maszynę wirtualną Javy

Kod źródłowy w C#
↓

Kompilacja
↓

Kod pośredni (IL)
↓

Kompilacja JIT
↓

Uruchamianie kodu natywnego

Tabela C.1: Schematy uruchamiania kodów Javy i C# w systemie operacyjnym

2.1 Pierwszy program w C#

Zgodnie z tradycją rozpocznijmy od najprostszego programu C#-owego i przeanalizujmy ele-
menty jego kodu.

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class CMain
{
public static void Main()
{
Console.WriteLine("Pierwszy program w C#");
}
}
}

Kompilator przywołany z linii poleceń przedstawia się i kompiluje program. Kod wynikowy
powyższego programu zajmuje 3072 bajty.

C:\Examples>csc.exe example.cs
Microsoft (R) Visual C# .NET Compiler version 7.00.9466
for Microsoft (R) .NET Framework version 1.0.3705
Copyright (C) Microsoft Corporation 2001. All rights reserved.

Tak jak w przypadku każdego języka obiektowego, również kod programu C#-owego składa
się z klas. Podobnie jak w Javie jedna z klas musi zawierać publiczną statyczną metodę Main, od
której rozpoczyna się wykonanie programu. Możliwe jest zdefiniowanie metody Main w więcej
niż jednej klasie, jednak wtedy należy explicite podać kompilatorowi nazwę klasy zawierającej
tę metodę Main, która ma zostać uwzględniona jako główna metoda aplikacji.

74 ROZDZIAŁ C. ŚWIAT .NET

C:\Examples>csc.exe example.cs /main:Example.CMain
Microsoft (R) Visual C# .NET Compiler version 7.00.9466
for Microsoft (R) .NET Framework version 1.0.3705
Copyright (C) Microsoft Corporation 2001. All rights reserved.

Programista ma do dyspozycji kilkanaście typów prostych wspólnych dla wszystkich aplikacji
platformy .NET. Deklarując zmienne można używać pełnej nazwy typu lub skrótu jego nazwy

Nazwa typu Skrót nazwy Opis

System.Object object Klasa bazowa dla wszystkich typów
System.String string Napis
System.Sbyte sbyte 8-bitowa liczba całkowita ze znakiem
System.Byte byte 8-bitowa liczba całkowita bez znaku
System.Int16 short 16-bitowa liczba całkowita ze znakiem
System.UInt16 ushort 16-bitowa liczba całkowita bez znaku
System.Int32 int 32-bitowa liczba całkowita ze znakiem
System.UInt32 uint 32-bitowa liczba całkowita bez znaku
System.Int64 long 64-bitowa liczba całkowita ze znakiem
System.UInt64 ulong 64-bitowa liczba całkowita bez znaku
System.Char char 16-bitowy znak Unicode
System.Single float 32-bitowa liczba zmiennoprzecinkowa
System.Double double 64-bitowa liczba zmiennoprzecinkowa
System.Boolean bool wartość logiczna (true/false)
System.Decimal decimal 128-bitowa wartość numeryczna

Oprócz typów prostych biblioteka standardowa zawiera setki typów złożonych. Poznanie tych
bardziej użytecznych jest jednym z zadań jakie czeka programistę chcącego nauczyć się biegle
programować aplikacje na platformie .NET.

2.2 Struktura kodu, operatory

Kod C#-owy najbardziej przypomina kod Javy. Wszystkie podstawowe konstrukcje językowe
takie jak deklaracje zmiennych, operatory, instrukcje warunkowe czy pętle działają dokładnie
tak jak w Javie. Dzięki temu programiści znający C, C++ czy Javę bardzo szybko odnajdą się
w nowym języku.
Przykład:

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class CMain
{
public static void Main()
{
int i, j=0, n;

Console.Write("Podaj liczbe naturalna: ");
n = int.Parse(Console.ReadLine());

for (i=1; i<n; i++)
j+=i;

2. PODSTAWOWE ELEMENTY JĘZYKA C# 75

Console.WriteLine("Suma wynosi " + j.ToString());
}
}
}

Kompilator dość restrykcyjnie traktuje powszechnie popełniane przez programistów pomyłki,
zwykle sygnalizując błąd tam, gdzie kompilator C czy C++ poprzestaje na ostrzeżeniu. Na
przykład w powyższym przykładzie deklaracja

int i, j, n; // brak przypisania j=0

spowoduje błąd kompilacji

Microsoft (R) Visual C# .NET Compiler version 7.00.9466
for Microsoft (R) .NET Framework version 1.0.3705
Copyright (C) Microsoft Corporation 2001. All rights reserved.

example.cs(17,9): error CS0165: Use of unassigned local variable ’j’

W przeciwieństwie do C, kompilator C# nie pozwala redefiniować zmiennych na kolejnych
poziomach zagnieżdżenia kodu, uznano bowiem że jest to źródłem zbyt dużej ilości niezamierzo-
nych pomyłek.

/* Wiktor Zychla, 2003 */
using System;

class Example
{
public static void Main()
{
bool b=true;
int i;

while (b)
{
int i;
}
}
}

example.cs(12,8): error CS0136: A local variable named ’i’ cannot be declared in
this scope because it would give a different meaning to ’i’, which is
already used in a ’parent or current’ scope to denote something else

Niespodziewanie, lecz konsekwentnie, taka konstrukcja nie jest możliwa również wtedy, gdy
deklaracja bardziej zagnieżdżona poprzedza deklarację mniej zagnieżdżoną.

/* Wiktor Zychla, 2003 */
using System;

class Example
{
public static void Main()
{
bool b=true;
while (b)
{
int i;
}
int i;
}
}

76 ROZDZIAŁ C. ŚWIAT .NET

2.3 System typów, model obiektowy

W obiektowych językach programowania zwykle funkcjonują dwie rozłączne klasy bytów, na
których można operować: typy proste (liczby całkowite, zmiennoprzecinkowe, napisy) oraz typy
złożone (klasy). Istnienie dwóch rozłącznych światów rodzi mnóstwo problemów i niejednokrotnie
zmusza programistę do pisania ”brzydkiego” kodu. Na przykład w sytuacji, kiedy potrzebna jest
funkcja operująca na wartości dowolnego typu, istnienie typów prostych zmusza programistę
do przeciążania tej funkcji tyle razy ile różnych jej wariantów będzie potrzebował. W C++
pewnym sposobem na przezwyciężanie takich trudności są szablony, jednak nie istnieje sposób
na stosowanie szablonu do typu nieznanego kompilatorowi podczas kompilacji. Taka cecha języka
sprawia, że trudno nazwać C++ językiem w pełni obiektowym. Nawet Java dzieli typy na proste
i złożone, bowiem stosowanie typów prostych znacząco poprawia wydajność kodu.
Model obiektowy C# to model z pojedyńczym dziedziczeniem5. Zakłada się istnienie jednej

wspólnej klasy object dla wszystkich obiektów. Choć nadal istnieje podział na typy proste i typy
złożone, to z punktu widzenia systemu typów wszystko jest obiektem, co więcej typ obiektu jest
możliwy do odzyskania w trakcie działania programu.
Dzięki takiej konstrukcji systemu typów możliwe jest zdefiniowanie pewnej funkcjonalności

już na poziomie klasy object. Ta funkcjonalność jest dziedziczona na klasy potomne. Najważ-
niejsze dwie metody wirtualne zdefiniowane w klasie object to:

string ToString() Domyślnie ta metoda zwraca nazwę typu obiektu. Przeciążona może zwra-
cać opis zawartości obiektu w postaci przyjaznej dla użytkownika.

Type GetType() Zwraca zmienną typu Type, która określa typ obiektu.

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class Klasa1 {}
public class Klasa2
{
public override string ToString()
{
return "Jestem obiektem klasy Klasa2";
}
}

public class CMain
{
public static void Main()
{
Klasa1 k1 = new Klasa1();
Klasa2 k2 = new Klasa2();

Console.WriteLine(k1.ToString());
Console.WriteLine(k2.ToString());

Console.WriteLine(k1.GetType().ToString());
Console.WriteLine(k2.GetType().ToString());

Console.WriteLine(k1.GetType().GetType().ToString());
}
}
}

C:\Example>example.exe
Example.Klasa1
Jestem obiektem klasy Klasa2

5Sposobem na pokonanie ograniczeń pojedyńczego dziedziczenia są tzw. interfejsy.

2. PODSTAWOWE ELEMENTY JĘZYKA C# 77

Example.Klasa1
Example.Klasa2
System.RuntimeType

Jak widać wartość wyrażenia

object_value.GetType()

sama jest wartością typu Type, można więc zapytać o jej typ

object_value.GetType().GetType()

i poprosić o jego reprezentację

object_value.GetType().GetType().ToString()

Zalety zunifikowanego systemu typów (CTS, Common Type System) to jednak nie tylko
elegancja języka. CTS gra główną rolę przy łączeniu przez środowisko uruchomieniowe kodu
napisanego w różnych językach. Każdy kompilator musi umieć posługiwać się zdefiniowanymi
w CTS typami prostymi, musi także definiować własne typy wpasowując je w określoną przez
CTS hierarchię typów. Sam CTS jest częścią szerszej specyfikacji zwanej CLS (Common Langu-
age Specification), która dodatkowo określa inne istotne wymagania dla kompilatora (takie jak
sposób zarządzania pamięcią, obsługi wyjątków).
Największą zaletą CTS jest jednak bezpieczeństwo jakie oferuje tak zaprojektowany system

typów.

� Typ każdego obiektu może być jednoznacznie określony, nawet dynamicznie, czyli w trakcie
działania programu.

� Nie ma możliwości oszukania systemu typów przez próbę przekonania go że jakiś obiekt
ma inny typ niż jego prawdziwy typ.

� Dostęp do składowych każdego obiektu (publiczny, prywatny) jest określony na poziomie
definicji klasy i nie jest możliwe działanie wbrew określonym prawom dostępu. To znaczy,
że na przykład jeśli składowa klasy jest prywatna, to system typów i środowisko urucho-
mieniowe chronią ją przed dostępem z zewnątrz6.

2.4 Typy proste a typy referencyjne, boxing i unboxing

System typów, w którym każdy byt jest obiektem nie jest pomysłem nowym. Tak jest na przy-
kład w SmallTalku. Niestety, SmallTalk płaci za tę cechę języka cenę efektywności - tam gdzie
mamy do czynienia na przykład z liczbami całkowitymi czy zmiennoprzecinkowymi (na któ-
rych procesor potrafi przecież dokonywać szybkich obliczeń) konieczność opakowywania ich w
struktury obiektowe dramatycznie zmniejsza wydajność.
Projektanci języka C# rozwiązali ten problem dzieląc świat wszystkich obiektów na dwie

kategorie: obiekty proste i obiekty referencyjne. Obiekty proste są tworzone na stosie i repre-
zentowane są przez aktualną wartość obiektu. Obiekty proste nie mogą więc mieć wartości null,
która związania jest z pustym wskazaniem - one zawsze mają wartość. Obiekty referencyjne
tworzone są na stercie, zaś na stosie znajduje się referencja do obiektu na stercie.

6W C++ kwalifikatory dostępu to tak naprawdę mechanizm którym programista chroni się sam przed sobą.
Można bowiem zrzutować obiekt klasy z polami prywatnymi na inną klasę z polami publicznymi, w ten sposób
obchodząc mechanizm kwalifikatorów.

78 ROZDZIAŁ C. ŚWIAT .NET

Stos Sterta

int 17
string adres ←→ ”Ala ma kota”

Obiektami prostymi są w C# na przykład arytmetyczne typy wbudowane, enumeracje i typy
zdefiniowane jako struktury (patrz 2.5). Obiektami referencyjnymi są pozostałe klasy, tablice,
delegaci, interfejsy.
Obiekt typu prostego jest inicjowany bezpośrednio po zadeklarowaniu. Oznacza to, że nie

ma potrzeby jawnego wywołania konstruktora, na przykład:

int i;

for (i=0; i<20; i++)
...

Programista może przekształcać obiekty o typach prostych do postaci referencyjnej za po-
mocą tzw. opakowywania (ang. boxing), a następnie z powrotem do postaci prostem (odpako-
wywanie, unboxing).

int i = 1;
object o = i;
int newi = (int)o;

Stos Sterta

i 1
o adres ←→ 1

newi 1

2.5 Klasy

Pojęcie klasy jest fundamentalnym pojęciem programowania obiektowego. Pojedyńcza klasa opi-
suje cechy jakiegoś konkretnego obiektu - jego właściwości i możliwe akcje.
Najprostsza definicja klasy w C# mogłaby wyglądać tak:

class cOsoba
{
public int wiek;
}

Taka definicja pozwala konstruować obiekty opisanego typu i odwoływać się do jedynego pola
obiektów tej klasy:

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
class cOsoba
{
public int wiek;
}

2. PODSTAWOWE ELEMENTY JĘZYKA C# 79

public class CMain
{
public static void Main()
{
cOsoba o = new cOsoba();
o.wiek = 13;

Console.WriteLine("wiek osoby to " + o.wiek.ToString() + " lat");
}
}
}

Ponieważ w C# nie ma znanych z C i C++ plików nagłówkowych, w których umieszczało
się deklaracje funkcji, cała definicja klasy musi znajdować się w jednym pliku. Nie ma również
potrzeby pisania deklaracji wyprzedzających - klasa może być używana w dowolnym miejscu
kodu bez względu na miejsce jej definicji, na przykład:

/* Wiktor Zychla, 2003 */
using System;

class Example
{
class A
{
B b;
}
class B
{
A a;
}
public static void Main()
{
}
}

Definicja klasy składa się z definicji elementów składowych określających jej funkcjonalność.
W C# istnieje 7 możliwych rodzajów elementów składowych:

pola Pole jest elementem składowym klasy, który przechowuje jakąś wartość.

metody Metoda jest funkcją, która najczęściej w jakiś sposób operuje na wartościach przecho-
wywanych w polach.

właściwości (propercje) Propercje są metodami, które z punktu widzenia klientów klasy wy-
glądają jak pola.

stałe Stałe są polami, których wartość nie może ulegać zmianom.

indeksery Indeksery są konstrukcjami językowymi, które pozwalają na dostęp do danych kla-
sy tak, jakby były one umieszczone w tablicy, choć wewnętrzna reprezentacja może być
zupełnie inna.

zdarzenia Zdarzenia powodują wykonywanie się jakiegoś kodu. Zdarzenia mają swoje listy słu-
chaczy, a zaistnienie zdarzenia powoduje wykonanie wszystkich funkcji na liście słuchaczy.

operatory W C# istnieje możliwość przeciążania kilku standardowych operatorów.

Każdy element składowy (z drobnymi wyjątkami) może być opatrzony odpowiednim kwali-
fikatorem dostępu.

public Brak ograniczeń w dostępie do składowej.

80 ROZDZIAŁ C. ŚWIAT .NET

protected Dostęp jest ograniczony do składowych danej klasy i klas potomnych.

internal Dostęp jest ograniczony do bieżącego modułu.

protected internal Dostęp jest ograniczony do składowych danej klasy i klas potomnych bie-
żącego modułu.

private Dostęp jest ograniczony do składowych danej klasy.

W przeciwieństwie do C++ każda składowa klasy musi być jawnie opatrzona odpowiednim
kwalifikatorem dostępu, zaś jego brak oznacza domyślnie kwalifikator private, na przykład:

/* Wiktor Zychla, 2003 */
using System;

class Example
{
class A
{
public string s;
int i;
}
public static void Main()
{
A a = new A();
a.s = "Ala ma kota";
a.i = 5; // błąd
}
}

example.cs(14,2): error CS0122: ’Example.A.i’ is inaccessible due to its
protection level

Pola

Projektując obiekty dla swojej aplikacji, programista zwykle stoi przed zadaniem zbudowania
zbioru klas tak, aby jak najlepiej opisać problem, który rozwiązywać ma aplikacja. Stąd na-
turalne są konstrukcje, w których polami klasy opisującej osobę byłyby jej atrybuty takie jak
imię, nazwisko, data urodzenia itp., klasa opisująca pozycję w bibliotece mogłaby zawierać pola
opisujące rodzaj pozycji, jej tytuł, autora i datę wydania itp.

class COsoba
{
public string Imie;
public string Nazwisko;
public DateTime data_urodzenia;
}

Przypomnijmy sobie, że w C++ istnieją dwie możliwości utworzenia obiektu:

COsoba osoba1;
COsoba* osoba2 = new COsoba();
...

W C# klasa opisana tak jak wyżej będzie typem referencyjnym, to znaczy że użycie obiektu
będzie wymagało jego jawnego utworzenia:

...
COsoba osoba = new COsoba();
...

Sam term osoba funkcjonuje w CTS jako referencja do obiektu na stercie programu. Odwo-
łania do jego składowych odbywają się za pomocą operatora ”.”, na przykład

2. PODSTAWOWE ELEMENTY JĘZYKA C# 81

...
osoba.Imie = "Xawery";
...

Programista może w klasie zdefiniować również pola statyczne. Mają one własność przyna-
leżenia do klasy, a nie do żadnego konkretnego obiektu klasy. Intuicyjnie można więc rozumieć
pola statyczne jako odpowiednik zmiennych globalnych, występujących w innych językach pro-
gramowania.

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
class COsoba
{
public static int IloscOsob;
}

public class CMain
{
public static void Main()
{
COsoba.IloscOsob = 17;
Console.WriteLine(COsoba.IloscOsob.ToString());
}
}
}

Metody

Metody zawierają w sobie kod wykonywany podczas działania programu. Na przykład:

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
class COsoba
{
public string Imie;
public string Nazwisko;

public string ImieNazwisko()
{
return Imie+" "+Nazwisko;
}
}

public class CMain
{
public static void Main()
{
COsoba o = new COsoba();

o.Imie = "Xawery";
o.Nazwisko = "Xawerowski";

Console.WriteLine(o.ImieNazwisko());
}
}
}

Specjalne znaczenie mają metody statyczne, które podobnie jak pola statyczne nie są przy-
pisane do konkretnej instancji obiektu danej klasy, tylko do klasy jako takiej. Podobnie jak pola,
metody statyczne są intuicyjnymi odpowiednikami funkcji globalnych z C czy C++.

82 ROZDZIAŁ C. ŚWIAT .NET

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
class CInfo
{
public static string GetInfo()
{
return "Info";
}
}

public class CMain
{
public static void Main()
{
Console.WriteLine(CInfo.GetInfo());
}
}
}

W standardowy sposób przeciąża się metody, tak aby akceptowały różne listy wywołania:

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class CMain
{
static void Metoda(int i, string s)
{
Console.WriteLine(String.Format("Liczba ’{0}’, napis ’{1}’ ", i, s));
}
static void Metoda(int i)
{
Metoda(i, "jakis napis");
}
static void Metoda(string s)
{
Metoda(17, s);
}

public static void Main()
{
Metoda(5, "Ala ma kota");
Metoda(13);
Metoda("kot ma Ale");
}
}
}

C:\Example>example.exe
Liczba ’5’, napis ’Ala ma kota’
Liczba ’13’, napis ’jakis napis’
Liczba ’17’, napis ’kot ma Ale’

Istnieje również możliwość poinformowania kompilatora o tym, że metoda może być wołana
z nieznaną w czasie kompilacji liczbą parametrów:

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class CMain
{
static void VariableParList(params int[] iInfo)

2. PODSTAWOWE ELEMENTY JĘZYKA C# 83

{
Console.Write("parametry: ");
for (int i=0; i<iInfo.GetLength(0); i++)
Console.Write(iInfo[i].ToString()+",");
Console.WriteLine();
}

public static void Main()
{
VariableParList(1);
VariableParList(1, 2);
VariableParList(1, 2, 3, 4, 5);
}
}
}

Kompilator nie pozwoli jednak na skompilowanie kodu, w którym ze względu na przeciążenie
funkcji intencje programisty są niejasne.

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
class CMain
{
static void A(int a, params int[] tab)
{
Console.WriteLine("A1");
}

static void A(int a, int b, params int[] tab)
{
Console.WriteLine("A2");
}

public static void Main()
{
A(1, 2, 3);
}
}
}

Czy wołając funkcję A programista miał na myśli wersję pierwszą, z jednym parametrem
jawnym, czy drugą, z dwoma parametrami jawnymi? Cokolwiek myślał programista, kompilator
ma własne zdanie na temat takiego kodu:

example.cs(19,8): error CS0121: The call is ambiguous between the following methods
or properties: ’Example.CMain.A(int, int, params int[])’ and
’Example.CMain.A(int, params int[])’

Specjalną rolę wśród metod w klasie pełni metoda Main(), która określa punkt startowy
aplikacji7. Parametry startowe programu są przekazane jako tablica do metody Main():

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class CMain
{
public static void Main(string[] args)
{

7O możliwości umieszczenia wielu alternatywnych metod Main() w kodzie aplikacji napisano więcej na stronie
73.

84 ROZDZIAŁ C. ŚWIAT .NET

Console.WriteLine("Oto kolejne argumenty wywolania programu: ");
foreach (string s in args)
Console.WriteLine(s);

}
}
}

C:\Example>example.exe 17 "napis napis"
Oto kolejne argumenty wywolania programu:
17
napis napis

Przekazywanie parametrów do metod

Sposób przekazania parametru do metody zależy od tego, czy zmienna jest typu prostego czy
typu referencyjnego. Jeśli zmienna jest typu prostego, jak int, to do metody zostanie przekazana
wartość, jeśli zmienna jest typu referencyjnego, to do metody zostanie przekazana referencja.
Oznacza to, że wołana metoda nie ma możliwości zmiany, w przypadku typów prostych -

wartości zmiennej, w przypadku typów referencyjnych - referencji do zmiennej.

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class CMain
{
public static void Zmien(int i, string s)
{
i = 1;
s = "Ala ma kota";
}
public static void Main()
{
int i = 0;
string s = "Kot ma Ale";

Console.WriteLine("{0}, {1}", i, s);
Zmien(i, s);
Console.WriteLine("{0}, {1}", i, s);
}
}
}

C:\Example>example.exe
0, Kot ma Ale
0, Kot ma Ale

To, że referencja do przekazywanego obiektu nie może ulegać zmianie nie oznacza, że wartość
obiektu referencyjnego nie może być zmodyfikowana - wprost przeciwnie, metoda ma możliwość
zmiany właściwości obiektu przekazanego przez referencję.

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;

namespace Example
{
public class CMain
{
public static void Zmien(ArrayList a)
{
a.Add(0);
}
public static void Main()
{

2. PODSTAWOWE ELEMENTY JĘZYKA C# 85

ArrayList a = new ArrayList();
Console.WriteLine("elementow na liscie {0}", a.Count);
Zmien(a);
Console.WriteLine("elementow na liscie {0}", a.Count);
}
}
}

C:\Example>example.exe
elementow na liscie 0
elementow na liscie 1

Jeśli intencją programisty jest zmiana wartości przekazywanej do funkcji, może zażądać prze-
kazania do funkcji referencji do obiektu (w przypadku typu referencyjnego będzie to referencja
do referencji) za pomocą słowa kluczowego ref. Jest to dosłowny odpowiednik przekazywania
parametrów do funkcji przez referencje, znany z C++.

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class CMain
{
public static void Zmien(ref int i, ref string s)
{
i = 1;
s = "Ala ma kota";
}
public static void Main()
{
int i = 0;
string s = "Kot ma Ale";

Console.WriteLine("{0}, {1}", i, s);
Zmien(ref i, ref s);
Console.WriteLine("{0}, {1}", i, s);
}
}
}

C:\Example>example.exe
0, Kot ma Ale
1, Ala ma kota

Wydawać by się mogło, że w taki sposób należy również przekazywać parametry, które
miałyby służyć do przekazywania wyników do funkcji. Naiwnie możnaby więc spróbować napisać
coś takiego:

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class CMain
{
public static void Oblicz(ref int wynik)
{
wynik = 1;
}
public static void Main()
{
int wynik;

Oblicz(ref wynik);
Console.WriteLine("wynik: {0}", wynik);
}

86 ROZDZIAŁ C. ŚWIAT .NET

}
}

jednak kompilator takiej konstrukcji nie przyjmie

example.cs(16,19): error CS0165: Use of unassigned local variable ’wynik’

Istnieją dwa możliwe rozwiązania takiego problemu:

� Przed wykonaniem obliczeń przypisać jakąś wartość zmiennej wynik. Nie jest to rozwiązanie
eleganckie, skoro wynik ma dopiero otrzymać wartość w wyniku obliczeń.

� Zadeklarować parametr funkcji jako out int wynik zamiast ref int wynik. Słowo kluczowe out
jest równoważne ref, przy czym zmienna nie musi otrzymać wartości przed wykorzystaniem
jej jako parametru do funkcji.

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class CMain
{
public static void Oblicz(out int wynik)
{
wynik = 1;
}
public static void Main()
{
int wynik;

Oblicz(out wynik);
Console.WriteLine("wynik: {0}", wynik);
}
}
}

Konstruktory

Konstruktory są w pewnym sensie specjalnymi metodami, które zawierają kod inicjujący obiekty.
Konstruktory definiuje się dokładnie tak samo jak w C++ czy w Javie: przez utworzenie kodu
pseudo-metody o nazwie takiej jak nazwa klasy. Podstawowa różnica między C# a na przykład
C++ jest taka, że, podobnie jak w Javie, środowisko uruchomieniowe za pomocą odśmiecacza
zajmuje się oczyszczaniem pamięci z nieużywanych już obiektów8.
Konstruktory można oczywiście przeładowywać, można również korzystać z konstruktorów

klas bazowych lub z innych konstruktorów już określonych w klasie za pomocą wyrażeń inicju-
jących base(...) oraz this(...), na przykład:

/* Wiktor Zychla, 2003 */
using System;
using System.Threading;

namespace Example
{
public class CExample
{
DateTime d;
int i=0, j=0;

8Istnieje specjalny interfejs IDisposable przygotowany na użytek klas, które potrzebują jawnie wykonać akcje
przy niszczeniu obiektu przez odśmiecacz.

2. PODSTAWOWE ELEMENTY JĘZYKA C# 87

public CExample()
{
d = DateTime.Now;
}

public CExample(int I, int J) : this()
{
this.i = I;
this.j = J;
}

public override string ToString()
{
return String.Format("[{0},{1}], utworzone {2}", i, j, d);
}
}
public class CMain
{
public static void Main()
{
CExample e1 = new CExample();
Thread.Sleep(1000);
CExample e2 = new CExample(13, 17);

Console.WriteLine(e1);
Console.WriteLine(e2);
}
}
}

C:\Example>example.exe
[0,0], utworzone 2003-03-18 21:48:08
[13,17], utworzone 2003-03-18 21:48:10

C# pozwala zdefiniować konstruktor statyczny, który będzie wywołany przed skonstruowa-
niem pierwszego obiektu klasy. Statyczny konstruktor może być tylko jeden, bez żadnego kwa-
lifikatora dostępu i z pustą listą parametrów.

class CExample
{
static CExample()
{
...
}
}

Propercje

Propercje pozwalają ukryć implementację metody tak, aby z punktu widzenia klienta klasy wy-
glądała ona jak pole. Propercje stosuje się tam, gdzie istnieje konieczność nadania lub pobrania
wartości pola, a przy tym wykonać jakieś dodatkowe operacje. Za pomocą propercji można także
ograniczyć dostęp do jakiegoś pola, czyniąc je tylko do odczytu lub tylko do zapisu.

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class COsoba
{
private int m_wiek;
private DateTime m_dataUrodzenia;

public int wiek
{
get { return m_wiek; }

88 ROZDZIAŁ C. ŚWIAT .NET

}

public DateTime dataUrodzenia
{
get { return m_dataUrodzenia; }
set
{
m_dataUrodzenia = value;
m_wiek = DateTime.Now.Year-m_dataUrodzenia.Year;
}
}
}

public class CMain
{
public static void Main()
{
COsoba o = new COsoba();
o.dataUrodzenia = new DateTime(1950, 3, 8);

Console.WriteLine("Osoba:\r\nUrodzona\t{0:d}\r\nWiek\t\t{1}",
o.dataUrodzenia, o.wiek);

}
}
}

C:\Example>example.exe
Osoba:
Urodzona 1950-03-08
Wiek 53

Stałe

Stałe można zadeklarować w klasie przez opatrzenie deklaracji pola kwalifikatorem const.

public const string sKraj = "Polska";

Co jednak zrobić, gdy wartość stałej jest znana dopiero po uruchomieniu programu? W C#
taki problem rozwiązuje kwalifikator readonly, który oznacza pole zawierające stałą, przy czym
wartość takiego pola można modyfikować tylko w konstruktorze klasy.

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class COsoba
{
public readonly DateTime dataI;
public COsoba()
{
dataI = DateTime.Now;
}
}
public class CMain
{
public static void Main()
{
COsoba o = new COsoba();
Console.WriteLine(o.dataI);
}
}
}

2. PODSTAWOWE ELEMENTY JĘZYKA C# 89

Indeksery

Indeksery pozwalają klientom klasy traktować obiekt tak, jakby był on tablicą, bez względu na
reprezentację pól obiektu. Indeksery podobne są trochę do propercji - podobnie jak propercje
indeksery mogą pobierać wartość get lub sposób ustalać wartość set.

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class COsoba
{
public int this[int i, int j]
{
get { return i+j; }
}
}
public class CMain
{
public static void Main()
{
COsoba o = new COsoba();
Console.WriteLine(o[5,17]);
}
}
}

Idea indekserów narodziła się z chęci ułatwienia programistom dostępu do składowych obiek-
tu, który w jakiś sposób opisuje strukturę tablicopodobną. Na przykład klasy opisujące okna
potomne, takie jak ComboBox czy ListView, z pewnością jako jedno z pól będą zawierać jakąś
tablicę elementów przechowywanych w wewnętrznej liście obiektu. Indekser umożliwia w takim
przypadku dostęp do takiej listy bezpośrednio przez indeksowanie obiektu, a nie jego pola, tzn.
na przykład zamiast

ComboBox comboBox = new ComboBox();
...
comboBox.Items[5] = ...

moglibyśmy pisać (mając zdefiniowany odpowiedni indekser)

ComboBox comboBox = new ComboBox();
...
comboBox[5] = ...

Przeciążanie operatorów

Przeciążanie operatorów nie wnosi do języków programowania nic, poza czystością i elegancją
kodu. Z technicznego punktu widzenia przeciążone operatory są jakimiś metodami, które biorą
określoną ilość parametrów i zwracają wyniki.
C# pozwala przeciążać operatory za pomocą składni

public static retval operatorop (object1 [, object2])

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class CVec
{
public int x;
public int y;

90 ROZDZIAŁ C. ŚWIAT .NET

public CVec(int X, int Y)
{
x = X; y = Y;
}

public static CVec operator+(CVec v1, CVec v2)
{
return new CVec(v1.x+v2.x, v1.y+v2.y);
}

public override string ToString()
{
return String.Format("[{0},{1}]", x, y);
}
}
public class CMain
{
public static void Main()
{
CVec u = new CVec(2, 3);
CVec v = new CVec(1, 1);
Console.WriteLine("{0}+{1}={2}", u, v, u+v);
}
}
}

C:\Example>example.exe
[2,3]+[1,1]=[3,4]

Obowiązują następujące zasady przy przeciążaniu operatorów w C#:
� można przeciążać operatory unarne +, -, !, , ++, –, true i false oraz binarne +, -, *, /,

� nie można przeciążać operatora [], można jednak zdefiniować indekser, który pozwala trak-
tować obiekt jak tablicę

� nie można przeciążać operatora (), z wyjątkiem definiowania własnych jawnych konwersji

� operatory warunkowe (&&, –, i ?:) nie mogą być przeciążane

� operatory nie występujące w C# nie mogą być przeciążane

� operatory zdefiniowane przez Framework (., =, new) nie mogą być przeciążane

� operatory (== i !=) mogą być przeciążane, wymaga to jednak przeciążenia metod Equals
i GetHashCode

� przeładowanie niektórych operatorów binarnych (na przykład +) powoduje automatyczne
przeładowanie pewnych innych operatorów (w tym przypadku +=)

� operatory < i > muszą być przeładowywane jednocześnie

2.6 Struktury

Typy proste w C# deklaruje się tak samo jak typy referencyjne, zastępując słowo kluczowe
class słowem kluczowym struct. Tak jak typy referencyjne nazywamy klasami, tak typy proste
nazywamy strukturami.
Deklaracja struktury może zawierać dowolną ilość konstruktorów, z wyjątkiem konstruktora

bezparametrowego, który jest tworzony domyślnie i powoduje wyzerowanie (nadanie wartości
domyślnych) wartości wszystkich pól struktury. W przypadku typów prostych, które nie za-
wierają pól, korzystanie ze zmiennych możliwe jest więc bez wywołania konstruktora (jak na
przykład w przypadku typu int).

2. PODSTAWOWE ELEMENTY JĘZYKA C# 91

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
struct RGB
{
public int r;
public int g;
public int b;

public RGB(int R, int G, int B)
{
r = R; g = G; b = B;
}

public override string ToString()
{
return String.Format("[R:{0}, G:{1}, B:{2}]", r, g, b);
}
}
public class CMain
{
public static void Main()
{
RGB rgb = new RGB();
RGB rgb2 = new RGB(1, 2, 3);
Console.WriteLine(rgb);
Console.WriteLine(rgb2);

}
}
}

C:\Example>example.exe
[R:0, G:0, B:0]
[R:1, G:2, B:3]

2.7 Dziedziczenie

Model obiektowy C# udostępnia pojedyńcze dziedziczenie. Oznacza to, że każda klasa może mieć
co najwyżej jedną klasę bazową. O relacjach między klasami programista informuje kompilator
za pomocą składni

class <klasaPotomna> : <klasaBazowa>

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
class A
{
public int ID;
}
class B : A
{
public int ID2;
}
public class CMain
{
public static void Main()
{
A a = new A();
B b = new B();

a.ID = 1;
b.ID = 2;
b.ID2 = 3;

92 ROZDZIAŁ C. ŚWIAT .NET

}
}
}

Jeśli jakaś metoda występuje w klasie potomnej i w klasie bazowej, to kompilator zakłada, że
metoda z klasy potomnej przykrywa definicję metody z klasy bazowej (ominięcie obowiązkowego
w takim przypadku kwalifikatora new zostanie przez kompilator wykryte i programista zostanie
ostrzeżony o jego braku).
Co się jednak stanie, jeśli obiekt klasy potomnej zostanie najpierw zrzutowany na obiekt

klasy macierzystej, a następnie zostanie wywołana metoda?

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
class A
{
public void DajGlos()
{
Console.WriteLine("A");
}
}
class B : A
{
new public void DajGlos()
{
Console.WriteLine("B");
}
}
public class CMain
{
public static void Main()
{
A a = new A();
B b = new B();

a.DajGlos();
b.DajGlos();
((A)b).DajGlos();
}
}
}

C:\Example>example.exe
A
B
A

Jak widać, kompilator statycznie wyznaczył typ obiektu i wymusił zawołanie funkcji właści-
wej dla wyznaczonego typu.
Programista może jednak zażądać polimorficznego traktowania przeciążonych w klasach po-

tomnych metod, to znaczy dynamicznego wyznaczania typu obiektu i wołania odpowiedniej
funkcji. Służą do tego kwalifikatory virtual i override umieszczone przy odpowiednich deklara-
cjach.

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
class A
{
virtual public void DajGlos()
{

2. PODSTAWOWE ELEMENTY JĘZYKA C# 93

Console.WriteLine("A");
}
}
class B : A
{
override public void DajGlos()
{
Console.WriteLine("B");
}
}
public class CMain
{
public static void Main()
{
A a = new A();
B b = new B();

a.DajGlos();
b.DajGlos();
((A)b).DajGlos();
}
}
}

C:\Example>example
A
B
B

Programista może zabezpieczyć klasę przed dziedziczeniem z niej za pomocą kwalifikatora
sealed, na przykład

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
sealed class A
{
}
class B : A
{
}
public class CMain
{
public static void Main()
{
}
}
}

example.cs(9,9): error CS0509: ’Example.B’ : cannot inherit from sealed class
’Example.A’

2.8 Niszczenie obiektów

Niszczeniem obiektów w C# zajmuje się odśmiecacz. Co pewien czas odśmiecacz przegląda stertę
w poszukiwaniu obiektów do których brak już referencji i zwalnia przydzieloną im pamięć.
Programista nie ma więc kontroli nad niszczeniem obiektów takiej jak na przykład w C++.
Istnieją jednak dwa aspekty niszczenia obiektów, których programista musi być świadomy.

Destruktory

Zadziwiające, ale destruktory istnieją w C#. Ich działanie zdecydowanie różni się od działania
destruktorów w C++, bardziej zaś przypomina działanie metod typu Finalize z Javy.

94 ROZDZIAŁ C. ŚWIAT .NET

Chodzi o to, że programista nie ma żadnej kotroli nad tym, kiedy destruktor zostanie wy-
wołany. Odśmiecacz wykona kod zawarty w destruktorze tuż przed usunięciem obiektu, jednak
sam moment usuwania obiektu jest z punktu widzenia programisty nie możliwy do określenia.
Poniższy przykład pokazuje, że destruktory są wywoływane tuż przed zakończeniem progra-

mu. Okazuje się jednak, że przerwanie działania programu za pomocą CTRL+C spowoduje, że
destruktory nie wykonają się!

/* Wiktor Zychla, 2003 */
using System;
using System.Threading;

namespace Example
{
public class CExample
{
public int numer;

public CExample(int Numer)
{
numer = Numer;
Console.WriteLine("Utworzono obiekt {0}", numer);
}

~CExample()
{
Console.WriteLine("Zniszczono obiekt {0}", numer);
}

public static void Main(string[] args)
{
int objectNo = 10;

CExample[] examples = new CExample[objectNo];
for (int i=0; i<10; i++)
examples[i] = new CExample(i);

Thread.Sleep(5000);
}
}
}

C:\Example>example.exe
Utworzono obiekt 0
Utworzono obiekt 1
Utworzono obiekt 2
Utworzono obiekt 3
Utworzono obiekt 4
Utworzono obiekt 5
Utworzono obiekt 6
Utworzono obiekt 7
Utworzono obiekt 8
Utworzono obiekt 9
Zniszczono obiekt 9
Zniszczono obiekt 8
Zniszczono obiekt 7
Zniszczono obiekt 6
Zniszczono obiekt 5
Zniszczono obiekt 4
Zniszczono obiekt 3
Zniszczono obiekt 2
Zniszczono obiekt 1
Zniszczono obiekt 0

Interfejs IDisposable

Z innego rodzaju problemem mamy do czynienia, kiedy obiekt C# inicjuje zasoby innego ro-
dzaju niż pamięć, na przykład obiekty systemowe takie jak gniazda, połączenia do baz danych,

2. PODSTAWOWE ELEMENTY JĘZYKA C# 95

obiekty GDI. Brak kontroli nad zwalnianiem tych zasobów (na przykład uchwytów GDI), może
wręcz zakłócić pracę systemu! Aby uniknąć takich problemów, należy zaimplementować w kla-
sie interfejs IDisposable, który ma jedną metodę: Dispose(), w której programista może jawnie
zniszczyć zasoby przyznane obiektowi.

/* Wiktor Zychla, 2003 */
using System;
using System.Threading;

namespace Example
{
public class CExample : IDisposable
{
public int numer;

public CExample(int Numer)
{
numer = Numer;
Console.WriteLine("Utworzono obiekt {0}", numer);
}

public void Dispose()
{
Console.WriteLine("Zniszczono obiekt {0}", numer);
}

public static void Main(string[] args)
{
int objectNo = 10;

CExample[] examples = new CExample[objectNo];
for (int i=0; i<10; i++)
examples[i] = new CExample(i);

Thread.Sleep(5000);

for (int i=0; i<10; i++)
examples[i].Dispose();

}
}
}

Niestety, programista musi sam pamiętać o wywołaniu metody Dispose gdy obiekt przestaje
być potrzebny. W przypadku konstrukcji pojedyńczego obiektu, przydatny okazuje się cukie-
rek syntaktyczny, polegający na umieszczeniu konstrukcji obiektu w klauzuli using. W chwili
zakończenia następującego po niej bloku kodu, metoda Dispose() wołana jest automatycznie.

/* Wiktor Zychla, 2003 */
using System;
using System.Threading;

namespace Example
{
public class CExample : IDisposable
{
public int numer;

public CExample(int Numer)
{
numer = Numer;
Console.WriteLine("Utworzono obiekt {0}", numer);
}

public void Dispose()
{
Console.WriteLine("Zniszczono obiekt {0}", numer);
}

96 ROZDZIAŁ C. ŚWIAT .NET

public static void Main(string[] args)
{
using (CExample example = new CExample(0))
{
Thread.Sleep(5000);
}
}
}
}

C:\Example>example.exe
Utworzono obiekt 0
Zniszczono obiekt 0

2.9 Interfejsy

Kiedy mówimy o klasach, mamy na myśli pewne właściwości. Interfejsy są odpowiednikami klas,
przy czym dotyczą one jakiejś określonej funkcjonalności. Interfejsy są odpowiednikami klas
abstrakcyjnych, znanych z innych języków programowania - kiedy klasa implementuje interfejs
(czasem mówimy też dziedziczy z interfejsu), czyli implementuje wszystkie metody interfejsu,
klienci tej klasy mogą być pewni istnienia w klasie wszystkich definiowanych przez interfejs
metod.
Interfejsy są sposobem na przezwyciężenie ograniczenia pojedyńczego dziedziczenia - o ile

klasa może mieć tylko jedną klasę bazową, o tyle ta sama klasa może implementować dowolną
ilość interfejsów. Interfejs nie może zawierać pól, tylko specyfikacje metod przy czym w definicji
interfejsu metody nie mogą mieć żadnych kwalifikatorów dostępu, zaś w implementacji interfejsu
w klasie implementowane metody muszą być publiczne (inaczej nie miałoby sensu umieszczanie
ich w publicznym intefejsie, który klasa rzekomo miałaby spełniać).

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
interface I
{
void DajGlos();

}
class A : I
{
public void DajGlos()
{
Console.WriteLine("A");

}
}
public class CMain
{
public static void Main()
{
A a = new A();
a.DajGlos();
}
}
}

Jeśli klasa nie implementuje wszystkich wymaganych funkcji, to kompilator podczas kompi-
lacji zgłosi błąd.
Z punktu widzenia programisty interfejs zachowuje się jak klasa, to znaczy można obiekty

rzutować na interfejs, statycznie i dynamicznie9. Można także definiować zmienne których typem
jest konkretny interfejs.
9O konwersji między typami można przeczytać na stronie 99.

2. PODSTAWOWE ELEMENTY JĘZYKA C# 97

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
interface I
{
void DajGlos();

}
class A : I
{
public void DajGlos()
{
Console.WriteLine("A");

}
}
public class CMain
{
public static void Main()
{
A a = new A();
I i = a as I;
i.DajGlos();
}
}
}

Programista może w czasie wykonania programu dowiedzieć się czy klasa implementuje jakiś
interfejs za pomocą słowa kluczowego is. Jest to przydatne zwłaszcza wtedy, kiedy obiekty
znajdują się w jakimś kontenerze, w którym wszystkie są zrzutowane do typu bazowego object.

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
interface I
{
void DajGlos();

}
class A : I
{
public void DajGlos()
{
Console.WriteLine("A");

}
}
class B
{
public void DajGlos()
{
Console.WriteLine("A");

}
}
public class CMain
{
public static void Main()
{
A a = new A();
B b = new B();

if (a is I) Console.WriteLine("A implementuje I");
if (b is I) Console.WriteLine("B implementuje I");

}
}
}

C:\Example>example.exe
A implementuje I

98 ROZDZIAŁ C. ŚWIAT .NET

Interfejsy nie są domyślnie dziedziczone z klasy bazowej do klas potomnych. Jeśli programista
zrzutuje obiekt klasy potomnej na interfejs implementowany w klasie bazowej, to nawet jeśli klasa
potomna zawiera odpowiednie metody, zostanie zawołana metoda z klasy bazowej.

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
interface I
{
void DajGlos();

}
class A : I
{
public void DajGlos()
{
Console.WriteLine("A");

}
}
class B : A
{
new public void DajGlos()
{
Console.WriteLine("B");

}
}
public class CMain
{
public static void Main()
{
B b = new B();
b.DajGlos();

((I)b).DajGlos();
}
}
}

C:\Example>example.exe
B
A

Jeśli klasa potomna miałaby implementować interfejs, to należy o tym poinformować kom-
pilator.

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
interface I
{
void DajGlos();

}
class A : I
{
public void DajGlos()
{
Console.WriteLine("A");

}
}
class B : A, I
{
new public void DajGlos()
{
Console.WriteLine("B");

}

2. PODSTAWOWE ELEMENTY JĘZYKA C# 99

}
public class CMain
{
public static void Main()
{
B b = new B();
b.DajGlos();

((I)b).DajGlos();
}
}
}

C:\Example>example.exe
B
B

Interfejsy mogą implementować inne interfejsy.

interface I
{
void I();

}
interface J
{
void J();

}
interface IJ : I, J
{
void IJ();

}

2.10 Konwersje między typami

Możliwość przypisania wprost wartości jednego typu do wartości innego typu zależy tylko od
tego, czy zdefiniowano bezpośredni operator konwersji między tymi typami. Najczęściej taka
próba nie powiedzie się, bowiem operatory konwersji zdefiniowano tylko dla wybranych par
typów.
Zobaczmy jak kompilator reaguje na próbę wymuszenia konwersji między wartościami róż-

nych typów gdy operator konwersji bezpośredniej istnieje tylko dla konwersji w jedną stronę.

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class CMain
{
public static void Main()
{
int i=1;
long j=1;

j=i;
i=j;
}
}
}

Microsoft (R) Visual C# .NET Compiler version 7.00.9466
for Microsoft (R) .NET Framework version 1.0.3705
Copyright (C) Microsoft Corporation 2001. All rights reserved.

example.cs(14,6): error CS0029: Cannot implicitly convert type ’long’ to ’int’

100 ROZDZIAŁ C. ŚWIAT .NET

Wszystko się zgadza - konwersja z wartości 32-bitowej do wartości 64-bitowej jest legalna (tak
została określona) bowiem nie powoduje utraty danych. Konwersja odwrotna może prowadzić
do utraty danych i choć kompilator taką konwersję dopuści, programista musi swój zamiar
potwierdzić:

j=i;
i=(int)j;

Typy wbudowane

Wartość każdego typu można przekształcić do wartości typu string za pomocą metody To-
String(). Wbudowane klasy arytmetyczne mają statyczne metody Parse, służące do konwersji
napisów.

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class CMain
{
public static void Main()
{
string sI = "45";
string sF = "123,5";

int i = int.Parse(sI);
float f = float.Parse(sF);

Console.WriteLine("{0}; {1}", i, f);
}
}
}

Bardziej ogólne podejście możliwe jest dzięki konwersjom między typami wbudowanymi,
dostępnymi jako statyczne metody klasy System.Convert.

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class CMain
{
public static void Main()
{
string sI = "45";
string sF = "123,5";

int i = Convert.ToInt32(sI);
double f = Convert.ToDouble(sF);

Console.WriteLine("{0}; {1}", i, f);
}
}
}

Typy własne

Możliwe są dwa rodzaje konwersji wprost (przez przypisanie):

konwersja jawna Z konwersją jawną mamy do czynienia wtedy, kiedy wymiana wartości mię-
dzy dwoma typami wymaga jawnego rzutowania, na przykład:

2. PODSTAWOWE ELEMENTY JĘZYKA C# 101

double d = 1.5;
int i = (int)d;

konwersja niejawna Z konwersją niejawną mamy do czynienia wtedy, kiedy wymiana wartości
między dwoma typami nie wymaga jawnego rzutowania, na przykład:

int i = 1;
double d = i;

W przypadku typów wbudowanych rodzaje konwersji są już zdeterminowane, jednak w przy-
padku własnych klas programista staje przed wyborem rodzajów konwersji między swoim typem
a innymi typami. Wybór odpowiedniego typu konwersji zależy od tego czy podczas konwersji
może dojść do utraty danych, czy nie. Wyobraźmy sobie sytuację, w której typ A jest bardziej
pojemny informacyjnie niż typ B. Wobec tego konwersja danej typu B do danej typu A może być
niejawna, ponieważ nie istnieje ryzyko utraty informacji. Konwersja w odwrotną stronę powinna
być jawna, aby klient klasy był świadomy możliwej utraty informacji.
O tym, czy konwersja jest dokonywana jawnie, czy niejawnie, decyduje definicja operatora

konwersji. Operatory konwersji definiuje się jako jawne przez użycie kwalifikatora explicit lub
niejawne implicit.
Jako przykład rozważmy strukturę opisującą liczby rzymskie. Konwersja liczby rzymskiej do

typu intmoże być niejawna, bowiem int jest bardziej pojemny informacyjnie niż zbiór wszystkich
liczb rzymskich. Konwersja odwrotna powinna być jawna.

/* Wiktor Zychla, 2003 */
using System;
using System.Text;

namespace Example
{
public class CMain
{
struct RomanNumeral
{
readonly string[] literals;
int value;

public RomanNumeral(int value)
{
if (value > 3999) throw new ArgumentOutOfRangeException();

literals = new string[] { "I", "V", "X", "L",
"C", "D", "M" };

this.value = value;
}

public static explicit operator RomanNumeral(int value)
{
return new RomanNumeral(value);
}

public static implicit operator int(RomanNumeral roman)
{
return roman.value;

}

string BuildRomanString(int index, int v)
{
if (v <= 0) return String.Empty;

string s = String.Empty;
int digit = v%10;
int j;

if (digit == 4)

102 ROZDZIAŁ C. ŚWIAT .NET

s = literals[index]+literals[index+1]+s;
else if (digit == 9)
s = literals[index]+literals[index+2]+s;
else if (digit >= 5 && digit <= 8)
{
s = literals[index+1];
digit -= 5;

}
if (digit >= 1 && digit <=3)
{
for (j=0; j<digit; j++)
s = s+literals[index];

}

return BuildRomanString(index+2, v/10)+s;
}

public override string ToString()
{
string s = String.Empty;
int tVal = value;

return BuildRomanString(0, value);
}

}

public static void Main()
{
int i = 2003;
RomanNumeral r = (RomanNumeral)i;
int j = r;

Console.WriteLine("{0}, {1}, {2}", i, r, j);
}
}
}

Dziedziczenie a konwersje

Jak w każdym obiektowym języku programowania, obiekt klasy potomnej można zawsze niejaw-
nie zrzutować na obiekt klasy macierzystej. W drugą stronę możliwa jest tylko konwersja jawna,
jednak uda się ona tylko wtedy, kiedy dany obiekt jest rzeczywiście odpowiedniego typu.
Oprócz rzutowania statycznego, między typami referencyjnymi możliwe jest również rzuto-

wanie dynamiczne za pomocą operatora as. Jeśli wartość rzutowania dynamicznego równa jest
null, to znaczy że rzutowanie nie powiodło się. Rzutowanie dynamiczne pozwala uniknąć wyjąt-
ku, który byłby wyrzucony przez rzutowanie statyczne przy błędzie rzutowania, na przykład:

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;

namespace Example
{
public class CMain
{
static void f1(object o)
{
// możliwy wyjątek!
Hashtable h = (Hashtable)o;
}
static void f2(object o)
{
// rzutowanie może nie udać się
// ale nie będzie wyjątku
Hashtable h = o as Hashtable;
if (h == null)
{

2. PODSTAWOWE ELEMENTY JĘZYKA C# 103

}
}
public static void Main()
{
ArrayList a = new ArrayList();

f1(a);
f2(a);

}
}
}

2.11 Wyjątki

Wyjątki są mechanizmem jaki nowoczesne języki programowania wykorzystują w celu zwięk-
szenia produktywności i czytelności kodu. Projektanci platformy .NET przyjęli, że biblioteki
systemowe informują kod użytkownika o błędach za pomocą wyjątków i zachęcają użytkowni-
ków do zerwania z przyzwyczajeniami, znanymi na przykład z C, polegającymi na przekazywaniu
informacji o błędach przez wartości funkcji.
Wyjątki przechwytuje się za pomocą składni

try
{
// blok w którym przechwytywane będą wyjątki
}
catch (TypWyjątku wyjątek)
{
// obsługa przechwyconego wyjątku
}
finally
{
// kod wykonywany zawsze na zakończenie bloku
}

Wyjątki wyrzuca się za pomocą składni

throw <obiekt opisujący wyjątek>

Istnieją trzy podstawowe strategie dotyczące wyjątków. Wybór odpowiedniej strategii należy
do programisty:

brak obsługi wyjątków Kod funkcji nie zawiera obsługi wyjątków

informacja dla funkcji wołającej Kod klauzuli catch wyrzuca przechwycony wyjątek

pełne obsłużenie wyjątku Kod klauzuli catch zawiera pełny kod obsługi wyjątku i nie infor-
muje funkcji wołającej o problemach

Wyjątki są obiektami klas, które dziedziczą z klasy Exception. Klasa ta może być przeciążona,
choć już w podstawowej wersji zawiera sposo użytecznych informacji, takich jak informacja
diagnostyczna czy ślad stosu, na przykład:

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;

namespace Example
{
public class CMain
{
public static void f()
{

104 ROZDZIAŁ C. ŚWIAT .NET

try
{
int i = 1-1;
int j = 1/i;
}
catch (Exception ex)
{
Console.WriteLine("Informacja o błędzie:\r\n{0}\r\nSlad stosu:\r\n{1}",

ex.Message, ex.StackTrace);
}
}
public static void Main()
{
f();
}
}
}

C:\Example>csc.exe example.cs /debug
Microsoft (R) Visual C# .NET Compiler version 7.00.9466
for Microsoft (R) .NET Framework version 1.0.3705
Copyright (C) Microsoft Corporation 2001. All rights reserved.

C:\Example>example.exe
Informacja o błędzie:
Attempted to divide by zero.
Slad stosu:
at Example.CMain.f() in C:\000\example.cs:line 14

2.12 Klasa string

Podstawowe możliwości klasy string

Obsługa napisów możliwa jest w C# dzięki klasie string. Każdy obiekt tej klasy ma dostęp do
wielu przydatnych propercji i metod.

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;

namespace Example
{
public class CMain
{
public static void Main()
{
string s = "Ala ma kota";
Console.WriteLine("Length(’{0}’): {1}", s, s.Length);

Console.WriteLine("ToLower: ’{0}’, ToUpper: ’{1}’",
s.ToLower(), s.ToUpper());

string sS = "Ala";
if (s.StartsWith(sS))
Console.WriteLine("’{0}’ StartsWith ’{1}’", s, sS);

string sE = "ota";
if (s.EndsWith(sE))
Console.WriteLine("’{0}’ EndsWith ’{1}’", s, sE);

Console.WriteLine("Remove(2,3): ’{0}’", s.Remove(2, 3));

string sI = "!++!";
Console.WriteLine("Insert(3, {1}): ’{0}’", s.Insert(3, sI), sI);

Console.WriteLine("Substring(4, 2): ’{0}’", s.Substring(4, 2));

Console.WriteLine("IndexOf(’a’): ’{0}’", s.IndexOf(’a’));

2. PODSTAWOWE ELEMENTY JĘZYKA C# 105

Console.WriteLine("LastIndexOf(’a’): ’{0}’", s.LastIndexOf(’a’));

Console.WriteLine("PadLeft(20, ’_’): ’{0}’", s.PadLeft(20, ’_’));

string sT = " qwerty ";
Console.WriteLine("Trim(’{0}’): ’{1}’", sT, sT.Trim());
}
}
}

C:\Example>example.exe
Length(’Ala ma kota’): 11
ToLower: ’ala ma kota’, ToUpper: ’ALA MA KOTA’
’Ala ma kota’ StartsWith ’Ala’
’Ala ma kota’ EndsWith ’ota’
Remove(2,3): ’Ala kota’
Insert(3, !++!): ’Ala!++! ma kota’
Substring(4, 2): ’ma’
IndexOf(’a’): ’2’
LastIndexOf(’a’): ’10’
PadLeft(20, ’_’): ’_________Ala ma kota’
Trim(’ qwerty ’): ’qwerty’

Formatowanie

C# udostępnia bardzo elegancki sposób formatowania napisów, przypominającą trochę sposób
formatowania znany z C, jednak znacznie udoskonalony. Programista przygotowuje formatowany
napis, przetykany wyrażeniami formatującymi, zawierającymi numery kolejnych parametrów dla
formatowanego napisu wraz ze wskazaniem sposobu formatowania.
Zobaczmy najpierw prosty przykład:

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;

namespace Example
{
public class CMain
{
public static void Main()
{
string s = "{0}+{1}={2}\r\n{0}+{2}={3}\r\n{2}+{3}={4}";
int i0 = 17, i1 = 23;
Console.WriteLine(s, i0, i1, i0+i1, 2*i0+i1, 3*i0+2*i1);
}
}
}

Wyższość takiego sposobu przekazywania parametrów dla wyrażeń formatujących nad tym
dostępnym w C polega na tym, że wyrażenie formatujące zawiera w sobie numer parametru,
w związku z czym ten sam parametr może w napisie występować wiele razy bez konieczności
powtarzania go na liście parametrów, na przykład:

Console.WriteLine("{0}, {0}, {0}, {0}", 1);

Wyniki formatowania mogą być przekazane nie tylko do konsoli, ale do zmiennej typu string,
dzięki statycznej funkcji Format w klasie string, na przykład:

string s = "{0}+{1}={2}\r\n{0}+{2}={3}\r\n{2}+{3}={4}";
int i0 = 17, i1 = 23;

string sResult = String.Format(s, i0, i1, i0+i1, 2*i0+i1, 3*i0+2*i1);

106 ROZDZIAŁ C. ŚWIAT .NET

Standardowy sposób formatowania wartości numerycznych pozwala, oprócz numeru para-
metru, dodać do wyrażenia formatującego także długość pola oraz sposób formatowania, na
przykład:

Console.WriteLine(
"{0,5} {1,5}", 123, 456); // wyrównaj do prawej

Console.WriteLine(
"{0,-5} {1,-5}", 123, 456); // wyrównaj do lewej

123 456
123 456

Dostępne sposoby formatowania wyrażeń numerycznych:

Znak formatujący Interpretacja

C lub c Finansowa
D lub d Dziesiętna
E lub e Wykładnicza
F lub f Ustalona ilość pozycji dziesiętnych
G lub g Ogólna
N lub n Numeryczna
P lub p Procentowa
R lub r Możliwa do ponownego sparsowania
X lub x Heksadecymalna

Przykład:

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;

namespace Example
{
public class CMain
{
public static void Main()
{
int i = 123456;
Console.WriteLine("{0:C}", i);
Console.WriteLine("{0:D}", i);
Console.WriteLine("{0:E}", i);
Console.WriteLine("{0:F}", i);
Console.WriteLine("{0:G}", i);
Console.WriteLine("{0:N}", i);
Console.WriteLine("{0:P}", i);
Console.WriteLine("{0:X}", i);

Console.WriteLine();

double d = 123.456;
Console.WriteLine("{0:E}", d);
Console.WriteLine("{0:F}", d);
Console.WriteLine("{0:G}", d);
Console.WriteLine("{0:N}", d);
Console.WriteLine("{0:P}", d);
Console.WriteLine("{0:R}", d);
}
}
}

2. PODSTAWOWE ELEMENTY JĘZYKA C# 107

C:\Example>example.exe
123_456,00 zł
123456
1,234560E+005
123456,00
123456
123_456,00
12_345_600,00%
1E240

1,234560E+002
123,46
123,456
123,46
12_345,60%
123,456

Programista może wyposażyć własne obiekty w możliwość dowolnego zadawania parametrów
formatowania. Umożliwia to interfejs IFormattable.

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
class CFormatExample : IFormattable
{
public int ie;
public string se;

private CFormatExample() {}
public CFormatExample(int ie, string se)
{
this.ie = ie; this.se = se;
}
public string ToString(string format, IFormatProvider fp)
{
switch (format)
{
case "A" : return ie.ToString();
case "B" : return se;
default : return String.Format("{0}:{1}", ie, se);

}
}

}
public class CExample
{
public static void Main(string[] args)
{
CFormatExample fe = new CFormatExample(17, "Ala ma kota");

Console.WriteLine(String.Format("{0}", fe));
Console.WriteLine(String.Format("{0:A}", fe));
Console.WriteLine(String.Format("{0:B}", fe));
}
}
}

C:\Example>example.exe
17:Ala ma kota
17
Ala ma kota

Encoding

Klasyczny problem związany z obsługą napisów to konwersja napisu do tablicy znaków i tabli-
cy znaków do napisu. Klasycznie do tego problemu podchodzi się traktując napis jako tablicę

108 ROZDZIAŁ C. ŚWIAT .NET

znaków (tak jest na przykład w C).
Zauważmy jednak, że istnieje wiele możliwych standardów kodowania znaków. Niekoniecznie

kod znaku w standardzie ASCII musi być taki sam jak w standardzie UNICODE, pewne znaki
mogą wręcz być niedostępne w jednych standardach a dostępne w innych.
W C# udostępniono klasę System.Text.Encoding, za pomocą której można konwertować

napisy i tablice znaków w następujących standardach:

Standard kodowania Uwagi

ASCII
BigEndianUnicode
Unicode
UTF7 Unicode, strona kodowa 65000
UTF8 Unicode, strona kodowa 65001

Przykład:

/* Wiktor Zychla, 2003 */
using System;
using System.Text;

namespace Example
{
public class CMain
{
public static void Main()
{
byte[] ba = new byte[]
{72, 101, 108, 108, 111};

string s = Encoding.ASCII.GetString(ba);
Console.WriteLine(s);

string sP = "Chrząszcz chrzęści w Żyrardówku";
byte[] unicodeB = Encoding.Unicode.GetBytes(sP);
char[] unicodeC = Encoding.Unicode.GetChars(unicodeB);

Console.WriteLine();
foreach (byte b in unicodeB)
Console.Write("{0:D3} ", b);
Console.WriteLine();

foreach (char c in unicodeC)
Console.Write("{0} ", c);

}
}
}

C:\Example>example
Hello

067 000 104 000 114 000 122 000 005 001 115 000 122 000 099 000 122 000 032 000
099 000 104 000 114 000 122 000 025 001 091 001 099 000 105 000 032 000 119 000
032 000 123 001 121 000 114 000 097 000 114 000 100 000 243 000 119 000 107 000
117 000
C h r z ą s z c z c h r z ę ś c i w Ż y r a r d ó w k u

2.13 Delegaci i zdarzenia

Delegaci

Delegat jest typem referencyjnym, który w elegancki sposób przechowuje wskaźnik na funkcję.
CTS za pomocą delegatów pozwala przekazywać funkcje jako parametry do innych funkcji,

2. PODSTAWOWE ELEMENTY JĘZYKA C# 109

kontrolując jednocześnie zgodność typów - kompilator nie pozwoli na utworzenie delegata z
funkcji o nieodpowiednim prototypie.
Sama deklaracja delegata przypomina deklarację wskaźnika na funkcję w języku C:

typedef int(*pfPInt)(); // definicja typu wskaźnika na funkcję w C

delegate int pfPInt(); // definicja delegata - wskaźnika na funkcję w C#

Podkreślmy - delegaci są obiektami, konstruuje się ich więc w standardowy sposób za pomocą
new.

/* Wiktor Zychla, 2003 */
using System;
using System.Text;

namespace Example
{
public class MathClass
{
public static int Kwadrat(int n)
{
return n*n;
}

public static int Dwukrotnosc(int n)
{
return n+n;
}
}

public class CMain
{
public delegate int MathDelegate(int n);

public static int Oblicz(int n, MathDelegate m)
{
return m(n);
}

public static void Main()
{
int n1 = Oblicz(11, new MathDelegate(MathClass.Kwadrat));
int n2 = Oblicz(11, new MathDelegate(MathClass.Dwukrotnosc));

Console.WriteLine("{0}, {1}", n1, n2);
}
}
}

Dowolna ilość delegatów może być złożona do jednego delegata za pomocą operatora +,
którego wykonanie powoduje wykonanie całej sekwencji. Jeśli delegaci zwracają wyniki, to wynik
złożonego delegata jest wynikiem ostatnio wykonanego delegata.

/* Wiktor Zychla, 2003 */
using System;
using System.Text;

namespace Example
{
public class InfoClass
{
public static void WypiszKwadrat(int n)
{
Console.WriteLine(n*n);
}

110 ROZDZIAŁ C. ŚWIAT .NET

public static void WypiszDwukrotnosc(int n)
{
Console.WriteLine(n+n);
}
}

public class CMain
{
public delegate void InfoDelegate(int n);

public static void Oblicz(int n, InfoDelegate m)
{
m(n);
}

public static void Main()
{
InfoDelegate d1 = new InfoDelegate(InfoClass.WypiszKwadrat);
InfoDelegate d2 = new InfoDelegate(InfoClass.WypiszDwukrotnosc);

InfoDelegate d3 = d1+d2;

Oblicz(11, d3);
}
}
}

Zdarzenia

Kiedy zachodzi konieczność poinformowania jakiegoś obiektu o zajściu jakiegoś zdarzenia, bar-
dzo przydatny okazuje się mechanizm zdarzeń. Obiekt, który jest sprawcą pojawienia się zdarze-
nia przechowuje listę delegatów, którzy zostaną wykonani kiedy zdarzenie ma zostać ogłoszone
światu. Każdy inny obiekt, który jest zainteresowany otrzymaniem powiadomienia, po prostu
dopisuje swojego delegata do listy delegatów zdarzenia.

/* Wiktor Zychla, 2003 */
using System;
using System.Threading;

namespace DelegaciIZdarzenia
{
public delegate void CZdarzenieDelegate(CZdarzenieEventArgs e);

// Argumenty zdarzenia
public class CZdarzenieEventArgs
{
public int informacja1;
public int informacja2;

private CZdarzenieEventArgs() {}
public CZdarzenieEventArgs(int Informacja1, int Informacja2)
{
informacja1 = Informacja1;
informacja2 = Informacja2;
}
}

// Obiekt, który będzie wysyłał zdarzenie
public class CObiekt
{
public event CZdarzenieDelegate Zdarzenie;

public void ZdarzenieZaszlo(CZdarzenieEventArgs e)
{
this.Zdarzenie(e);
}

2. PODSTAWOWE ELEMENTY JĘZYKA C# 111

public CObiekt() {}
}

class CMain
{
// Reakcja na zdarzenie
static void Reakcja1(CZdarzenieEventArgs e)
{
Console.WriteLine(String.Format("Reakcja 1: {0},{1}",

e.informacja1, e.informacja2));
}

static void Reakcja2(CZdarzenieEventArgs e)
{
Console.WriteLine(String.Format("Reakcja 2: {0},{1}",

e.informacja1, e.informacja2));
}

public static void Main()
{
CObiekt obiekt = new CObiekt();
obiekt.Zdarzenie += new CZdarzenieDelegate(Reakcja1);
Thread.Sleep(1000);
obiekt.ZdarzenieZaszlo(new CZdarzenieEventArgs(1, 2));
Thread.Sleep(1000);
obiekt.Zdarzenie += new CZdarzenieDelegate(Reakcja2);
obiekt.ZdarzenieZaszlo(new CZdarzenieEventArgs(3, 4));
Thread.Sleep(1000);
Console.WriteLine("koniec");
}
}
}

C:\Example>example.exe
Reakcja 1: 1,2
Reakcja 1: 3,4
Reakcja 2: 3,4
koniec

Uczeń Czarnoksiężnika

Możliwości C# w zakresie delegatów i zdarzeń podsumujmy bajką o uczniu czarnoksiężnika10.
Dawno dawno temu, za siedmioma górami i siedmioma rzekami, mieszkał potężny Czarno-

księżnik. Czarnoksiężnik miał Ucznia, który bardzo chciał kiedyś być tak mądry jak Czarnoksięż-
nik. Póki co, Czarnoksiężnik wymyślał swojemu Uczniowi kolejne, coraz bardziej skomplikowane
zadania, a Uczeń skrupulatnie je wykonywał.

Taki układ trwał i trwał, aż w końcu Czarnoksiężnik uznał, że nie musi już cały czas doglądać
pracy swojego Ucznia. ”Uczniu!” - rzekł któregoś dnia - ”Jesteś już na tyle samodzielny, że w
czasie kiedy pracujesz mógłbym zająć się swoimi sprawami. Po prostu informuj mnie o tym,
kiedy skończysz pracę.”

using System;
using System.Threading;

namespace UczenCzarnoksieznika
{
class Uczen
{
public void PoradzSie(Czarnoksieznik czarnoksieznik)
{
_czarnoksieznik = czarnoksieznik;
}

10Oryginał, historia pracownika biurowego, dostępny jest pod adresem
http://www.sellsbrothers.com/writing/default.aspx?content=delegates.htm.

112 ROZDZIAŁ C. ŚWIAT .NET

public void Pracuj()
{
Console.WriteLine("Uczen: rozpoczynam prace.");
if (_czarnoksieznik != null) _czarnoksieznik.PracaRozpoczeta();

Console.WriteLine("Uczen: pracuje.");
if (_czarnoksieznik != null) _czarnoksieznik.PracaTrwa();

Console.WriteLine("Koncze prace.");
if (_czarnoksieznik != null)
{
int ocena = _czarnoksieznik.PracaZakonczona();
Console.WriteLine("Ocena : {0}", ocena);
}
}
private Czarnoksieznik _czarnoksieznik;
}

class Czarnoksieznik
{
public void PracaRozpoczeta() { }
public void PracaTrwa() { }
public int PracaZakonczona()
{
Console.WriteLine("Ach, znakomicie!");
return 2;
}
}

class Uniwersum
{
public static void Main()
{
Uczen uczen = new Uczen();
Czarnoksieznik czarnoksieznik = new Czarnoksieznik();

uczen.PoradzSie(czarnoksieznik);
uczen.Pracuj();
}
}
}

Wydawało się, że wszystko funkcjonuje jak należy, jednak Uczeń zaczął zastanawiać się co by
się stało, gdyby nie tylko Czarnoksiężnik, ale ktoś inny był również zainteresowany jego postępa-
mi (na przykład Uczennica pewnej zaprzyjaźnionej z Czarnoksiężnikiem Wróżki). W pierwszej
chwili Uczeń trochę się zmartwił, bo wyobraził sobie, że jak dużo różnych metod musiałby znać,
aby o swoich postępach informować innych. W końcu każdy mógłby chcieć być informowany
w trochę inny sposób. Trochę się jednak uspokoił kiedy pomyślał o rozdzieleniu listy możliwych
powiadomień od implementacji tych powiadomień. Zaprojektował więc odpowiedni interfejs.

using System;
using System.Threading;

namespace UczenCzarnoksieznika
{
interface IUczenPowiadomi
{
void PracaRozpoczeta();
void PracaTrwa();
int PracaZakonczona();
}

class Uczen
{
public void PoradzSie(IUczenPowiadomi uczenpowiadomi)
{
_uczenpowiadomi = uczenpowiadomi;

2. PODSTAWOWE ELEMENTY JĘZYKA C# 113

}
public void Pracuj()
{
Console.WriteLine("Uczen: rozpoczynam prace.");
if (_uczenpowiadomi != null) _uczenpowiadomi.PracaRozpoczeta();

Console.WriteLine("Uczen: pracuje.");
if (_uczenpowiadomi != null) _uczenpowiadomi.PracaTrwa();

Console.WriteLine("Koncze prace.");
if (_uczenpowiadomi != null)
{
int ocena = _uczenpowiadomi.PracaZakonczona();
Console.WriteLine("Ocena : {0}", ocena);
}
}
private IUczenPowiadomi _uczenpowiadomi;
}

class Czarnoksieznik : IUczenPowiadomi
{
public void PracaRozpoczeta() { }
public void PracaTrwa() { }
public int PracaZakonczona()
{
Console.WriteLine("Ach, znakomicie!");
return 3;
}
}

class Uniwersum
{
public static void Main()
{
Uczen uczen = new Uczen();
Czarnoksieznik czarnoksieznik = new Czarnoksieznik();

uczen.PoradzSie(czarnoksieznik);
uczen.Pracuj();
}
}
}

Przekonanie Czarnoksiężnika do zaimplementowania interfejsu trochę trwało i choć na razie
nikt inny nie był implementowaniem jego interfejsu zainteresowany, to Uczeń był z siebie bardzo
zadowolony. ”W końcu teraz” - pomyślał - ”każdy zainteresowany będzie mógł łatwo dowiedzieć
się jak sobie radzę.”
Czarnoksiężnik nie był jednak zachwycony. ”Uczniu!” - zagrzmiał - ”Dlaczego zadajesz sobie

tyle trudu informując mnie o rozpoczęciu Twojej pracy i o jej trwaniu? Nie jestem tym zaintere-
sowany. Nie dość, że zmuszasz mnie do implementowania odpowiednich metod w interfejsie, to
jeszcze tracisz swój czas czekając aż zauważę Twoje poczynania. Przecież gdybym akurat gdzieś
wybył, to musiałbyś bardzo długo czekać na zakończenie wykonania moich metod. Zrób coś z tym,
Uczniu!”
Chcąc nie chcąc, zganiony przez swojego Mistrza, Uczeń uznał, że interfejsy są owszem uży-

teczne w wielu przypadkach, jednak niespecjalnie nadają się do implementowania zdarzeń. Pomy-
ślał, że rzeczywiście byłoby właściwie informować zainteresowanych tylko o tych wydarzeniach,
którymi są oni zainteresowani. Zamiast interfejsu stworzył więc delegatów do odpowiednich funk-
cji.

using System;
using System.Threading;

namespace UczenCzarnoksieznika
{

114 ROZDZIAŁ C. ŚWIAT .NET

delegate void PracaRozpoczeta();
delegate void PracaTrwa();
delegate int PracaZakonczona();

class Uczen
{
public void Pracuj()
{
Console.WriteLine("Uczen: rozpoczynam prace.");
if (rozpoczynaprace != null) rozpoczynaprace();

Console.WriteLine("Uczen: pracuje.");
if (pracuje != null) pracuje();

Console.WriteLine("Koncze prace.");
if (zakonczylprace != null)
{
int ocena = zakonczylprace();
Console.WriteLine("Ocena : {0}", ocena);
}
}
public PracaRozpoczeta rozpoczynaprace;
public PracaTrwa pracuje;
public PracaZakonczona zakonczylprace;
}

class Czarnoksieznik
{
public int PracaZakonczona()
{
Console.WriteLine("Ach, znakomicie!");
return 4;
}
}

class Uniwersum
{
public static void Main()
{
Uczen uczen = new Uczen();
Czarnoksieznik czarnoksieznik = new Czarnoksieznik();

uczen.zakonczylprace = new PracaZakonczona(czarnoksieznik.PracaZakonczona);
uczen.Pracuj();
}
}
}

W ten sposób Uczeń przestał zajmować Czarnoksiężnika zdarzeniami, którymi tamten nie
był zainteresowany. W międzyczasie okazało się, że samo Uniwersum zainteresowało się poczy-
naniami Ucznia i chciało być informowane o rozpoczęciu i zakończeniu przez niego pracy.

using System;
using System.Threading;

namespace UczenCzarnoksieznika
{
delegate void PracaRozpoczeta();
delegate void PracaTrwa();
delegate int PracaZakonczona();

class Uczen
{
public void Pracuj()
{
Console.WriteLine("Uczen: rozpoczynam prace.");
if (rozpoczynaprace != null) rozpoczynaprace();

Console.WriteLine("Uczen: pracuje.");

2. PODSTAWOWE ELEMENTY JĘZYKA C# 115

if (pracuje != null) pracuje();

Console.WriteLine("Koncze prace.");
if (zakonczylprace != null)
{
int ocena = zakonczylprace();
Console.WriteLine("Ocena : {0}", ocena);
}
}
public PracaRozpoczeta rozpoczynaprace;
public PracaTrwa pracuje;
public PracaZakonczona zakonczylprace;
}

class Czarnoksieznik
{
public int PracaZakonczona()
{
Console.WriteLine("Ach, znakomicie!");
return 4;
}
}

class Uniwersum
{
static void UczenRozpoczalPrace()
{
Console.WriteLine("Uniwersum zauwaza, ze Uczen rozpoczal prace.");
}
static int UczenZakoczylPrace()
{
Console.WriteLine("Uniwersum zauwaza, ze Uczen zakonczyl prace.");
return 7;
}
public static void Main()
{
Uczen uczen = new Uczen();
Czarnoksieznik czarnoksieznik = new Czarnoksieznik();

uczen.rozpoczynaprace = new PracaRozpoczeta(Uniwersum.UczenRozpoczalPrace);
uczen.zakonczylprace = new PracaZakonczona(czarnoksieznik.PracaZakonczona);
uczen.zakonczylprace = new PracaZakonczona(Uniwersum.UczenZakoczylPrace);
uczen.Pracuj();
}
}
}

Katastrofa! Okazało się, że uczynienie delegatów publicznymi polami w swojej klasie, by-
ło błędem Ucznia. Uniwersum, w swoim uniwersalnym wymiarze, przysłoniło powiadomienie o
zakończeniu pracy skierowane do Czarnoksiężnika swoim własnym.

Uczeń postanowił, że musi coś na to poradzić. Zdał sobie sprawę, że potrzebuje jakiegoś me-
chanizmu rejestrowania i wyrejestrowywania delegatów, tak aby słuchacze zdarzeń mogli dodawać
i usuwać swoje funkcje do powiadomień, ale nie mogli zniszczyć całej listy funkcji powiadomień.
Uczeń skorzystał więc ze zdarzeń, o których wiedział że automatycznie tworzą odpowiednie pro-
percje związane z obsługą delegatów, tak że słuchacze mogli być dodawani i usuwani za pomocą
operatorów += i -=.

using System;
using System.Threading;

namespace UczenCzarnoksieznika
{
delegate void PracaRozpoczeta();
delegate void PracaTrwa();
delegate int PracaZakonczona();

116 ROZDZIAŁ C. ŚWIAT .NET

class Uczen
{
public void Pracuj()
{
Console.WriteLine("Uczen: rozpoczynam prace.");
if (rozpoczynaprace != null) rozpoczynaprace();

Console.WriteLine("Uczen: pracuje.");
if (pracuje != null) pracuje();

Console.WriteLine("Koncze prace.");
if (zakonczylprace != null)
{
int ocena = zakonczylprace();
Console.WriteLine("Ocena : {0}", ocena);
}
}
public event PracaRozpoczeta rozpoczynaprace;
public event PracaTrwa pracuje;
public event PracaZakonczona zakonczylprace;
}

class Czarnoksieznik
{
public int PracaZakonczona()
{
Console.WriteLine("Ach, znakomicie!");
return 4;
}
}

class Uniwersum
{
static void UczenRozpoczalPrace()
{
Console.WriteLine("Uniwersum zauwaza, ze Uczen rozpoczal prace.");
}
static int UczenZakoczylPrace()
{
Console.WriteLine("Uniwersum zauwaza, ze Uczen zakonczyl prace.");
return 7;
}
public static void Main()
{
Uczen uczen = new Uczen();
Czarnoksieznik czarnoksieznik = new Czarnoksieznik();

uczen.rozpoczynaprace += new PracaRozpoczeta(Uniwersum.UczenRozpoczalPrace);
uczen.zakonczylprace += new PracaZakonczona(czarnoksieznik.PracaZakonczona);
uczen.zakonczylprace += new PracaZakonczona(Uniwersum.UczenZakoczylPrace);
uczen.Pracuj();
}
}
}

Po tym wszystkim Uczeń odetchnął z ulgą. W elegancki sposób poradził sobie z zaspokojeniem
potrzeb wszystkich zainteresowanych jego postępami, a sam nie musiał się specjalnie przejmować
wewnętrznymi implementacjami ich metod. Zauważył jedynie, że choć zarówno Czarnoksiężnik
jak i Uniwersum oceniają jego poczynania, to do niego dociera tylko jedna ocena. Uczeń chciał
zaś znać oceny, które wystawiają mu wszyscy zainteresowani zakończeniem przez niego pracy.
Na szczęście był w stanie przeglądać listę słuchaczy zdarzenia i zbierać wyniki od wszystkich po
kolei.

using System;
using System.Threading;

namespace UczenCzarnoksieznika

2. PODSTAWOWE ELEMENTY JĘZYKA C# 117

{
delegate void PracaRozpoczeta();
delegate void PracaTrwa();
delegate int PracaZakonczona();

class Uczen
{
public void Pracuj()
{
Console.WriteLine("Uczen: rozpoczynam prace.");
if (rozpoczynaprace != null) rozpoczynaprace();

Console.WriteLine("Uczen: pracuje.");
if (pracuje != null) pracuje();

Console.WriteLine("Koncze prace.");
if (zakonczylprace != null)
{
foreach (PracaZakonczona pz in zakonczylprace.GetInvocationList())
{
int ocena = pz();
Console.WriteLine("Ocena : {0}", ocena);
}
}
}
public event PracaRozpoczeta rozpoczynaprace;
public event PracaTrwa pracuje;
public event PracaZakonczona zakonczylprace;
}

class Czarnoksieznik
{
public int PracaZakonczona()
{
Console.WriteLine("Ach, znakomicie!");
return 4;
}
}

class Uniwersum
{
static void UczenRozpoczalPrace()
{
Console.WriteLine("Uniwersum zauwaza, ze Uczen rozpoczal prace.");
}
static int UczenZakoczylPrace()
{
Console.WriteLine("Uniwersum zauwaza, ze Uczen zakonczyl prace.");
return 7;
}
public static void Main()
{
Uczen uczen = new Uczen();
Czarnoksieznik czarnoksieznik = new Czarnoksieznik();

uczen.rozpoczynaprace += new PracaRozpoczeta(Uniwersum.UczenRozpoczalPrace);
uczen.zakonczylprace += new PracaZakonczona(czarnoksieznik.PracaZakonczona);
uczen.zakonczylprace += new PracaZakonczona(Uniwersum.UczenZakoczylPrace);
uczen.Pracuj();
}
}
}

Uczeń usiadł na chwilę zadowolony ze swoich pomysłów. Niestety, okazało się że zarówno
Uniwersum jak i Czarnoksiężnik mają mnóstwo własnych zajęć i zauważenie postępów ucznia
zajmuje im coraz więcej czasu.

class Czarnoksieznik
{

118 ROZDZIAŁ C. ŚWIAT .NET

public int PracaZakonczona()
{
Thread.Sleep(5000);
Console.WriteLine("Ach, znakomicie!");
return 4;
}
}

class Uniwersum
{
static int UczenZakoczylPrace()
{
Thread.Sleep(7000);
Console.WriteLine("Uniwersum zauwaza, ze Uczen zakonczyl prace.");
return 7;
}
...
}
}

Dla Ucznia oznaczało to, że zamiast pilnie pracować musi po wywołaniu słuchacza zdarzenia
czekać w nieskończoność na jego zakończenie. Postanowił więc chwilowo przestać przejmować
się ocenami, za to wołać odpowiednich słuchaczy asynchronicznie.

public void Pracuj()
{
...
Console.WriteLine("Koncze prace.");
if (zakonczylprace != null)
{
foreach (PracaZakonczona pz in zakonczylprace.GetInvocationList())
{
pz.BeginInvoke(null, null);
}
}
}

Dzięki temu Uczeń mógł natychmiast po wywołaniu powiadomienia zająć się z powrotem
swoimi sprawami. Brakowało mu jednak tego, że ktoś docenia jego pracę. Postanowił więc nadal
wołać słuchaczy asynchronicznie i co jakiś czas sprawdzać, czy jego praca jest już oceniona.

class Uczen
{
public void Pracuj()
{
...
Console.WriteLine("Koncze prace.");
if (zakonczylprace != null)
{
foreach (PracaZakonczona pz in zakonczylprace.GetInvocationList())
{
IAsyncResult res = pz.BeginInvoke(null, null);
while (!res.IsCompleted) Thread.Sleep(1);
int ocena = pz.EndInvoke(res);
Console.WriteLine("Ocena : {0}", ocena);
}
}
}

W ten sposób, niestety, Uczeń co prawda mógł kontynuować swoją pracę natychmiast po
zawołaniu funkcji-słuchacza, jednak w osobnym wątku co chwila zaglądał przez ramię czy za-
wołany słuchacz zdarzenia już zakończył pracę. Uczeń nie był z tej konieczności zadowolony,
postanowił więc zatrudnić własnego delegata który powiadamiałby go o zakończeniu pracy przez
asynchronicznego delegata.

2. PODSTAWOWE ELEMENTY JĘZYKA C# 119

using System;
using System.Threading;

namespace UczenCzarnoksieznika
{
delegate void PracaRozpoczeta();
delegate void PracaTrwa();
delegate int PracaZakonczona();

class Uczen
{
public void Pracuj()
{
Console.WriteLine("Uczen: rozpoczynam prace.");
if (rozpoczynaprace != null) rozpoczynaprace();

Console.WriteLine("Uczen: pracuje.");
if (pracuje != null) pracuje();

Console.WriteLine("Koncze prace.");
if (zakonczylprace != null)
{
foreach (PracaZakonczona pz in zakonczylprace.GetInvocationList())
{
pz.BeginInvoke(new AsyncCallback(OcenPrace), pz);
}
}
}

private void OcenPrace(IAsyncResult res)
{
PracaZakonczona pz = (PracaZakonczona)res.AsyncState;
int ocena = pz.EndInvoke(res);
Console.WriteLine("Ocena : {0}", ocena);
}

public event PracaRozpoczeta rozpoczynaprace;
public event PracaTrwa pracuje;
public event PracaZakonczona zakonczylprace;
}

class Czarnoksieznik
{
public int PracaZakonczona()
{
Thread.Sleep(5000);
Console.WriteLine("Ach, znakomicie!");
return 4;
}
}

class Uniwersum
{
static void UczenRozpoczalPrace()
{
Console.WriteLine("Uniwersum zauwaza, ze Uczen rozpoczal prace.");
}
static int UczenZakoczylPrace()
{
Thread.Sleep(7000);
Console.WriteLine("Uniwersum zauwaza, ze Uczen zakonczyl prace.");
return 7;
}
public static void Main()
{
Uczen uczen = new Uczen();
Czarnoksieznik czarnoksieznik = new Czarnoksieznik();

uczen.rozpoczynaprace += new PracaRozpoczeta(Uniwersum.UczenRozpoczalPrace);
uczen.zakonczylprace += new PracaZakonczona(czarnoksieznik.PracaZakonczona);

120 ROZDZIAŁ C. ŚWIAT .NET

uczen.zakonczylprace += new PracaZakonczona(Uniwersum.UczenZakoczylPrace);
uczen.Pracuj();
Thread.Sleep(20000);
}
}
}

Teraz wszyscy byli zadowoleni. Czarnoksiężnik i Uniwersum byli powiadamiani o zdarzeniach,
które ich interesowały. Uczeń mógł powiadamiać wszystkich zainteresowanych, a sam nie mu-
siał czekać na zakończenie metod implementujących powiadomienia. Mógł za to asynchronicznie
zbierać wyniki tych metod.

Zmęczony całym dniem ciężkiej pracy, Uczeń mógł w końcu iść spać...

2.14 Moduły

Klasy w programie C#-owym pogrupowane są w rozłącznych przestrzeniach nazw (namespa-
ce’ach). Dostęp do klas umieszczonych w określonej przestrzeni nazw możliwy jest dzięki kon-
strukcji

NazwaPrzestrzeniKlas.NazwaFunkcji

na przykład

System.Console.WriteLine(...);

bądź zadeklarowaniu na początku programu chęci dostępu do określonej przestrzeni nazw

using NazwaPrzestrzeniKlas

dzięki czemu do funkcji z tej przestrzeni nazw można odwoływać się bez poprzedzania ich
nazw nazwą przestrzeni nazw. Podział programu na różne przestrzenie nazw zwykle wynika z
logicznego podziału programu na moduły. Nie wnikając w strukturę modułu, powiedzmy tylko
że zawiera on opis klas, przy czym moduł wykonywalny (*.exe) różni się od modułu-biblioteki
(*.dll) tylko tym, że w jednej z klas zawiera kod startowy (tu: funkcję Main()).
Przykład najprostszego modułu:

/* Wiktor Zychla, 2003 */
using System;

namespace ExampleModule
{
public class ExampleClass
{
public int Metoda()
{
return 17;
}
}
}

C:\Example>csc.exe /target:library exampleM.cs
Microsoft (R) Visual C# .NET Compiler version 7.00.9466
for Microsoft (R) .NET Framework version 1.0.3705
Copyright (C) Microsoft Corporation 2001. All rights reserved.

Przykład programu korzystającego z modułu:

2. PODSTAWOWE ELEMENTY JĘZYKA C# 121

/* Wiktor Zychla, 2003 */
using System;
using ExampleModule;

namespace Example
{
public class CMain
{
public static void Main()
{
ExampleClass e = new ExampleClass();
Console.WriteLine(e.Metoda());
}
}
}

C:\Example>csc.exe /reference:exampleM.dll example.cs
Microsoft (R) Visual C# .NET Compiler version 7.00.9466
for Microsoft (R) .NET Framework version 1.0.3705
Copyright (C) Microsoft Corporation 2001. All rights reserved.

Od tej pory moduł główny i biblioteka mogą być kompilowane niezależnie, zaś prawidłowe
wykonanie kodu modułu możliwe będzie tylko wtedy, kiedy biblioteka będzie dostępna dla śro-
dowiska uruchomieniowego w czasie wykonania programu, czyli na przykład znajdzie się w tym
samym folderze co moduł główny.

2.15 Refleksje

Możliwość odczytywania i analizy metadanych, czyli opisu typów z już istniejącego kodu nosi
nazwę refleksji. Refleksje są jednym z najpotężniejszych mechanizmów platformy .NET.
Przede wszystkim każdy typ w systemie może być zidentyfikowany, ponadto można utworzyć

zmienną typową podając nazwę typu.

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class CExample
{
static void PrintTypeInfo(Type t)
{
Console.WriteLine("Definicja {0} znajduje się w module {1}.",

t, t.Module);
}

public static void Main(string[] args)
{
string s = String.Empty;
PrintTypeInfo(s.GetType());

Type t = Type.GetType("Example.CExample");
PrintTypeInfo(t);
}
}
}

C:\Example>example.exe
Definicja System.String znajduje się w module CommonLanguageRuntimeLibrary.
Definicja Example.CExample znajduje się w module example.exe.

Każdy moduł może być przeanalizowany pod kątem zawartych w nim typów:

/* Wiktor Zychla, 2003 */
using System;

122 ROZDZIAŁ C. ŚWIAT .NET

using System.Reflection;

namespace Example
{
class CExample
{
static Assembly GetAssembly(string[] args)
{
Assembly assembly;
if (0 == args.Length)
{
assembly = Assembly.GetExecutingAssembly();

}
else
{
assembly = Assembly.LoadFrom(args[0]);

}
return assembly;
}

public static void Main(string[] args)
{
Assembly assembly = GetAssembly(args);
if (null != assembly)
{
Console.WriteLine("Informacje o typach dla {0}", assembly);

Type[] types = assembly.GetTypes();
foreach(Type type in types)
{
Console.WriteLine("\nTyp: {0}", type);
foreach(MemberInfo member in type.GetMembers())
{
Console.WriteLine("\tSkladowa: {0}", member);
}
}
}
}
}
}

C:\Example>example.exe
Informacje o typach dla Example, Version=1.0.1176.39934, Culture=neutral, Public
KeyToken=null

Typ: Example.CExample
Skladowa: Int32 GetHashCode()
Skladowa: Boolean Equals(System.Object)
Skladowa: System.String ToString()
Skladowa: Void Main(System.String[])
Skladowa: System.Type GetType()
Skladowa: Void .ctor()

Za pomocą tego programu można obejrzeć listy typów w modułach .NET, na przykład
System.Windows.Forms.dll czy MSCORLIB.DLL.
Mechanizm refleksji może być wykorzystany do dynamicznego tworzenia instancji obiektów,

gdy znany jest typ obiektu. Można w taki sposób zrealizować dynamiczne łączenie modułów -
łączenie nie w czasie kompilacji, tylko w czasie wykonania.

/* Wiktor Zychla, 2003 */
using System;
using System.Reflection;

namespace Example
{
public class CTest
{
public int testVal;

2. PODSTAWOWE ELEMENTY JĘZYKA C# 123

public CTest() {}

override public string ToString()
{
return "CTest: " + testVal.ToString();
}
}

public class CExample
{
public static void DynamicObjectCreation(Type t)
{
int i;
object o;

ConstructorInfo c;
FieldInfo f;

ConstructorInfo[] ci;
ParameterInfo[] pi;
FieldInfo[] fi;

ci = t.GetConstructors();
for (i=0; i<ci.Length; i++)
{
c = ci[i];

pi = c.GetParameters();
if (pi.Length == 0)
{
o = c.Invoke(null);

fi = t.GetFields();
for (int j=0; j<fi.Length; j++)
{
f = fi[j];
if (f.FieldType == Type.GetType("System.Int32"))
f.SetValue(o, 17);

}

Console.WriteLine("Typ {0}, ToString(): {1}", o.GetType(), o);
}
}

public static void Main()
{
DynamicObjectCreation(Type.GetType("Example.CTest"));
}
}
}

C:\Example>example.exe
Typ Example.CTest, ToString() CTest: 17

2.16 Atrybuty

Myśląc o typach i obiektach, które są instancjami odpowiednich typów, wyraźnie rozróżniamy
te dwa światy. W chwili wykonania programu instancje obiektów są elementami dynamicznymi
- pojawiają się i giną zależnie od woli programisty. Tworząc, modyfikując i niszcząc obiekty
programista pracuje na poziomie języka, czyli na poziomie konkretnych wartości wypełniających
szablony jakimi są typy. Dzięki mechanizmowi refleksji, programista w trakcie działania progra-
mu może również pracować na poziomie metajęzyka, czyli na poziomie informacji o typach: o ich
składowych, o zależnościach między typami.
Mechanizm atrybutów to kolejny mechanizm z poziomu metajęzyka. Atrybuty pozwalają

rozszerzyć definicje typów o dodatkowe informacje, możliwe do wydobycia dzięki refleksjom.

124 ROZDZIAŁ C. ŚWIAT .NET

Wyobraźmy sobie pewien abstrakcyjny scenariusz, w którym każdy typ pojawiający się w pro-
gramie byłby określony jako niebieski, czarny lub zielony. Uwaga - nie instancja typu (czyli
konkretna zmienna), ale właśnie typ sam w sobie. Taka informacja mogłaby być na przykład
jakąś dodatkową wskazówką dla kompilatora lub być w jakiś inny sposób wykorzystana w trakcje
działania aplikacji.
Scenariusz ten zrealizujemy właśnie dzięki atrybutom. Atrybuty są klasami dziedziczącymi

z klasy Attribute, których instancje dzięki specjalnej składni można związać z klasami bądź
ich składowymi.

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class KolorKlasyAttribute : Attribute
{
public KolorKlasyAttribute(string kolor)
{
this.kolor = kolor;
}
public string Kolor
{
get { return kolor; }
}

string kolor;
}

[KolorKlasy("zielony")]
public class Typ1
{
}

[KolorKlasy("niebieski")]
public class Typ2
{
}

public class CMainForm
{
public static void Main()
{
Type type;

// zbadaj Typ1
type = typeof(Typ1);
foreach (Attribute a in type.GetCustomAttributes(true))
{
KolorKlasyAttribute kolorKlasy = a as KolorKlasyAttribute;
if (kolorKlasy != null)
Console.WriteLine("Typ {0} ma kolor {1}", type.Name, kolorKlasy.Kolor);

}

// zbadaj Typ2
type = typeof(Typ2);
foreach (Attribute a in type.GetCustomAttributes(true))
{
KolorKlasyAttribute kolorKlasy = a as KolorKlasyAttribute;
if (kolorKlasy != null)
Console.WriteLine("Typ {0} ma kolor {1}", type.Name, kolorKlasy.Kolor);

}
}
}
}

C:\Example>example.exe
Typ Typ1 ma kolor zielony
Typ Typ2 ma kolor niebieski

2. PODSTAWOWE ELEMENTY JĘZYKA C# 125

Predefiniowane atrybuty

W świecie .NET istnieje kilkanaście gotowych atrybutów, których można użyć do poinformowa-
nia kompilatora o specjalnych właściwościach typów lub ich składowych. W kolejnych rozdziałach
zobaczymy przykłady użycia atrybutu [Serializable], który służy do poinformowania kompi-
latora o tym, że klasa może być serializowana. Zobaczymy także przykłady użycia atrybutów
[DllImport] i [StructLayout], które umożliwiają zdefiniowanie funkcji i struktur odwołują-
cych się do funkcji i struktur ze zwykłych, niezarządzanych bibliotek Windowsowych.
Tu wspomnimy jedynie o atrybutach, pozwalających na określenie informacji o pliku, będą-

cym efektem kompilacji. Można je umieścić w dowolnym miejscu w kodzie, bowiem odnoszą się
do całego modułu, będącego wynikiem kompilacji. Efekt ich dodania można obejrzeć na zakładce
Wersja, w oknie właściwości pliku.

[assembly: AssemblyTitle("Moja Aplikacja numer 1")]
[assembly: AssemblyDescription("Opis mojej aplikacji")]
[assembly: AssemblyCompany("Moja firma")]
[assembly: AssemblyProduct("A1")]
[assembly: AssemblyCopyright("Moja firma")]
[assembly: AssemblyVersion("1.7.1.0")

2.17 Kod niebezpieczny

Programiści, którzy dobrze znają C czy C++, czasami bywają w pierwszym kontakcie rozcza-
rowani brakiem bezpośredniej kontroli nad zarządzaniem pamięcią oraz brakiem wskaźników w
C#.
Brak możliwości sterowania destrukcją obiektów jest w pełni uzasadniony. Z pewnością w

pewnych przypadkach możliwe jest napisanie przez programistę kodu, który samodzielnie za-
rządza przydzielaniem i zwalnianiem pamięci, jednak w większości przypadków automat i tak
robi to lepiej. Jeśli komuś bardzo zależy na możliwości pełnej kontroli nad przydzielaniem i
zwalnianiem pamięci - niech po prostu programuje w C.
Co zaś do wskaźników, to okazuje się, że istnieje w C# możliwość korzystania z nich. Po

prostu fragment kodu korzystający ze wskaźników musi być oznakowany kwalifikatorem unsafe.
Choć nazwa sugeruje, że kod taki jest w jakiś sposób niebezpieczny, tak naprawdę chodzi tu
tylko o obejście dość restrykcyjnego systemu typów C#, który w żaden sposób nie potrafiłby
przepuścić kodu upstrzonego wskaźnikami. Oprócz kodu niebezpiecznego możliwy jest również
kod niezarządzany. Z kodem niezarządzanym mamy do czynienia przy uruchamianiu z kodu C#-
owego modułów COM lub COM+, napisanych w Visual Basicu lub C++. Kod niezarządzany
sam zajmuje się obsługą pamięci i nie korzysta z bibliotek platformy .NET.
Kod niebezpieczny musi być kompilowany z przełącznikiem /unsafe.

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class CExample
{
unsafe public static void Swap(int* pi, int* pj)
{
int tmp = *pi;
*pi = *pj;
*pj = tmp;

}

public static void Main(string[] args)
{
int i = 17;
int j = 23;

126 ROZDZIAŁ C. ŚWIAT .NET

Console.WriteLine("Przed zamianą: i = {0}, j = {1}", i, j);
unsafe { Swap(&i, &j); }
Console.WriteLine("Po zamianie: i = {0}, j = {1}", i, j);

}
}
}

W kodzie niebezpiecznym o wiele łatwiej popełnić niezamierzoną pomyłkę. Jednak złe od-
wołania do pamięci będą wyłapywane przez środowisko uruchomieniowe:

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class CExample
{
unsafe public static void Blad()
{
int i;
int* pi = &i;
pi += 10000;
*pi = 0;

}

public static void Main(string[] args)
{
unsafe { Blad(); }

}
}
}

C:\Example>example.exe

Unhandled Exception: System.NullReferenceException: Object reference not set to
an instance of an object.
at Example.CExample.Blad()
at Example.CExample.Main(String[] args)

2.18 Dokumentowanie kodu

Programiści bardzo niechętnie dokumentują kod, który tworzą. Z drugiej strony nawet kilka
słów komentarza bywa często bardzo cenne, zwłaszcza kiedy wraca się do kodu napisanego
dawno temu. Oczywiście istnieje możliwość tworzenia komentarzy w kodzie, jednak nie da się
na podstawie takich komentarzy zbudować niczego co mogłoby być jakąś formą dokumentacji
całości kodu.
W C# zaproponowano pewien jednolity sposób tworzenia komentarzy w kodzie jako tagów

języka XML11. Zobaczmy prosty przykład komentarzy w kodzie programu, sposób tworzenia
dokumentacji i ostateczną postać dokumentacji:

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
/// <summary>
/// Klasa zawierająca kod startowy aplikacji.
/// </summary>
class CExample
{
/// <summary>
/// Tutaj mógłby znaleźć się opis funkcji f.

11Więcej o języku XML na stronie 166.

2. PODSTAWOWE ELEMENTY JĘZYKA C# 127

/// Opis ten może być dowolnie długi.
/// </summary>
void f()
{
}
/// <summary>
/// Główna funkcja aplikacji.
/// </summary>
[STAThread]
static void Main(string[] args)
{
}

}
}

C:\Example>csc.exe /doc:example.xml example.cs

<?xml version="1.0"?>
<doc>
<assembly>
<name>example</name>

</assembly>
<members>
<member name="T:Example.CExample">
<summary>
Klasa zawierająca kod startowy aplikacji.
</summary>

</member>
<member name="M:Example.CExample.f">
<summary>
Tutaj mógłby znaleźć się opis funkcji f.
Opis ten może być dowolnie długi.
</summary>

</member>
<member name="M:Example.CExample.Main(System.String[])">
<summary>
Główna funkcja aplikacji.
</summary>

</member>
</members>

</doc>

Tworzenie dokumentacji w ten sposób jest szczególnie łatwe w Visual Studio .NET. Edytor
kodu C# potrafi automatycznie zbudować odpowiedni szablon dokumentacji po wprowadzeniu
przez programistę znaku rozpoczęcia takiego komentarza, czyli ///. Istnieje kilkanaście różnych
możliwych tagów XML jakimi można opatrywać różne elementy kodu, najbardziej przydaje się
jednak możliwość pełnego dokumentowania metod:

/// <summary>
/// Tutaj mógłby znaleźć się opis funkcji f.
/// Opis ten może być dowolnie długi.
/// </summary>
///<param name="n">Komentarz dotyczący zmiennej n</param>
///<param name="m">Komentarz dotyczący zmiennej m</param>
///<returns>Komentarz dotyczący wartości zwracanej przez funkcję</returns>
int f(int n, int m)
{
}

Utworzony plik z dokumentacją może być otworzony na przykład przez przeglądarkę Inter-
netową, jednak można, za pomocą arkuszy stylów XSL, nadać mu własne formatowanie. Visual
Studio .NET potrafi wykorzystać tę możliwość do utworzenia elegancko sformatowanych stron
HTML z dokumentacją.
Wykorzystajmy dla przykładu bardzo prosty arkusz stylów:

128 ROZDZIAŁ C. ŚWIAT .NET

Rysunek C.1: Dokumentacja XML w przeglądarce Internetowej

Rysunek C.2: Zastosowanie prostego arkusza stylów XSL, przedstawionego w tekście, do sfor-
matowania dokumentacji XML

2. PODSTAWOWE ELEMENTY JĘZYKA C# 129

<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">
<xsl:template match="/">
<html><body>
<h1>Wykorzystanie XSL do formatowania XML</h1>
<hr/>
<h3>
Nazwa modułu: <xsl:value-of select="doc/assembly/name"/>
</h3>
<table border="1">
<thead><h3>Members</h3></thead>
<tbody>
<tr>
<td>Member</td>
<td>Summary</td>
</tr>
<xsl:for-each select="doc/members/member">
<tr>
<td><xsl:value-of select="@name"/></td>
<td><xsl:value-of select="summary/text()"/></td>
</tr>
</xsl:for-each>
</tbody>
</table>
</body></html>
</xsl:template>
</xsl:stylesheet>

i w pliku z dokumentacją XML dodajmy informację o arkuszu stylów:

<?xml-stylesheet href="example.xsl" type="text/xsl"?>
<?xml version="1.0"?>
<doc>
<assembly>
<name>example</name>

</assembly>
<members>
<member name="T:Example.CExample">
<summary>
Klasa zawierająca kod startowy aplikacji.
</summary>

</member>
<member name="M:Example.CExample.f(System.Int32,System.Int32)">

<summary>
Tutaj mógłby znaleźć się opis funkcji f.
Opis ten może być dowolnie długi.
</summary>
<param name="n">Komentarz dotyczący zmiennej n</param>
<param name="m">Komentarz dotyczący zmiennej m</param>
<returns>Komentarz dotyczący wartości zwracanej przez funkcję</returns>

</member>
<member name="M:Example.CExample.Main(System.String[])">
<summary>
Główna funkcja aplikacji.
</summary>

</member>
</members>

</doc>

2.19 Dekompilacja kodu

Rozważmy przykład prostego kodu:

/* Wiktor Zychla, 2003 */
using System;

namespace NExample
{

130 ROZDZIAŁ C. ŚWIAT .NET

Rysunek C.3: Zastosowanie innego arkusza stylów XSL, programista ma tutaj całkowitą dowol-
ność

class CExample
{
public int i;
public string s;

public int Oblicz(int n)
{
int k = 0;
for (int l=0; l<n; l++)
k+=l;

return k;
}

public CExample()
{
i = 0;
s = String.Empty;
}
}

class CMain
{
public static void Main()
{
CExample e = new CExample();
Console.WriteLine(e.Oblicz(7).ToString());
}
}
}

2. PODSTAWOWE ELEMENTY JĘZYKA C# 131

Dekompilacja do języka IL

.NET Framework SDK zawiera m.in. dekompilator kodu, dzięki któremu można obejrzeć kod
IL-owy dowolnego modułu .NETowego12. Dekompilator uruchamia się poleceniem ildasm.exe.
Dekompilator pozwala obejrzeć kod dowolnego obiektu w dowolnej klasie projektu. Oznacza

to, że może być nawet wykorzystany do podglądania kodu bibliotek .NET!
Wykorzystajmy więc Ildasm do zdekompilowania metody Main z powyższego przykładu:

.method public hidebysig static void Main() cil managed
{
.entrypoint
// Code size 27 (0x1b)
.maxstack 2
.locals init (class NExample.CExample V_0,

int32 V_1)
IL_0000: newobj instance void NExample.CExample::.ctor()
IL_0005: stloc.0
IL_0006: ldloc.0
IL_0007: ldc.i4.7
IL_0008: callvirt instance int32 NExample.CExample::Oblicz(int32)
IL_000d: stloc.1
IL_000e: ldloca.s V_1
IL_0010: call instance string [mscorlib]System.Int32::ToString()
IL_0015: call void [mscorlib]System.Console::WriteLine(string)
IL_001a: ret
} // end of method CMain::Main

oraz do zdekompilowania metody CExample.Oblicz:

.method public hidebysig instance int32 Oblicz(int32 n) cil managed
{
// Code size 24 (0x18)
.maxstack 2
.locals init (int32 V_0,

int32 V_1,
int32 V_2)

IL_0000: ldc.i4.0
IL_0001: stloc.0
IL_0002: ldc.i4.0
IL_0003: stloc.1
IL_0004: br.s IL_000e
IL_0006: ldloc.0
IL_0007: ldloc.1
IL_0008: add
IL_0009: stloc.0
IL_000a: ldloc.1
IL_000b: ldc.i4.1
IL_000c: add
IL_000d: stloc.1
IL_000e: ldloc.1
IL_000f: ldarg.1
IL_0010: blt.s IL_0006
IL_0012: ldloc.0
IL_0013: stloc.2
IL_0014: br.s IL_0016
IL_0016: ldloc.2
IL_0017: ret
} // end of method CExample::Oblicz

Struktura kodu pośredniego jest bardzo prosta, kompilator C# nie stosuje praktycznie żad-
nych optymalizacji. To reguła w świecie .NET - kompilator JIT podczas kompilacji kodu po-
średniego do kodu natywnego i tak dokonuje swoich optymalizacji, dlatego kompilatory języków
nie muszą tego robić na poziomie kompilacji kodu języka do kodu pośredniego.
Język IL będzie dokładniej omówiony w rozdziale 8.2

12Dekompilator IL jest częścią .NET Framework SDK, kompilator IL jest częścią samego .NET Frameworka.

132 ROZDZIAŁ C. ŚWIAT .NET

Rysunek C.4: Dekompilacja kodu IL do C# w Anakrino

Dekompilacja do C#

Czy można wyobrazić sobie narzędzie, które pozwalałoby odtwarzać kod C# z binarium zawie-
rającego kod pośredni?
Okazuje się, że tak. Najpopularniejszym w tej chwili dekompilatorem kodu C# jest Ana-

krino. Zdekompilowany kod zawiera poprawne nazwy klas, metod i parametrów, niepoprawnie
natomiast odtwarzane są na przykład nazwy zmiennych lokalnych metod. Dzieje się tak, ponie-
waż nazwy zmiennych lokalnych nie są przechowywane w kodzie pośrednim.
Zdekompilowana przez Anakrino kod metody Main:

public static void Main() {
CExample local0;
int local1;

local0 = new CExample();
local1 = local0.Oblicz(7);
Console.WriteLine(local1.ToString());
}

oraz kod metody CExample.Oblicz:

public int Oblicz(int n) {
int local0;
int local1;
int local2;

local0 = 0;
local1 = 0;
while (local1 < n) {
local0 += local1;
local1++;
}
local2 = local0;
return local2;
}

2. PODSTAWOWE ELEMENTY JĘZYKA C# 133

Język źródłowy Język docelowy Dekompilator

Dowolny język IL Ildasm
C# C# Anakrino
Dowolny inny język C# Anakrino (czasami)
Dowolny język Inny niż IL lub C# ?

Tabela C.2: Schemat dekompilacji między różnymi językami platformy .NET

Okazuje się, że struktura kodu pośredniego dla for i while jest identyczna, dlatego dekompi-
lator odtwarza kod każdej pętli jako while.

Zabezpieczanie się przed dekompilacją

Możliwość dekompilacji dowolnego kodu do postaci MSILa, a w niektórych wypadkach nawet do
postaci kodu C# oznacza, że każdy może analizować kod napisany przez innych programistów. W
pierwszej chwili może się więc wydawać że jest to poważna luka, dzięki której osoby niepowołane
mogłyby wejść w posiadanie jakichś poufnych informacji.
Chwila zastanowienia wystarczy jednak by dojść do wniosku, że przecież możliwość dekom-

pilacji dowolnego kodu do postaci kodu assemblerowego istniała zawsze. Dowolny moduł zawie-
rający kod maszynowy mógł być analizowany za pomocą debuggerów lub dekompilatorów. To
co do tej pory było wręcz niemożliwe, to dekompilacja kodu maszynowego do języków wysokiego
poziomu. Kod maszynowy programu kompilowanego kompilatorem Visual Basica nie mógł być
w żaden sensowny sposób zdekompilowany z powrotem do postaci kodu VB.
Aby zminimalizować ryzyko związane z analizą zdekompilowanego kodu przez osoby trzecie,

należy zastosować narzędzia do zaciemniania kodu (ang obfuscators).

2.20 Porównanie C# z innymi językami

C#, Java oraz C++ mają wspólne korzenie, stąd C# ma z Javą i C++ zdecydowanie więcej
elementów wspólnych niż z innymi językami.
C# wśród współczesnych języków obiektowych zajmuje miejsce szczególne. Łączy bowiem

w sobie bardzo wysoką wydajność (co stawia go obok C++), z niezwykle eleganckim modelem
obiektowym (co stawia go obok SmallTalka).

C# a C++

C++ było próbą zbudowania języka obiektowego na bazie składni języka C. C# jest językiem od
początku do końca zaprojektowanym jako język obiektowy. Podobieństwo składni jest zabiegiem
celowym, wprowadzonym po to aby ułatwić programistom przejście ze świata C i C++ do C#13.
Kilka ważniejszych różnic między C# a C++:

� W C# z punktu widzenia programisty wszystko jest obiektem.

� System typów C# jest o wiele silniejszy niż w C++. Typy śledzone są dynamicznie, to
znaczy że nawet w czasie wykonania programu nie ma możliwości konwersji pomiędzy
wartościami niezgodnych typów.

� W C# nie ma plików nagłówkowych, ponadto kolejność klas w projekcie nie ma znaczenia.

13Jest to naprawdę duża zaleta. C# jako zupełnie nowy język mógł mieć przecież zupełnie nową składnię i
sposób pisania kodu (na przykład z góry na dół i z prawa na lewo).

134 ROZDZIAŁ C. ŚWIAT .NET

� W C# testowanie warunków wymaga wyrażeń typu bool. W C++ można zamiennie wy-
korzystywać w takich przypadkach wyrażenia typu int, na przykład if (1).

� W C# nie ma jawnej destrukcji obiektów. Niszczeniem nieużywanej pamięci zajmuje się
odśmiecacz.

� W C# nie ma szablonów. Jednorodny model obiektowy pozwala pisać kod elegantszy niż
przy pomocy szablonów w C++.

� Przekazywanie błędów w C# odbywa się za pomocą wyjątków. Ta reguła stosowana jest
konsekwentnie.

� Model obiektowy C# dopuszcza tylko pojedyńcze dziedziczenie z możliwością implemen-
towania wielu interfejsów.

C# a Java

Na temat podobieństw i różnic między C# a Javą toczy się wiele dyskusji. Z pewnością C#
nie zajmie miejsca Javy, bowiem zakresy stosowalności C# i Javy nieco się rozmijają: Java
była, jest i będzie nadal najlepszym wyborem jeśli chodzi o aplikacje przenośne. Z drugiej stro-
ny, C# pozwala na rozwiązanie tych samych problemów co Java, tyle że przy użyciu znacznie
wydajniejszego środowiska i przy użyciu prostszych technik.
Kilka ważniejszych różnic między C# a Javą:

� Typy proste w Javie tworzą osobny świat. Aby traktować typy proste i typy referencyjne w
sposób jednorodny należy umieszczać obiekty typów prostych w obiektach referencyjnych,
za pomocą tzw. klas wrapperów. Typy proste w C# są z punktu widzenia modelu obiek-
towego takie same jak typy referencyjne. Obiekt typu prostego jest obiektem - ma pola,
metody i inne właściwości. W C# wyrażenia 5.ToString() czy (5-x).ToString() są jak
najbardziej poprawne. W C# programista może definiować własne typy proste, zastępując
słowo class słowem struct.

� W C# istnieje możliwość przekazania parametrów przez referencje za pomocą ref i out. W
Javie parametry są zawsze przekazywane przez wartość.

� Iterfejsy w Javie mogą zawierać składowe, w C# nie. Jednak w C# istnieje możliwość
implementowania interfejsów, których funkcje składowe mają te same nazwy.

� Java nie wykrywa przepełnień podczas obliczeń matematycznych. W C# można wymusić
wykrywanie przepełnień za pomocą bloku osygnowanego jako checked.

� W C# wolno pisać kod korzystajacy ze wskaźników.

� Mechanizm delegatów, dostępny w C#, jest bardzo elegancki i pozwala nie tylko zapanować
nad wskaźnikami do funkcji, ale także rozwiązuje problem zdarzeń prościej niż w Javie.

Jak pisze w Thinking in C# Bruce Eckel, jeden z długoletnich propagatorów Javy:

Java has succeeded in two key areas: as the dominant language for writing server-side
applications and as the top language for teaching computer science in colleges. The
.NET Framework is better for both these areas, although it is not inevitable that it

3. PRZEGLĄD BIBLIOTEK PLATFORMY .NET 135

will become dominant in either. For writing client applications, there is no question
that C# clearly outstrips Java.14

3 Przegląd bibliotek platformy .NET

Biblioteki systemowe platformy .NET zawierają, wiele ważnych funkcji zgromadzonych w róż-
nych przestrzeniach nazw. Za ich pomocą programista może oprogramować system plików, me-
chanizmy tworzenia wątków i procesów, komunikację z siecią i bazami danych, mechanizmy
kryptograficzne, obsługę XML itd.
Programista powinien odróżniać funkcje udostępniane przez biblioteki platformy .NET od

bezpośrednich mechanizmów języka C#.
Jest to ważne dla programistów korzystających z platformy .NET, bowiem funkcje z biblio-

tek .NET są dostępne w każdym języku programowania, kompilowanym na platformie .NET.
Oznacza to na przykład, że z funkcji do obsługi plików zgromadzonych w System.IO korzysta
się tak samo w C#, VB.NET, SML.NET, IL i każdym innym języku platformy .NET.
Jest to jednak równie ważne dla programistów przygotowujących kompilatory własnych ję-

zyków na platformie .NET, bowiem nie muszą oni przygotowywać własnych bibliotek typowych
funkcji, a zamiast tego mogą w swoim języku udostępnić mechanizmy wołania gotowych funkcji
z bibliotek .NET.

3.1 Kolekcje wbudowane i System.Collections

Przygotowując swoją aplikację do określonych zadań, programista musi zmierzyć się z dwoma
czynnikami kształtującymi jej obraz: algorytmami i strukturami danych. O ile konkretne algo-
rytmy są zwykle zależne od postaci problemu, który aplikacja ma rozwiązywać, o tyle te same
struktury danych spotyka się niemal co chwila.
Pewną bardzo specjalną grupę struktur danych stanowią byty, które bardzo ogólnie możnaby

nazwać kontenerami. Zadaniem kontenerów jest grupowanie w większe struktury obiektów,
które z jakichś powodów powinny być trzymane razem. Różne języki programowania wspomagają
programistów w tym zakresie w różny sposób: w C tablice są częścią języka, wszystkie inne
struktury danych programista musi przygotować sam; w C++ możliwości C rozszerzono przez
dodanie biblioteki szablonów STL, w której programista może znaleźć większość potrzebnych
rodzajów kontenerów oraz algorytmy do operowania na nich.
Programista tworząc aplikację w C# ma do dyspozycji solidną bibliotekę kontenerów (zwa-

nych tu kolekcjami), zgromadzone w przestrzeni nazw System.Collections.

Tablice

Tablice są najprostszymi kontenerami. W C#, podobnie jak w wielu innych językach, programi-
sta po określeniu rozmiaru tablicy nie ma wprost możliwości zmiany jej rozmiaru. Z tego powodu
tablice przydają się najczęściej tam, gdzie ilość elementów jest z góry znana.

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class CExample

14Java sprawdziła się na dwóch kluczowych frontach: jako język do oprogramowywania aplikacji po stronie ser-
wera oraz jako język do nauczania informatyki na studiach. .NET Framework jest lepszy i tu i tam, jednak nie
koniecznie zdominuje Javę w którymkolwiek zakresie. Z pewnością jednak jeśli chodzi o aplikacje klienckie, C#
zostawia Javę daleko w tyle.

136 ROZDZIAŁ C. ŚWIAT .NET

{
public static void Main(string[] args)
{
Console.Write("Podaj ilosc elementow tablicy: ");

int n = int.Parse(Console.ReadLine());
int[] tab = new int[n];

for (int i=0; i<n; i++)
tab[i] = 2*i+1;

for (int i=0; i<n; i++)
Console.WriteLine("{0} element tablicy -> {1}", i, tab[i]);

}
}
}

C:\Example>example.exe
Podaj ilosc elementow tablicy: 7
0 element tablicy -> 1
1 element tablicy -> 3
2 element tablicy -> 5
3 element tablicy -> 7
4 element tablicy -> 9
5 element tablicy -> 11
6 element tablicy -> 13

Tablice mogą być inicjowane w momencie deklaracji, na przykład:

int[] tab = {1, 2, 3, 4, 5, 6};

lub równoważnie

int[] tab = new int[]{1, 2, 3, 4, 5, 6};

Inaczej niż w przypadku prostych imperatywnych języków programowania, tablice w C# są
w każdej chwili swojego istnienia świadome swoich atrybutów. Oznacza, to że programista może
na przykład w każdej chwili dowiedzieć się jaki jest rozmiar tablicy:

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class CExample
{
public static void Main(string[] args)
{
int[] tab = new int[]{1, 2, 3, 4, 5, 6};

Console.WriteLine(tab.Length.ToString());
}
}
}

C:\Example>example.exe
6

Tablice referencji

O ile w przypadku tablic, przechowujących obiekty o typach prostych, dostęp do elementów
tablicy możliwy jest natychmiast po przydzieleniu pamięci dla tablicy, o tyle w przypadku typów
referencyjnych programista może być w pierwszej chwili zaskoczony:

3. PRZEGLĄD BIBLIOTEK PLATFORMY .NET 137

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class CObiekt
{
public int dana;
public CObiekt() {}
}

public class CExample
{
public static void Main(string[] args)
{
const int IL = 5;
CObiekt[] tab = new CObiekt[IL];

tab[0].dana = 1;
}
}
}

C:\Example>example

Unhandled Exception: System.NullReferenceException: Object reference not set to
an instance of an object.
at Example.CExample.Main(String[] args)

Dlaczego próba odwołania do elementu, zainicjowanej przecież tablicy, kończy się niepowo-
dzeniem? Otóz dzieje się tak dlatego, że w przypadku tablic przechowujących obiekty typów
referencyjnych, zainicjowanie tablicy:

...
const int IL = 5;
CObiekt[] tab = new CObiekt[IL];

spowoduje utworzenie kontenera zawierającego 5 niezainicjowanych referencji. Aby odwoły-
wać się do elementów tablicy, należy więc oprócz zainicjowania samej tablicy, zainicjować jej
elementy:

...
const int IL = 5;
CObiekt[] tab = new CObiekt[IL];

for (int i=0; i<IL; i++)
tab[i] = new CObiekt();
...

Tablice wielowymiarowe

Tablice wielowymiarowe deklaruje się w C# równie łatwo jak jednowymiarowe, zaś ich obsługa
również nie nastręcza żadnych trudności. W każdej chwili programista może dowiedzieć się jakie
są wymiary takiej tablicy:

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class CExample
{
public static void Main(string[] args)
{
int[,,,] tab = new int[3,5,2,6];

138 ROZDZIAŁ C. ŚWIAT .NET

tab[0, 2, 1, 4] = 3;

Console.WriteLine("Tablica {0}-wymiarowa.", tab.Rank);
for (int i=0; i<tab.Rank; i++)
Console.WriteLine("Dlugosc w {0}-tym wymiarze : {1}",

i, tab.GetLength(i));
}
}
}

C:\Example>example
Tablica 4-wymiarowa.
Dlugosc w 0-tym wymiarze : 3
Dlugosc w 1-tym wymiarze : 5
Dlugosc w 2-tym wymiarze : 2
Dlugosc w 3-tym wymiarze : 6

Pewnym wariantem tablic wielowymiarowych są tzw. tablice postrzępione (ang. jagged ar-
rays).

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class CExample
{
public static void Main(string[] args)
{
int[][] tab = new int[4][];

tab[0] = new int[6];
tab[1] = new int[2];
tab[2] = new int[3];
tab[3] = new int[5];

tab[2][2] = 5;
}
}
}

Aby zrozumieć różnicę między zwykłymi tablicami wielowymiarowymi, a tablicami postrzę-
pionymi, wyobraźmy sobie 2-wymiarową tablicę zadeklarowaną w następujący sposób:

int[,] tab = new int[3,3];
tab[1,1] = 5;

oraz jej postrzępionego kuzyna

int[][] tab = new int[10][];
tab[0] = new int[3];
tab[1] = new int[2];
tab[2] = new int[1];
tab[1][1] = 5;

Tablica dwuwymiarowa ma dokładnie 9 elementów ułożonych w prostokątną macierz 3 na
3 elementy. W przeciwieństwie do niej, tablica postrzępiona przechowuje referencje do trzech
tablic, z których pierwsza ma 3 elementy, druga 2, a trzecia tylko 1.
Zarówno w jednym jak i w drugim przypadku z punktu widzenia użytkownika są to tablice

dwuwymiarowe, jednak tablica postrzępiona może optymalniej wykorzystywać zasoby pamię-
ci, definując w razie potrzeby krótsze lub dłuższe ”podtablice”. Można więc powiedzieć, że n-
wymiarowa tablica jest po prostu macierzą n-wymiarową, zaś n-wymiarowa tablica postrzępiona
to w istocie n niezależnych tablic o wymiarze n− 1, z których każda może mieć inne rozmiary.

3. PRZEGLĄD BIBLIOTEK PLATFORMY .NET 139

ArrayList

Zwykłe tablice zdecydowanie nie rozwiązują problemu kontenerów, bowiem tablice mają bardzo
poważną wadę. Otóż ilość elementów tablicy musi być znana w momencie inicjowania tablicy.
Gdyby w trakcie działania programu ilość danych uległa zmianie, programista stanąłby przed
zadaniem mozolnego przekopiowania tablicy do innej, najprawdopodobniej większej tablicy.
Aby pokonać tę niedogodność należy skorzystać z kolekcji, z których najprostszą jest Array-

List. W przeciwieństwie do na przykład kolekcji z STL w C++, ArrayList i pozostałe kolekcje
.NET korzystają z jednorodnego interfejsu, traktującego wszystko to co wrzucono do kontenera
jako object.

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;

namespace Example
{
public class CExample
{
static void InfoOKolekcji(ArrayList a)
{
Console.WriteLine("Kolekcja ma {0} elementow: ", a.Count);
foreach (object o in a)
Console.WriteLine("{0} : {1}", o.GetType(), o);

}
public static void Main(string[] args)
{
ArrayList a = new ArrayList();

a.Add(5);
a.Add(7);
a.Add(9);
a.Add(true);
a.Add("ala ma kota");

InfoOKolekcji(a);
}
}
}

C:\Example>example.exe
Kolekcja ma 5 elementow:
System.Int32 : 5
System.Int32 : 7
System.Int32 : 9
System.Boolean : True
System.String : ala ma kota

Oczywiście sytuacja, w której w jednym kontenerze znajdują się obiekty różnych typów jest
dość rzadka. Najczęściej programista używa kontenera jak zwykłej tablicy, o której rozmiary nie
chce się martwić. Wtedy iteracja przez kolejne elementy może wręcz wymuszać typ elementu

...
foreach (int i in a)
...

co oczywiście spowoduje wyrzucenie wyjątku, jeśli przypadkiem któryś element kontenera nie
jest takiego typu jakiego spodziewa się programista. W przypadku wątpliwości zawsze można
rzutować dynamicznie

...
foreach (object o in a)
if (o is int)
...

140 ROZDZIAŁ C. ŚWIAT .NET

Kolekcje silnie otypowane

Programiści, którzy przychodzący ze świata C++, gdzie korzystali z kontenerów z biblioteki STL,
niejednokrotnie zgłaszają pod adresem kontenerów C#-owych jedno zastrzeżenie. ”Otóż” - jak
mawiają - ”możliwość umieszczania w kontenerze obiektów dowolnego typu, oznacza podatność
takich kontenerów na przypadkowe błędy”.
Rzeczywiście, jeśli z jakichś powodów programista spodziewa się w kontenerze obiektów typu

int, z związku z czym napisze gdzieś w kodzie

...
foreach (int i in a)
...

to może skończyć się to wyrzuceniem wyjątku, w przypadku omyłkowego umieszczenia w
kontenerze obiektu innego typu. Być może nawet obiekt taki umieszczany jest w kontenerze
statycznie:

...
a.Add("Ala ma kota");
...

a kompilator mimo to nie zgłasza żadych zastrzeżeń.
Dzieje się tak dlatego, że jak już powiedziano, kolekcje przechowują referencje do obiektów

promując je wcześniej do typu object i dopiero na wyraźne życzenie programista może dowiedzieć
się jaki jest prawdziwy typ obiektu przechowywanego w kontenerze. Kiedy programista korzysta
z C++ kontenera vector<T>, kompilator jest w stanie statycznie wychwycić tego rodzaju błąd.
Cóż, z perspektywy programisty kolekcje STL mają zdecydowanie poważniejsze wady (wy-

nikające z tego, że zdefiniowane są w postaci szablonów), których nie można w żaden sposób
obejść. Okazuje się za to, że w C# przez utworzenie własnej klasy dziedziczącej z Collection-
Base można zdefiniować kontenery otypowane statycznie.

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;

public class IntArrayList : System.Collections.CollectionBase
{
public virtual void Add(int i)
{
InnerList.Add(i);
}
public int this[int index]
{
get { return (int)InnerList[index]; }
}
}

namespace Example
{
public class CExample
{
public static void Main(string[] args)
{
IntArrayList a = new IntArrayList();
a.Add(4);
a.Add(7);
a.Add(11);
a.Add("Ala ma kota");

Console.WriteLine(a[2]);
}
}

3. PRZEGLĄD BIBLIOTEK PLATFORMY .NET 141

}

C:\Example>csc.exe example.cs
Microsoft (R) Visual C# .NET Compiler version 7.00.9466
for Microsoft (R) .NET Framework version 1.0.3705
Copyright (C) Microsoft Corporation 2001. All rights reserved.

example.cs(27,7): error CS1502: The best overloaded method match for
’IntArrayList.Add(int)’ has some invalid arguments

example.cs(27,14): error CS1503: Argument ’1’: cannot convert from ’string’ to
’int’

Stos, kolejka

Wbudowane w System.Collections kontenery Stack i Queue zachowują się dokładnie tak, jak
należałoby tego oczekiwać. Oprócz ”zwykłych” operacji wstawiania i zdejmowania elementów,
zarówno kolejka jak i stos umożliwiają ”podejrzenie” aktualnie dostępnej wartości.

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;

namespace Example
{
public class CExample
{
public static void Main(string[] args)
{
Stack s = new Stack();

s.Push(4);
s.Push("Ala ma kota");
s.Push(3);
s.Pop();

Console.WriteLine(s.Peek());

Queue q = new Queue();
q.Enqueue(4);
q.Enqueue(5);
Console.WriteLine(q.Peek());

q.Dequeue();
Console.WriteLine(q.Peek());
}
}
}

Hashtable

Hashtable jest kolekcją asocjacyjną, to znaczy że pamięta pary w postaci klucz → wartość.
Dzięki wewnętrznej strukturze, czas dostępu do wartości skojarzonej z kluczem jest bardzo szybki
i nie zależy od ilości elementów w kolekcji.
Hashtable wykorzystuje się na przykład do pamiętania odwzorowań częściowych (par x →

f(x)) lub fragmentów tabel bazodanowych (par ID → rekord z tabeli).
W przeciwieństwie do innych kontenerów, element Hashtable’a jest więc parą typu DictionaryEntry.

Programista musi o tym pamiętać podczas przeglądania kolekcji.

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;

namespace Example
{

142 ROZDZIAŁ C. ŚWIAT .NET

public class CExample
{
public static void Main(string[] args)
{
Hashtable h = new Hashtable();
h.Add(5, "Ala ma kota");
h.Add(3, "Kot ma Ale");
h.Add(18, "Ktos ma cos");

foreach (DictionaryEntry de in h)
Console.WriteLine("Para {0} - {1}", de.Key, de.Value);

}
}
}

C:\Example>example.exe
Para 18 - Ktos ma cos
Para 5 - Ala ma kota
Para 3 - Kot ma Ale

Innym sposobem przeglądania Hashtable’a jest przeglądanie kolekcji kluczy oraz kolekcji
wartości niezależnie.

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;

namespace Example
{
public class CExample
{
public static void Main(string[] args)
{
Hashtable h = new Hashtable();
h.Add(5, "Ala ma kota");
h.Add(3, "Kot ma Ale");
h.Add(18, "Ktos ma cos");

// przegladaj wartosci
foreach (string s in h.Values)
Console.WriteLine("Wartosc {0}", s);

// przegladaj klucze, skojrz wartosci
foreach (int key in h.Keys)
Console.WriteLine("Para {0} - {1}", key, h[key]);

}
}
}

C:\Example>example.exe
Wartosc Ktos ma cos
Wartosc Ala ma kota
Wartosc Kot ma Ale
Para 18 - Ktos ma cos
Para 5 - Ala ma kota
Para 3 - Kot ma Ale

Pewnym zaskoczeniem może być fakt, że elementy Hashtable’a są ujawniane kolejności innej,
niż były umieszczane w kolekcji. Wyjaśnieniem tego zjawiska i sposobami radzenia sobie z nim
zajmiemy się na stronie 151.

Własne kolekcje i interfejs IEnumerable

Istnienie wbudowanych kontenerów nie oznacza, że każdy kolejny tworzony kontener musi dzie-
dziczyć z któregoś już zdefiniowanego. Inwencja programistów jest w końcu nieograniczona i

3. PRZEGLĄD BIBLIOTEK PLATFORMY .NET 143

wewnętrzna reprezentacja jakiegoś kontenera zdefiniowanego przez uzytkownika może być moc-
no odległa od typowej.
To czego potrzeba, aby kontener spełniał swoje zadanie, to umożliwienie klientowi korzysta-

jącemu z niego jakiegoś ogólnego mechanizmu przeglądania elementów, tak aby klient nie musiał
być świadomy wewnętrznej reprezentacji danych w kontenerze.
Taką możliwość daje para interfejsów IEnumerable oraz IEnumerator.
IEnumerator ma 3 elementy:

bool MoveNext() Metoda MoveNext służy klientowi do poinformowania interfejsu o tym,
że klient chce obejrzeć kolejny element kontenera. Metoda ta powinna zwrócić wartość true
jeśli po obejrzeniu kolejnego elementu klient może kontytuować przeglądanie oraz false w
przeciwnym przypadku

object Current Propercja Current powinna ujawniać bieżący element kontenera.

void Reset() Metoda Reset powinna umożliwić klientowi przywrócenie stanu wyjściowego
przeglądania elementów, czyli najczęściej ustawienie bieżącego elementu jako pierwszego
elementu kontenera.

IEnumerable ma tylko 1 element:

IEnumerator GetEnumerator() MetodaGetEnumerator służy do pobrania instancji obiek-
tu pozwalającego przeglądać zawartość kolekcji.

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;

namespace Example
{
public class MyCol : IEnumerable
{
public class MyColEnumerator : IEnumerator
{
int index;
MyCol myCol = null;

public bool MoveNext()
{
index++;
if (index >= IL)
return false;
else
return true;

}

public object Current
{
get { return myCol.t[index]; }
}

public void Reset()
{
index = -1;
}

public MyColEnumerator(MyCol myCol)
{
this.myCol = myCol;
Reset();

}
}

144 ROZDZIAŁ C. ŚWIAT .NET

const int IL = 3;
int[] t = new int[IL];

public IEnumerator GetEnumerator()
{
return new MyColEnumerator(this);
}

public MyCol()
{
for (int i=0; i<IL; i++) t[i] = 2*i;
}

}

public class CExample
{
public static void Main(string[] args)
{
MyCol myCol = new MyCol();

IEnumerator ie = myCol.GetEnumerator();
while (ie.MoveNext())
Console.WriteLine(ie.Current.ToString());

}
}
}

C:\Example>example.exe
0
2
4

Zaimplementowanie interfejsu IEnumerable umożliwia także klientom kontenera na prze-
glądanie go za pomocą foreach. Foreach jest cukierkiem syntaktycznym15, który w trakcie
kompilacji jest tłumaczony do postaci takiej, jak w powyższym przykładzie.

...
MyCol myCol = new MyCol();

foreach (int i in myCol)
Console.WriteLine(i.ToString());
...

Sortowanie kolekcji

Framework pozwala rozwiązać problem sortowania w dość elegancki sposób. W przypadku ty-
pów prostych kryteria sortowania są już ustalone, zaś programista musi jedynie skorzystać z
odpowiednich sposobów ich użycia. W przypadku własnych typów programista może określić
różne porządki sortowania przez użycie któregoś z interfejsów: IComparer lub IComparable.
Zacznijmy od najprostrzego przykładu: sortowania tablic i kolekcji zawierających obiek-

ty typów prostych. Aby osiągnąć zamierzony cel, wystarczy skorzystać ze statycznej funkcji
Array.Sort w celu posortowania tablicy lub metody Sort kolekcji typu ArrayList.

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;

15Curkierek syntaktyczny to sympatyczne tłumaczenie angielskiego terminu syntactic sugar. Termin ten oznacza
taki element składni języka, który z jednej strony nie wnosi niczego nowego do możliwości samego języka, z drugiej
zaś strony upraszcza kod, bądź czyni go przejrzystszym. Typowym przykładem cukierka syntaktycznego jest pętla
for w rodzinie języków C-podobnych. Język nie straciłby nic, gdyby wyeliminować z niego konstrukcję for (;;),
bowiem to samo można zawsze wyrazić przy pomocy while. Pętla for jest jednak czytelniejsza.

3. PRZEGLĄD BIBLIOTEK PLATFORMY .NET 145

namespace Example
{
public class CExample
{
static void Wypisz(IEnumerable ie)
{
Console.Write("{0}: [", ie.GetType());
foreach (int i in ie)
Console.Write("{0},", i);
Console.WriteLine("]");

}

public static void Main(string[] args)
{
const int IL = 10;
Random r = new Random();

int[] tab = new int[IL];
ArrayList atab = new ArrayList();

for (int i=0; i<IL; i++)
{
tab[i] = r.Next()%100;
atab.Add(r.Next()%100);
}

Wypisz(tab);
Array.Sort(tab);
Wypisz(tab);

Wypisz(atab);
atab.Sort();
Wypisz(atab);

}
}
}

C:\Example>example.exe
System.Int32[]: [94,43,42,78,52,50,88,47,73,48,]
System.Int32[]: [42,43,47,48,50,52,73,78,88,94,]
System.Collections.ArrayList: [29,92,23,60,77,15,99,7,46,15,]
System.Collections.ArrayList: [7,15,15,23,29,46,60,77,92,99,]

Przy okazji tego przykładu zauważmy, że zarówno tablice jak i kolekcje implementują inter-
fejs IEnumerable, zwracający domyślny enumerator do przeglądania elementów w kontenerze.
Skorzystaliśmy z tego sprytnie przekazując do funkcji Wypisz obiekt typu IEnumerable, dzięki
czemu jedna i ta sama funkcja służy do przeglądania elementów tablicy i kolekcji.
Powyższy przykład oczywiście nie rozwiązuje problemu, bowiem w przypadku typów użyt-

kownika funkcje sortujące nie miałyby żadnych podstaw do określenia porządku sortowania.
W najprostrzym scenariuszu programista we własnej klasie implementuje interfejs ICompa-

rable, dzięki któremu instancja obiektu wie jak porównać się z inną instancją obiektu.
Załóżmy, że w klasie COsoba mamy pola przechowujące imię i nazwisko i chcemy skonstru-

ować porządek, który w pierwszej kolejności porównywałby nazwisko, zaś w przypadku równych
nazwisk porównywałby imiona.

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;

namespace Example
{
public class COsoba : IComparable
{
public string imie;
public string nazwisko;

146 ROZDZIAŁ C. ŚWIAT .NET

public int CompareTo(object o)
{
if (o is COsoba)
{
COsoba o2 = o as COsoba;

if (this.nazwisko == o2.nazwisko)
return this.imie.CompareTo(o2.imie);
else
return this.nazwisko.CompareTo(o2.nazwisko);

}
else
return -1;

}

public override string ToString()
{
return String.Format("{0} {1}", nazwisko, imie);
}

public COsoba(string imie, string nazwisko)
{
this.imie = imie; this.nazwisko = nazwisko;
}
}

public class CExample
{
static void Wypisz(IEnumerable ie)
{
foreach (object o in ie)
Console.WriteLine("{0},", o);

}

public static void Main(string[] args)
{
ArrayList atab = new ArrayList();

atab.Add(new COsoba("Jan", "Kowalski"));
atab.Add(new COsoba("Zdzisław", "Kowalski"));
atab.Add(new COsoba("Jan", "Malinowski"));
atab.Add(new COsoba("Tomasz", "Abacki"));

Wypisz(atab);
atab.Sort();
Wypisz(atab);

}
}
}

C:\Example>example.exe
Kowalski Jan,
Kowalski Zdzisław,
Malinowski Jan,
Abacki Tomasz,

Abacki Tomasz,
Kowalski Jan,
Kowalski Zdzisław,
Malinowski Jan,

Zwróćmy uwagę w jaki sposób odbywa się ustalenie sortowania według 2 pól obiektu: otóż
najpierw odbywa się porównanie nazwisk, a następnie, w przypadku równości nazwisk, porów-
nanie imion. Porównanie odbywa się za pomocą tego samego mechanizmu, który jest właśnie
oprogramowywany, czyli za pomocą interfejsu IComparable, tyle że tym razem metoda pochodzi
z klasy string.

if (this.nazwisko == o2.nazwisko)

3. PRZEGLĄD BIBLIOTEK PLATFORMY .NET 147

return this.imie.CompareTo(o2.imie);
else
return this.nazwisko.CompareTo(o2.nazwisko);

W taki sam sposób można ustalać dowolne kryteria sortowania według dowolnej ilości pól. Co
jednak zrobić w przypadku, kiedy dla jednego rodzaju obiektów chciałoby się kilka różnych po-
rządków sortowania? Załóżmy, że w klasie COsoba dołożymy nowe pole określające wiek osoby i
chcielibyśmy aby istniał inny porządek sortowania niż alfabetyczny - na przykład porządek chro-
nologiczny (a może jeszcze jakieś inne)? Jak rozwiązać taki problem, skoro zaimplementowanie
interfejsu IComparable pozwala określić tylko jeden porządek sortowania?
Otóż aby określić więcej niż jeden porządek sortowania należy utworzyć jakąś pomocniczą

klasę, która będzie implementować interfejs IComparer. Interfejs ten ma tylko jedną metodę
Compare, która służy do porównywania dwóch obiektów. W celu użycia wybranego intefejsu do
uporządkowania obiektów w kontenerze, należy użyć przeciążonej wersji metody Sort, która
oczekuje jako parametru właśnie obiektu typu IComparer.

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;

namespace Example
{
public class COsoba : IComparable
{
public class COsobaSortByDataUr : IComparer
{
public int Compare(object obj1, object obj2)
{
COsoba o1 = obj1 as COsoba;
COsoba o2 = obj2 as COsoba;

return o1.dataUr.CompareTo(o2.dataUr);
}
public COsobaSortByDataUr() {}
}

public string imie;
public string nazwisko;
public DateTime dataUr;

public int CompareTo(object o)
{
if (o is COsoba)
{
COsoba o2 = o as COsoba;

if (this.nazwisko == o2.nazwisko)
return this.imie.CompareTo(o2.imie);
else
return this.nazwisko.CompareTo(o2.nazwisko);

}
else
return -1;

}

public override string ToString()
{
return String.Format("{0} {1}, ur. {2:d}", nazwisko, imie, dataUr);
}

public COsoba(string imie, string nazwisko, string dataUr)
{
this.imie = imie; this.nazwisko = nazwisko;
this.dataUr = DateTime.Parse(dataUr);
}
}

148 ROZDZIAŁ C. ŚWIAT .NET

public class CExample
{
static void Wypisz(IEnumerable ie)
{
Console.WriteLine();
foreach (object o in ie)
Console.WriteLine("{0},", o);

}

public static void Main(string[] args)
{
ArrayList atab = new ArrayList();

atab.Add(new COsoba("Jan", "Kowalski", "1994-03-01"));
atab.Add(new COsoba("Zdzisław", "Kowalski", "1992-11-29"));
atab.Add(new COsoba("Jan", "Malinowski", "1990-02-16"));
atab.Add(new COsoba("Tomasz", "Abacki" , "1991-01-12"));

Wypisz(atab);
atab.Sort();
Wypisz(atab);
atab.Sort(new COsoba.COsobaSortByDataUr());
Wypisz(atab);

}
}
}

C:\Example>example.exe

Kowalski Jan, ur. 1994-03-01,
Kowalski Zdzisław, ur. 1992-11-29,
Malinowski Jan, ur. 1990-02-16,
Abacki Tomasz, ur. 1991-01-12,

Abacki Tomasz, ur. 1991-01-12,
Kowalski Jan, ur. 1994-03-01,
Kowalski Zdzisław, ur. 1992-11-29,
Malinowski Jan, ur. 1990-02-16,

Malinowski Jan, ur. 1990-02-16,
Abacki Tomasz, ur. 1991-01-12,
Kowalski Zdzisław, ur. 1992-11-29,
Kowalski Jan, ur. 1994-03-01,

Zauważmy, że tam gdzie jawnie nie podano odpowiedniego kryterium sortowania, zostanie
użyte sortowanie określone przez interfejs IComparable implementowany przez obiekt. Każde
inne kryterium musi być użyte jawnie.
W powyższym przykładzie klasa udostępniająca interfejs do sortowania została umieszczona

wewnątrz klasy głównej, aby programista korzystający z niej miał świadomość jej przeznaczenia.
Mimo to sposób wywołania sortowania nie jest zbyt elegancki:

atab.Sort(new COsoba.COsobaSortByDataUr());

Można uczynić kod nieco przejrzystszym przez dołożenie do klasy COsoba publicznej statycz-
nej propercji zwracającej odpowiedni obiekt:

...
public class COsoba : IComparable
{
class COsobaSortByDataUr : IComparer
{
public int Compare(object obj1, object obj2)
{
COsoba o1 = obj1 as COsoba;

3. PRZEGLĄD BIBLIOTEK PLATFORMY .NET 149

COsoba o2 = obj2 as COsoba;

return o1.dataUr.CompareTo(o2.dataUr);
}
public COsobaSortByDataUr() {}
}

public string imie;
public string nazwisko;
public DateTime dataUr;

public static IComparer SortByDataUr
{
get
{
return (IComparer)(new COsobaSortByDataUr());
}

}
...

Klasa implementująca sortowanie nie musi już być publiczna, zaś sortowanie z użyciem od-
powiedniego kryterium jest już proste:

atab.Sort(COsoba.SortByDataUr);

Opakowywanie enumeratorów

Intensywne korzystanie z kolekcji znacząco wpływa na wydajność pracy programisty. Kod two-
rzony jest szybciej, jest w nim mniej pomyłek i jest znacznie czytelniejszy.
Załóżmy, że aplikacja rozwija się pomyślnie i w pewnym momencie pojawiają się dodatkowe

okolicznosci. Elementy jakiegoś kontenera powinny być przeglądnięte, a część z nich, spełniająca
jakieś kryteria, usunięta. Naiwnie napisalibyśmy coś, co nieoczekowanie kończy się katastrofą!

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;

namespace Example
{
public class CExample
{
public static void Main(string[] args)
{
ArrayList atab = new ArrayList();

atab.Add(5);
atab.Add(10);
atab.Add(3);

foreach (int i in atab)
if (i < 4)
atab.Remove(i);

}
}
}

C:\Example>example.exe

Unhandled Exception: System.InvalidOperationException: Collection was modified;
enumeration operation may not execute.
at System.Collections.ArrayListEnumeratorSimple.MoveNext()
at Example.CExample.Main(String[] args)

Natknęliśmy się na dość spory problem - w trakcie enumeracji nie wolno modyfikować za-
wartości kontenera, bowiem enumeracja traci sens, jeśli - obrazowo mówiac - usuwa się jej grunt
spod nóg.

150 ROZDZIAŁ C. ŚWIAT .NET

Ten problem można rozwiązać na kilka sposobów, na przykład w czasie enumeracji tworząc
pomocniczą listę referencji do obiektów, które należy usunąć, a potem usuwać je w kolejnej
pętli, lub korzystając z innych pętli niż foreach, gdzie istnieje możliwość wyspecyfikowania bar-
dziej subtelnych warunków zakończenia iteracji, uwzględniających możliwe zmiany w zawartości
kontenera.
Okazuje się, że można postąpić jeszcze inaczej, definiując enumerator opakowujący16.
Enumerator taki będzie inicjowany dowolnym obiektem, który implementuje interfejs IE-

numerable, a następnie będzie tworzył kopię referencji do obiektów w źródłowym kontenerze.
Jeżeli programista zechce obejrzeć opakowane elementy, dostanie do ręki listę tych właśnie kopii
referencji do obiektów z oryginalnej kolekcji.
Aby skorzystać z iteratora opakowującego, zamiast

foreach (int i in atab)
if (i < 4)
atab.Remove(i);

programista napisze

foreach (int i in new IterIsolate(atab))
if (i < 4)
atab.Remove(i);

Wadą takiego rozwiązania jest konieczność tworzenia listy z duplikatami referencji do obiek-
tów z oryginalnej kolekcji. Zaletą - niezwykła elegancja kodu.

/* Wiktor Zychla, 2003. IterIsolate: Eric Gunnerson */
using System;
using System.Collections;

namespace Example
{
public class IterIsolate: IEnumerable
{
internal class IterIsolateEnumerator: IEnumerator
{
protected ArrayList items;
protected int currentItem;

internal IterIsolateEnumerator(IEnumerator enumerator)
{
IterIsolateEnumerator chainedEnumerator =
enumerator as IterIsolateEnumerator;

if (chainedEnumerator != null)
{
items = chainedEnumerator.items;
}
else
{
items = new ArrayList();
while (enumerator.MoveNext() != false)
{
items.Add(enumerator.Current);
}
IDisposable disposable = enumerator as IDisposable;
if (disposable != null)
{
disposable.Dispose();
}
}
currentItem = -1;

16Autorem pomysłu jest współtwórca C#, Eric Gunnerson, którego artykuł na ten temat można znaleźć na
stronach MSDN.

3. PRZEGLĄD BIBLIOTEK PLATFORMY .NET 151

}

public void Reset()
{
currentItem = -1;
}

public bool MoveNext()
{
currentItem++;
if (currentItem == items.Count)
return false;

return true;
}

public object Current
{
get
{
return items[currentItem];
}
}
}

public IterIsolate(IEnumerable enumerable)
{
this.enumerable = enumerable;
}

public IEnumerator GetEnumerator()
{
return new IterIsolateEnumerator(enumerable.GetEnumerator());
}

protected IEnumerable enumerable;
}

public class CExample
{
public static void Main(string[] args)
{
ArrayList atab = new ArrayList();

atab.Add(5);
atab.Add(10);
atab.Add(3);

foreach (int i in new IterIsolate(atab))
if (i < 4)
atab.Remove(i);

}
}
}

Bardzo podobnego pomysłu można użyć do rozwiązania problemu przeglądania elementów
kolekcji Hashtable w ustalonej przez programistę kolejności. W tym celu utworzymy nowy enu-
merator opakowujący, który utworzy kopie referencji i posortuje je w ustalonej kolejności.

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;

namespace Example
{
public class IterIsolate: IEnumerable
{
... jak wyżej ...
}

152 ROZDZIAŁ C. ŚWIAT .NET

public class IterSort: IterIsolate, IEnumerable
{
internal class IterSortEnumerator: IterIsolateEnumerator, IEnumerator
{
internal IterSortEnumerator(IEnumerator enumerator, IComparer comparer): base(enumerator)
{
if (comparer != null)
{
items.Sort(comparer);
}
else
{
items.Sort();
}
}
}

public IterSort(IEnumerable enumerable): base(enumerable) {}

public IterSort(IEnumerable enumerable, IComparer comparer): base(enumerable)
{
this.comparer = comparer;
}

public new IEnumerator GetEnumerator()
{
return new IterSortEnumerator(enumerable.GetEnumerator(), comparer);
}
IComparer comparer;
}

public class COsoba : IComparable
{
... jak wyżej ...
}

public class CExample
{
public static void Main(string[] args)
{
Hashtable hOsoby = new Hashtable();

// w kolekcji pamiętamy pary : ID -> Osoba
hOsoby.Add(7, new COsoba("Jan", "Kowalski", "1994-03-01"));
hOsoby.Add(10, new COsoba("Zdzisław", "Kowalski", "1992-11-29"));
hOsoby.Add(3, new COsoba("Jan", "Malinowski", "1990-02-16"));
hOsoby.Add(17, new COsoba("Tomasz", "Abacki" , "1991-01-12"));

// przeglądaj kolekcję
foreach (COsoba o in hOsoby.Values)
Console.WriteLine(o.ToString());

Console.WriteLine();

// przeglądaj posortowaną kolekcję
foreach (COsoba o in new IterSort(hOsoby.Values, COsoba.SortByDataUr))
Console.WriteLine(o.ToString());

}
}
}

C:\Example>example.exe
Kowalski Zdzisław, ur. 1992-11-29
Kowalski Jan, ur. 1994-03-01
Abacki Tomasz, ur. 1991-01-12
Malinowski Jan, ur. 1990-02-16

Malinowski Jan, ur. 1990-02-16
Abacki Tomasz, ur. 1991-01-12

3. PRZEGLĄD BIBLIOTEK PLATFORMY .NET 153

Kowalski Zdzisław, ur. 1992-11-29
Kowalski Jan, ur. 1994-03-01

W podoby sposób można utworzyć inne enumeratory opakowujące, na przykład IterSelect,
który jako parametr przyjąłby predykat przyjmujący jako parametr obiekt z kolekcji i zwracający
wartości true lub false. Podczas przeglądania kolekcji taki enumerator udostępniałby tylko te
obiekty z kolekcji, dla których wartość predykatu byłaby równa true.

public delegate bool IterSelectDelegate(object o);

public class IterSelect: IterIsolate, IEnumerable
{
internal class IterSelectEnumerator: IterIsolateEnumerator, IEnumerator
{
internal IterSelectEnumerator(IEnumerator enumerator,

IterSelectDelegate selector): base(enumerator)
{
for (int index = items.Count - 1; index >= 0; index--)
{
if (!selector(items[index]))
items.RemoveAt(index);

}

currentItem = items.Count;
}

public new void Reset()
{
currentItem = items.Count;
}

public new bool MoveNext()
{
currentItem--;
if (currentItem < 0)
return false;

return true;
}
}

public IterSelect(IEnumerable enumerable, IterSelectDelegate selector): base(enumerable)
{
this.selector = selector;
}

public new IEnumerator GetEnumerator()
{
return new IterSelectEnumerator(enumerable.GetEnumerator(), selector);
}

IterSelectDelegate selector;
}

Dzięki możliwości składania takich enumeratorów, programista mógłby więc napisać:

foreach (COsoba o in
new IterSelect(
new IterSort(hOsoby, COsoba.SortByDataUr),
COsoba.RokUrodzenia(1990)))

{
// posortowane obiekty COsoba z kolekcji hOsoby
// ale tylko te urodzone w 1990 roku

}

154 ROZDZIAŁ C. ŚWIAT .NET

3.2 Biblioteka funkcji matematycznych

Funkcje matematyczne zostały w C# umieszczone jako statyczne w klasie System.Math. Pro-
gramista znajdzie tam takie funkcje, jak m.in.: Abs, Asin, Atan, Cos, Cosh, E (stała), Exp,
Floor, Log, Max, Min, PI (stała), Pow, Sign, Sin, Sinh, Tan, Sqrt.

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;

namespace Example
{
public class CExample
{
public static void Main(string[] args)
{
Console.WriteLine("E = {0}", Math.E);
Console.WriteLine("Pi = {0}", Math.PI);

Console.WriteLine("E^PI = {0}", Math.Pow(Math.E, Math.PI));
Console.WriteLine("Pi^E = {0}", Math.Pow(Math.PI, Math.E));
}
}
}

C:\Example>example.exe
E = 2,71828182845905
Pi = 3,14159265358979
E^PI = 23,1406926327793
Pi^E = 22,459157718361

Podobnie łatwo dzięki klasie Random można uzyskać liczby losowe.

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;

namespace Example
{
public class CExample
{
public static void Main(string[] args)
{
Random r = new Random();

Console.WriteLine("Sekwencja losowych liczb całkowitych: ");
for (int i=0; i<10; i++)
Console.WriteLine(r.Next());

Console.WriteLine("Sekwencja losowych liczb zmiennoprzecinkowych: ");
for (int i=0; i<10; i++)
Console.WriteLine(r.NextDouble());

}
}
}

C:\Example>example.exe
Sekwencja losowych liczb całkowitych:
1537211907
1960381545
1107103792
1638000156
206550390
4349299
1902247774
493693260
357003656
1461388247
Sekwencja losowych liczb zmiennoprzecinkowych:

3. PRZEGLĄD BIBLIOTEK PLATFORMY .NET 155

0,359765542372952
0,615490057792277
0,185565924358352
0,0885926261956769
0,67311383582331
0,495275298829784
0,700976026105218
0,496796116464211
0,58237144610955
0,495158822506274

3.3 Biblioteki wejścia/wyjścia

Tyle ile różnych języków - tyle różnych podejść do zagadnienia obsługi wejścia / wyjścia. Pro-
jektanci języka stają przed trudnym zadaniem zaprojektowania przystępnego iterfejsu progra-
mowania do obsługi różnego rodzaju obiektów (pliki, konsola, połączenia sieciowe itd.) i różnego
rodzaju rodzajów przekazywania danych (tekstowy, binarny, buforowany, dostęp sekwencyjny i
swobodny itd.).

Struktura systemu plików

Zanim przejdziemy do przekazywania danych z i do strumieni reprezentujących obiekty wejścia /
wyjścia, zajmiemy się operacjami na strukturze systemu plików. Biblioteka udostępnia tu 3 klasy:
File, Directory i Path. Żadna z tych klas nie pozwala tworzyć swojej instancji, udostępniają
one tylko statyczne metody, z których korzysta programista.
Klasa Directory służy do bezpośrednich operacji na plikach i katalogach. Udostępnia m.in.

następujące metody:

CreateDirectory Tworzenie katalogu.

Delete Usuwanie katalogu.

Exists Sprawdzanie czy katalog istnieje.

GetCurrentDirectory Zwraca bieżący katalog.

GetFiles Zwraca listę nazw plików w katalogu.

GetDirectories Zwraca listę podkatalogów w katalogu.

GetFileSystemEntries Zwraca listę wszystkich elementów w katalogu.

GetParent Zwraca nazwę katalogu poziom wyżej niż wskazany.

GetLogicalDrives Zwraca listę dysków logicznych w systemie.

Move Przesuwa katalog w systemie plików.

SetCurrentDirectory Ustawia bieżący katalog.

Klasa File udostępnia metody do operacji na plikach, m.in.:

Copy Kopiowanie plików.

Create Tworzenie nowych plików.

Delete Usuwanie plików.

Exists Sprawdzanie czy plik istnieje.

156 ROZDZIAŁ C. ŚWIAT .NET

GetAttributes Zwraca atrybuty pliku.

Open Otwiera plik.

SetAttributes Ustawia atrybuty pliku.

Klasa Path udostępnia metody do obsługi nazw plików w systemie plików, m.in.:

ChangeExtension Zmiana rozszerzenia nazwy pliku.

GetDirectoryName Część określająca nazwę katalogu w ścieżce.

GetExtension Rozszerzenie pliku.

GetFileName Nazwa pliku (bez ścieżki).

GetFileNameWithoutExtension Nazwa pliku (bez ścieżki i rozszerzenia).

GetFullPath Pełna nazwa pliku.

GetTempName Nazwa tymczasowego pliku.

DirectorySeparatorChar Separator katalogów w nazwach plików (w Windows ”)̈.

PathSeparator Separator ścieżek w nazwach plików (w Windows ”;”).

VolumeSeparatorChar Separator woluminu w nazwach plików (w Windows ”:”)

Dodatkową, usługową funkcję spełniają dwie klasy, FileInfo i DirectoryInfo. Za pomocą
obiektów tych klas można uzyskać szczegółowe informacje na temat plików i folderów.
Przykład prostego programu:

/* Wiktor Zychla, 2003 */
using System;
using System.IO;

namespace Example
{
public class CExample
{
public static void Main(string[] args)
{
string[] fileNames =
Directory.GetFiles(Directory.GetCurrentDirectory(), "*.exe");
foreach (string s in fileNames)
{
FileInfo fi = new FileInfo(s);

Console.WriteLine(fi.FullName);
Console.WriteLine(" rozmiar\t{0}", fi.Length);
Console.WriteLine(" utworzony\t{0}", fi.CreationTime);
Console.WriteLine(" atrybuty\t{0}", fi.Attributes);
}

}
}
}

C:\Example>example.exe
C:\Example\example.exe
rozmiar 3584
utworzony 2003-03-22 19:47:55
atrybuty Archive

3. PRZEGLĄD BIBLIOTEK PLATFORMY .NET 157

Obsługa danych w strumieniach

Interfejsy nowoczesnych języków programowania zwykle używają abstrakcyjnej reprezentacji
danych przesyłanych do i z urządzeń wejścia / wyjścia w postaci strumieni. Udaną próbę zbu-
dowania jednolitego interfejsu strumieni podjęto przy projektowaniu C++.

MemoryStream, FileStream, NetworkStream
5

CryptoStream, BufferedStream
5

StreamReader, StreamWriter, BinaryReader, BinaryWriter

Tabela C.3: Składanie różnych funkcji strumieni

W C# istnieje klasa Stream, która, oprócz udostępniania kilku prostych metod, spełnia
funkcję klasy bazowej dla specjalizowanych klas do obsługi różnych strumieni:

MemoryStream dostarcza mechanizmów do operacji na danych w pamięci

FileStream dostarcza mechanizmów do operacji na plikach

IsolatedStorageFileStream wirtualny system plików z kontrolą dostępu

NetworkStream dostarcza mechanizmów do operacji sieciowych

Dodatkowe strumienie mogą stanowić warstwę pośrednią w komunikacji z wyżej wymienio-
nymi strumieniami:

CryptoStream pozwala szyfrować i deszyfrować dane przesyłane z i do strumienia

BufferedStream pozwala przyspieszyć dostęp do strumienia przez wysyłanie większych porcji
danych

W zależności od tego jakiego rodzaju dostępu do strumienia oczekuje programista, może on
wybierać między:

StreamReader, StreamWriter pozwala na dostęp do strumieni traktowanych jako napisy

BinaryReader, BinaryWriter pozwala na dostęp do strumieni traktowanych jak bajty

Te trzy rodzaje funkcji tworzą niejako trzy niezależne warstwy obsługi strumieni, zaś progra-
mista może dowolnie składać funkcje z kolejnych warstw. Oznacza to, że tak naprawdę istnieje
kilkadziesiąt różnych możliwości ich składania (tabela C.3).
Warstwa pierwsza udostępnia najprostszy interfejs, w którym do strumienia można kierować i

czytać tylko pojedyńcze bajty. Warstwa druga umożliwia nałożenie szyfrowania lub buforowania
na strumień. Warstwa trzecia pozwala na wysyłanie do strumienia całych napisów, liczb i innych
obiektów.
Spróbujmy więc na przykład utworzyć strumień plikowy, na niego nałożyć funkcję zapisu

tekstu w Unicode i zapisać do pliku jakiś tekst.

158 ROZDZIAŁ C. ŚWIAT .NET

/* Wiktor Zychla, 2003 */
using System;
using System.Text;
using System.IO;

namespace Example
{
public class CExample
{
public static void Main(string[] args)
{
FileStream fs = new FileStream("plik.txt", FileMode.Create);
StreamWriter sw = new StreamWriter(fs, Encoding.Unicode);

sw.WriteLine("Chrząsz brzmi w Żyrardówku");

sw.Close();
fs.Close();
}
}
}

Szyfrowanie strumieni w locie

Biblioteka wejścia / wyjścia .NET pozwala na umieszczenie strumienia szyfrującego między
strumieniem, a obiektem pozwalającym czytać bądź pisać dane tego strumienia. Jest to naprawdę
proste i wygodne - z perspektywy programisty zachowanie się strumienia jest nadal takie samo,
mimo to dane trafiają do strumienia po przejściu przez warstwę szyfrującą.

Typ Nazwa
Symetryczny DES
Symetryczny TripleDES
Symetryczny RC2
Symetryczny Rijndael
Asymetryczny DSA
Asymetryczny RSA

Udostępniono kilka znanych protokołów kryptograficznych: symetryczne używają tego same-
go klucza do szyfrowania i deszyfrowania, podczas gdy asymetryczne szyfrują za pomocą kluczy
publicznych, zaś do odszyfrowania potrzebują kluczy prywatnych. Biblioteka krytpograficzna
udostępnia metody do wspomagania tworzenia kluczy dla obu typów protokołów.
W przykładzie najpierw utworzymy strumień do zapisu danych z pośrednim strumieniem

szyfrującym, a następnie zdekodujemy tekst z pliku. Gdyby podczas próby dekodowania użyto
niepoprawnego hasła, to oczywiście operacja nie powiodłaby się. Oczywiście zawartość pliku z
zaszyfrowaną informacją w żaden sposób nie nadaje się do odczytania bez zdeszyfrowania.

/* Wiktor Zychla, 2003 */
using System;
using System.IO;
using System.Security.Cryptography;
using System.Text;

namespace Example
{
public class CExample
{

static string CzytajHaslo()
{

3. PRZEGLĄD BIBLIOTEK PLATFORMY .NET 159

Console.Write("podaj haslo do szyfrowania: ");
string passwd = Console.ReadLine();
if (passwd.Length != 8)
{
Console.WriteLine("Haslo musi miec 8 znakow");
Environment.Exit(0);
}
return passwd;
}

public static void Main(string[] args)
{
string password = CzytajHaslo();
UnicodeEncoding UE = new UnicodeEncoding();
byte[] key = UE.GetBytes(password);

// zapis zaszyfrowanych danych
// cs jest strumieniem pośrednim
FileStream fs = new FileStream("plik.txt", FileMode.Create);
RijndaelManaged RMCrypto = new RijndaelManaged();
CryptoStream cs = new CryptoStream(fs,

RMCrypto.CreateEncryptor(key, key),
CryptoStreamMode.Write);

StreamWriter sw = new StreamWriter(cs, Encoding.Unicode);

sw.WriteLine("Chrząsz brzmi w Żyrardówku");
sw.Close();

// odczyt zaszyfrowanych danych
// gs jest strumieniem pośrednim
FileStream gs = new FileStream("plik.txt", FileMode.Open);
RijndaelManaged RMCryptp = new RijndaelManaged();
CryptoStream ds = new CryptoStream(gs,

RMCryptp.CreateDecryptor(key, key),
CryptoStreamMode.Read);

StreamReader sq = new StreamReader(ds, Encoding.Unicode);

Console.WriteLine(sq.ReadLine());
sq.Close();
}
}
}

C:\Example>example.exe
podaj haslo do szyfrowania: qwertyui
Chrząsz brzmi w Żyrardówku

Strumienie konsoli

Obiekt reprezentujący konsolę dysponuje informacją o strumieniach wejścia, wyjścia i błędu.
Obiekty te (Console.In, Console.Out, Console.Error) są strumieniami typówTextReader
i TextWriter (klasy bazowe dla odpowiednio StreamReader, StringReader i StreamWriter,
StringWriter). Oznacza to, że strumieni tych można użyć w każdym kontekście, w którym używa
się strumieni pochodnych.
Strumienie te mogą być przekierowane za pomocą metod SetIn, SetOut i SetError.

3.4 Dynamiczne tworzenie kodu

Jedną z najciekawszych możliwości biblioteki .NET jest dynamiczne tworzenie kodu w czasie
działania aplikacji. Programista może zażyczyć sobie utworzenia instancji obiektu kompilatora,
skompilować fragment kodu na dysk lub do pamięci a nawet dynamicznie dołączyć taki kod do
swojej aplikacji.
Najpierw zobaczmy w jaki sposób utworzyć dynamicznie obiekt kompilatora, skompilować

kod do postaci wykonywalnej, a następnie uruchomić skompilowany kod jako nowy proces w

160 ROZDZIAŁ C. ŚWIAT .NET

systemie. Chcielibyśmy ponadto, aby tak utworzony obiekt kompilatora przechwytywał i rapor-
tował błędy kompilacji.

/* Wiktor Zychla, 2003 */
using System;
using System.Diagnostics;
using System.IO;
using System.CodeDom;
using System.CodeDom.Compiler;

using Microsoft.CSharp;

namespace Example
{
public class CExample
{
public static void Main(string[] args)
{
string sFileName;
string sOutFileName;

Console.Write("Podaj nazwe pliku do skompilowania: ");
sFileName = Console.ReadLine();
sOutFileName =
Path.GetFileNameWithoutExtension(sFileName) + ".exe";

if (File.Exists(sFileName))
{
CSharpCodeProvider codeProvider = new CSharpCodeProvider();
ICodeCompiler icc = codeProvider.CreateCompiler();

CompilerParameters parameters = new CompilerParameters();
parameters.GenerateExecutable = true;
parameters.OutputAssembly = sOutFileName;

CompilerResults results = icc.CompileAssemblyFromFile(parameters, sFileName);

if (results.Errors.Count > 0)
{
foreach(CompilerError CompErr in results.Errors)
{
Console.WriteLine("Linia: " + CompErr.Line +

", Numer: " + CompErr.ErrorNumber);
Console.WriteLine(CompErr.ErrorText);
}
}
else
Process.Start(sOutFileName);

}
}
}
}

C:\Example>example.exe
Podaj nazwe pliku do skompilowania: test.cs
Linia: 5, Numer: CS1514
{ expected

Dynamiczne kompilowanie kodu w sposób pokazany w powyższym przykładzie ma jednak
kilka wad:

� podczas kompilacji tworzony jest plik wykonywalny ze skompilowanym kodem

� kompilowany kod musi być w pełni samodzielny, w szczególności musi zawierać funkcję
Main

� skompilowany proces podczas uruchamiania tworzy nowe okno konsoli

3. PRZEGLĄD BIBLIOTEK PLATFORMY .NET 161

Aby poradzić sobie z tymi problemami, po pierwsze zażyczymy sobie tworzenia kodu do pa-
mięci zamiast na dysk. Po drugie, skorzystamy z mechanizmu refleksji, dzięki któremu będziemy
mogli obejrzeć składniki skompilowanego do pamięci kodu. Po trzecie, wykorzystamy mechanizm
pozwalający na tworzenie delegatów z obiektów typu MethodInfo, dzięki czemu będziemy mogli
wybrać z kompilowanego kodu tylko te metody, które są interesujące.
Przygotujmy najpierw testowy plik z przykładowymi funkcjami:

/*
test.cs
plik z przykładowymi funkcjami, który będzie dynamicznie kompilowany

*/
using System;

namespace NSpace
{
public class CMain
{
public static int A(int n)
{
return n+n;
}

public static int B(int n)
{
return n*n;
}
}
}

A oto zmodyfikowany przykład dynamicznego tworzenia kodu:

/* Wiktor Zychla, 2003 */
using System;
using System.Diagnostics;
using System.IO;
using System.CodeDom;
using System.CodeDom.Compiler;
using System.Reflection;

using Microsoft.CSharp;

namespace Example
{
public class CExample
{
public delegate int DF(int n);
public static DF DummyDF = new DF(FDummy);
public static int FDummy(int n)
{
return 0;
}

public static void Main(string[] args)
{
string sFileName;
string sOutFileName;

Console.Write("Podaj nazwe pliku do skompilowania: ");
sFileName = Console.ReadLine();
sOutFileName =
Path.GetFileNameWithoutExtension(sFileName) + ".exe";

if (File.Exists(sFileName))
{
CSharpCodeProvider codeProvider = new CSharpCodeProvider();
ICodeCompiler icc = codeProvider.CreateCompiler();

162 ROZDZIAŁ C. ŚWIAT .NET

CompilerParameters parameters = new CompilerParameters();
parameters.GenerateExecutable = false;
parameters.OutputAssembly = sOutFileName;

CompilerResults results =
icc.CompileAssemblyFromFile(parameters, sFileName);

if (results.Errors.Count > 0)
{
foreach(CompilerError CompErr in results.Errors)
{
Console.WriteLine("Linia: " + CompErr.Line +

", Numer: " + CompErr.ErrorNumber);
Console.WriteLine(CompErr.ErrorText);
}
}
else
{
try
{
Assembly assembly = results.CompiledAssembly;

Console.Write("Podaj nazwę typu: ");
Type t = assembly.GetType(Console.ReadLine());

Console.Write("Podaj nazwę funkcji o prototypie int F(int): ");
MethodInfo me = t.GetMethod(Console.ReadLine());

DF df = (DF)DF.CreateDelegate(DummyDF.GetType(), me);
Console.Write("Podaj wartość parametru (int): ");

int result = df(int.Parse(Console.ReadLine()));
Console.WriteLine(result);
}
catch (Exception ex)
{
Console.WriteLine(ex.Message);
}

}
}
}
}
}

C:\Example>example.exe
Podaj nazwe pliku do skompilowania: test.cs
Podaj nazwę typu: NSpace.CMain
Podaj nazwę funkcji o prototypie int F(int): A
Podaj wartość parametru (int): 24
48

C:\Example>example.exe
Podaj nazwe pliku do skompilowania: test.cs
Podaj nazwę typu: NSpace.CMain
Podaj nazwę funkcji o prototypie int F(int): B
Podaj wartość parametru (int): 25
625

Cała siła tego kodu opiera się na linii

DF df = (DF)DF.CreateDelegate(DummyDF.GetType(), me);

Tworzony jest tutaj delegat typu DF za pomocą statycznej funkcji CreateDelegate, która
w tej (jednej z 4) wersji spodziewa się parametru określającego typ tworzonego delegata (tu:
domyślnego delegata typu DF utworzonego w kodzie) oraz informacji o metodzie pobranej przez
mechanizm refleksji.
Bardzo prosto napisać funkcję, która będzie mogła ewaluować wyrażenie dowolnego typu:

3. PRZEGLĄD BIBLIOTEK PLATFORMY .NET 163

using System;
using System.CodeDom;
using System.CodeDom.Compiler;
using Microsoft.CSharp;
using System.Text;
using System.Reflection;

namespace Example
{
public class Evaluator
{
public static object Evaluate(Type type, string expression)
{
ICodeCompiler comp = (new CSharpCodeProvider().CreateCompiler());
CompilerParameters cp = new CompilerParameters();
cp.ReferencedAssemblies.Add("system.dll");
cp.ReferencedAssemblies.Add("system.data.dll");
cp.ReferencedAssemblies.Add("system.xml.dll");
cp.GenerateExecutable = false;
cp.GenerateInMemory = true;

StringBuilder code = new StringBuilder();
code.Append("using System; \n");
code.Append("using System.Data; \n");
code.Append("using System.Data.SqlClient; \n");
code.Append("using System.Data.OleDb; \n");
code.Append("using System.Xml; \n");
code.Append("namespace _Evaluator { \n");
code.Append(" public class _Evaluator { \n");
code.AppendFormat(" public {0} Foo() ", type.Name);
code.Append("{ ");
code.AppendFormat(" return ({0}); ", expression);
code.Append("}\n");
code.Append("} }");

CompilerResults cr =
comp.CompileAssemblyFromSource(cp, code.ToString());

if (cr.Errors.HasErrors)
{
StringBuilder error = new StringBuilder();
error.Append("Error Compiling Expression: ");
foreach (CompilerError err in cr.Errors)
{
error.AppendFormat("{0}\n", err.ErrorText);
}
throw new Exception("Error Compiling Expression: " +

error.ToString());
}
Assembly a = cr.CompiledAssembly;
object c = a.CreateInstance("_Evaluator._Evaluator");
MethodInfo mi = c.GetType().GetMethod("Foo");
return mi.Invoke(c, null);
}
}

public class CMain
{
public static void Main()
{
Console.Write("Wpisz wyrażenie arytmetyczne: ");
Console.WriteLine((int)Evaluator.Evaluate(typeof(int),

Console.ReadLine()));
}
}
}

C:\Example>example
Wpisz wyrażenie arytmetyczne: (8*(4+6))-12
68

164 ROZDZIAŁ C. ŚWIAT .NET

C:\Example>example
Wpisz wyrażenie arytmetyczne: 5+(

Unhandled Exception: System.Exception: Error Compiling Expression: Error Compili
ng Expression: Invalid expression term ’)’
) expected

at Example.Evaluator.Evaluate(Type type, String expression)
at Example.CMain.Main()

Zastosowania takiej metody tworzenia kodu mogą być bardzo szerokie. Można na przykład
wyposażyć aplikację w moduł skryptowy, który pozwoli użytkownikowi podkładać własne funkcje
w miejsce dostarczanych z aplikacją. Można zaprojektować całkowicie własny język skryptowy,
dopisać prosty kompilator między tym językiem a C#, następnie kompilować kod w języku
skryptowym najpierw do C#, a kod C# dynamicznie dołączać do własnej aplikacji w czasie jej
działania.
Można również wyobrazić sobie, że pewne ważne fragmenty aplikacji dostarczone są w postaci

zaszyfrowanego kodu źródłowego, do którego kod odszyfrowujący zna tylko użytkownik. Kod taki
mógłby być odszyfrowywany i kompilowany w czasie działania aplikacji, zaś użytkownik miałby
pewność, że w przypadku kradzieży aplikacja byłaby dla ewentualnego złodzieja bezużyteczna,
gdyby nie znał hasła odszyfrowującego.

3.5 Procesy, wątki

Procesy

Dzięki bibliotece System.Diagnostics programista może kontrolować procesy działające w syste-
mie.

using System;
using System.Diagnostics;

namespace Example
{
public class CMain
{
public static void Main()
{
Process[] pt = Process.GetProcesses();
foreach (Process p in pt)
{
Console.WriteLine(p.ProcessName.ToString());
Console.WriteLine("\t"+p.PriorityClass.ToString());
Console.WriteLine("\t"+p.MainModule.ModuleName);
Console.WriteLine("\t"+p.MainModule.ModuleMemorySize);
}
}
}
}

Procesy można nie tylko przeglądać, ale również tworzyć, zabijać, czekać na ich zakończenie
oraz korzystać z możliwości powłoki. Poniższy przykład jest C#-owym odpowiednikiem przy-
kładu ze strony 66.

using System;
using System.Diagnostics;

namespace Example
{
public class CMain
{

3. PRZEGLĄD BIBLIOTEK PLATFORMY .NET 165

public static void Main()
{
Process p = new Process();

p.StartInfo.UseShellExecute = true;
p.StartInfo.Verb = "print";
p.StartInfo.FileName = "plik.doc";

p.Start();
p.WaitForExit();
p.Dispose();

Console.WriteLine("zakończono drukowanie");
}
}
}

Wątki

Biblioteka System.Threading udostępnia funkcje do tworzenia i synchronizacji wątków. Przeka-
zywanie parametrów do wątków możliwe jest dzięki opakowywaniu ich w pomocnicze klasy:

using System;
using System.Threading;

namespace Example
{
public class CMyThread
{
string nazwa;
int k;

public void ThreadFunc()
{
for (int i=0; i<k; i++)
{
Console.WriteLine(nazwa);
Thread.Sleep(1);
}
}

public CMyThread(string nazwa, int k)
{
this.nazwa = nazwa;
this.k = k;
}
}

public class CMain
{
public static void Main()
{
string[] n = { "Jurek", "Ogórek", "Kiełbasa", "Sznurek" };
int[] m = { 4, 5, 2, 7 };

for (int i=0; i<n.Length; i++)
{
CMyThread mt = new CMyThread(n[i], m[i]);
Thread t = new Thread(new ThreadStart(mt.ThreadFunc));
t.Start();

}
}
}
}

C:\Example>example
Ogórek
Kiełbasa

166 ROZDZIAŁ C. ŚWIAT .NET

Kiełbasa
Ogórek
Ogórek
Sznurek
Jurek
Sznurek
Ogórek
Jurek
Ogórek
Sznurek
Sznurek
Sznurek
Jurek
Sznurek
Jurek
Sznurek

Najprostszy wariant synchronizacji wątków możliwy jest dzięki słowu kluczowemu C# lock.
Objęcie jakiejś zmiennej tą klauzulą powoduje zablokowanie dostępu do tej zmiennej pozostałym
wątkom na tak długo, aż bieżący wątek opuści blok lock, na przykład:

JakisObiekt o;
...
lock (o)
{
...
}

Do synchronizacji wątków można również wykorzystać m.in.:

� AutoResetEvent

� ManualResetEvent

� Monitor

� Mutex

3.6 XML

Tam, gdzie zachodzi konieczność wymiany danych, tam programiści muszą ustalić jakiś sposób
ich przekazywania. Wyobraźmy sobie scenariusz, w którym aplikacja A powinna udostępniać
jakiś zbiór danych aplikacji B.
Najbardziej naiwnym podejściem byłoby dodanie do aplikacji B modułu pozwalającego na

wczytywanie danych bezpośrednio w formie, w jakiej składuje je aplikacja A. Takie rozwiązanie
nie sprawdza się jednak wtedy, gdy format danych aplikacji A ulegnie z jakiegoś powodu zmianie
(najczęściej rozszerzeniu).
Wydawałoby się więc, że rozwiązaniem byłoby zaprojektowanie jakiegoś formatu pliku po-

zwalającego na przekazywanie danych między aplikacjami. Takie rozwiązanie mogłoby być nie-
zależne od wewnętrznych formatów danych aplikacji A i B. Gdyby jednak przekazywać dane w
formie binarnej, to oczywiście w razie chęci rozszerzenia zakresu przekazywanych danych cała
zabawa zaczyna się od początku.
Dość nieoczekiwanie rozwiązaniem tego i podobnych problemów okazało się zaprojektowanie

standardu XML (ang eXtended Markup Language), czyli pewnego standardu budowania plików
tekstowych do przesyłania dowolnego typu danych. XML przyjął się głównie dzięki temu, że
uprościł przesyłanie danych w sieci, gdzie informacja w formie tekstowej okazuje się być często
jedynym wspólnym mianownikiem dla różnego rodzaju platform biorących udział w komunikacji.

3. PRZEGLĄD BIBLIOTEK PLATFORMY .NET 167

Sam w sobie XML jest rozszerzeniem idei HTML - o ile jednak HTML narzuca ściśle zbiór
możliwych nazw węzłów jest ściśle ustalony, o tyle XML pozwala ustalać je dowolnie. Tak jak pliki
HTML, tak i pliki XML mogą być budowane nawet w zwykłym edytorze tekstów. Przeglądarki
internetowe potrafią najczęściej przeglądać takie pliki (była już o tym mowa na stronie 126).
Biblioteka System.Xml pozwala na manipulowanie plikami XML na 3 sposoby (a właściwie

2 i pół, bo ostatni jest tylko rozszerzeniem przedostatniego):

� za pomocą obiektów System.Xml.XmlTextReader i System.Xml.XmlTextWriter

� za pomocą obiektów DOM (klasa System.Xml.XmlDocument)

� za pomocą obiektów z System.Xml.XPath

Pierwsze dwie możliwości pozwalają na programowe czytanie i tworzenie plików XML, zaś
obiekty XPath wspomagają tylko odczyt struktury XML.
Przygotujmy najpierw prosty plik z danymi:

<?xml version="1.0" encoding="windows-1250"?>
<ListaOsób nazwa="znajomi">
<Osoba>
<Imię>Jan</Imię>
<Nazwisko>Kowalski</Nazwisko>
<DataUr>1950-02-07</DataUr>
</Osoba>
<Osoba>
<Imię>Tomasz</Imię>
<Nazwisko>Malinowski</Nazwisko>
<DataUr>1976-10-04</DataUr>
</Osoba>
<Osoba>
<Imię>Adam</Imię>
<Nazwisko>Nowak</Nazwisko>
<DataUr>1984-02-17</DataUr>
</Osoba>
</ListaOsób>

XmlTextReader i XmlTextWriter

Z perspektywy obiektów XmlTextReader i XmlTextWriter pliki XML są strumieniami danych.
Odczyt zawartości pliku XML za pomocą obiektu XmlTextReader może wyglądać następująco:

/* Wiktor Zychla, 2003 */
using System;
using System.IO;
using System.Xml;

namespace Example
{
public class CMain
{
public static void Main()
{
FileStream fs = new FileStream("osoby.xml", FileMode.Open);
XmlTextReader xr = new XmlTextReader(fs);

while (xr.Read())
{
XmlNodeType t = xr.NodeType;
Console.WriteLine("Węzeł typu {0}", t);

if (t == XmlNodeType.Element)
{
Console.WriteLine("\t<{0}>", xr.Name);
if (xr.HasAttributes)
while (xr.MoveToNextAttribute())

168 ROZDZIAŁ C. ŚWIAT .NET

Console.WriteLine("\t\t[{0}]{1}", xr.Name, xr.Value);
}
if (t == XmlNodeType.Text)
Console.WriteLine("Tekst: {0}", xr.Value);

}

xr.Close();
}
}
}

C:\Example>example.exe
Węzeł typu XmlDeclaration
Węzeł typu Whitespace
Węzeł typu Element
<ListaOsób>
[nazwa]znajomi
Węzeł typu Whitespace
Węzeł typu Element
<Osoba>
Węzeł typu Whitespace
Węzeł typu Element
<Imię>
Węzeł typu Text
Tekst: Jan
Węzeł typu EndElement
Węzeł typu Whitespace
Węzeł typu Element
<Nazwisko>
Węzeł typu Text
Tekst: Kowalski
Węzeł typu EndElement
Węzeł typu Whitespace
Węzeł typu Element
<DataUr>
Węzeł typu Text
Tekst: 1950-02-07
...

Obiekty DOM

Obiekty DOM najpierw wczytują zawartość XMLa do pamięci, a następnie budują drzewo skła-
dniowe, które programista może przeglądać rekursywnie zgodnie z jego strukturą:

/* Wiktor Zychla, 2003 */
using System;
using System.IO;
using System.Xml;

namespace Example
{
public class CMain
{
public static void InfoOWezle(XmlNode node)
{
Console.WriteLine("Węzeł typu {0}", node.NodeType);

if (node.NodeType == XmlNodeType.Element)
{
Console.WriteLine("\t<{0}>", node.Name);
foreach (XmlAttribute a in node.Attributes)
Console.WriteLine("\t\t[{0}]{1}", a.Name, a.Value);

}
if (node.NodeType == XmlNodeType.Text)
Console.WriteLine("Tekst: {0}", node.Value);

foreach (XmlNode child in node.ChildNodes)
InfoOWezle(child);

}

3. PRZEGLĄD BIBLIOTEK PLATFORMY .NET 169

public static void Main()
{
XmlDocument xml = new XmlDocument();
xml.Load("osoby.xml");

InfoOWezle(xml);
}
}
}

C:\Example>example.exe
Węzeł typu Document
Węzeł typu XmlDeclaration
Węzeł typu Element
<ListaOsób>
[nazwa]znajomi
Węzeł typu Element
<Osoba>
Węzeł typu Element
<Imię>
Węzeł typu Text
Tekst: Jan
Węzeł typu Element
<Nazwisko>
Węzeł typu Text
Tekst: Kowalski
Węzeł typu Element
<DataUr>
Węzeł typu Text
Tekst: 1950-02-07
...

XPath

Jeszcze jeden krok dalej idą obiekty z klasy XPath, za pomocą których można łatwiej nawigować
po strukturze obiektu XmlDocument. Obiekt XPathNavigator umożliwia wybór konkretnego
węzła, zaś XPathNodeIterator pozwala na nawigację po sąsiednich węzłach.
Aby uprościć przykład, przesuńmy informacje o osobach z podwęzłów do atrybutów węzłów.

<?xml version="1.0" encoding="windows-1250"?>
<ListaOsób nazwa="znajomi">
<Osoba Imię="Jan" Nazwisko="Kowalski" DataUr="1950-02-07"/>
<Osoba Imię="Adam" Nazwisko="Nowak" DataUr="1992-12-23"/>
<Osoba Imię="Tomasz" Nazwisko="Malinowski" DataUr="1979-10-01"/>
</ListaOsób>

Dzięki możliwości nawigacji po strukturze można łatwiej odczytywać tylko interesujące obiek-
ty.

/* Wiktor Zychla, 2003 */
using System;
using System.IO;
using System.Xml;
using System.Xml.XPath;

namespace Example
{
public class CMain
{
public static void InfoOOsobie(XPathNavigator node)
{
Console.WriteLine("Osoba");

Console.WriteLine("Imię:\t\t" + node.GetAttribute("Imię", ""));
Console.WriteLine("Nazwisko:\t" + node.GetAttribute("Nazwisko", ""));
Console.WriteLine("Data ur.:\t" + node.GetAttribute("DataUr", ""));

170 ROZDZIAŁ C. ŚWIAT .NET

}

public static void Main()
{
XmlDocument xml = new XmlDocument();
xml.Load("osoby.xml");

XPathNavigator n = xml.CreateNavigator();
XPathNodeIterator i = n.Select("//ListaOsób/Osoba");

while (i.MoveNext())
InfoOOsobie(i.Current);

}
}
}

C:\Example>example
Osoba
Imię: Jan
Nazwisko: Kowalski
Data ur.: 1950-02-07
Osoba
Imię: Adam
Nazwisko: Nowak
Data ur.: 1992-12-23
Osoba
Imię: Tomasz
Nazwisko: Malinowski
Data ur.: 1979-10-01

Automatyczne tworzenie kodu do ładowania XML

Pliki XML przechowujące dane mają najczęściej prostą strukturę. Czy nie można wykorzystać
tego spostrzeżenia do zautomatyzowania tworzenia kodu parsującego plik XML?
Okazuje się, że jest to możliwe. W skład programów narzędziowych, udostępnianych z .NET

Framework SDK znajduje się niepozorne narzędzie o nazwie xsd.exe. To ono właśnie pozwala
znacznie uprościć proces tworzenia kodu dla danych XML.
Punktem wyjścia będą dane. Zaczynamy od zaprojektowania struktury o dowolnej pojem-

ności informacyjnej. Na przykład takiej (nazwimy te dane dane.xml):

<?xml version="1.0" encoding="windows-1250"?>
<ListaOsob xmlns=’MojeDane’>
<Osoba obyw_polskie="T">
<Imie>Jan</Imie>
<Nazwisko>Kowalski</Nazwisko>
<DataUr>1950-02-07</DataUr>
</Osoba>
<Osoba obyw_polskie="T">
<Imie>Tomasz</Imie>
<Nazwisko>Malinowski</Nazwisko>
<DataUr>1976-10-04</DataUr>
</Osoba>
<Osoba obyw_polskie="T">
<Imie>Adam</Imie>
<Nazwisko>Nowak</Nazwisko>
<DataUr>1984-02-17</DataUr>
</Osoba>
</ListaOsob>

Nowym elementem w tej definicji jest atrybut xmlns w głównym węźle danych, który wszyst-
kie dane przypisuje do przestrzeni nazw MojeDane. Będzie to ważne wtedy, kiedy będziemy
weryfikowali poprawność otrzymanych danych.
Następny krok polega na uruchomieniu xsd.exe i wskazaniu pliku XML jako parametru.

Efektem będzie plik XSD, zawierający w sobie informację o strukturze podanego pliku XML.

3. PRZEGLĄD BIBLIOTEK PLATFORMY .NET 171

<?xml version="1.0" encoding="utf-8"?>
<xs:schema id="ListaOsob" targetNamespace="MojeDane"
xmlns:mstns="MojeDane" xmlns="MojeDane" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"
attributeFormDefault="qualified" elementFormDefault="qualified">
<xs:element name="ListaOsob" msdata:IsDataSet="true" msdata:Locale="pl-PL">
<xs:complexType>
<xs:choice maxOccurs="unbounded">
<xs:element name="Osoba">
<xs:complexType>
<xs:sequence>
<xs:element name="Imie" type="xs:string" minOccurs="0" msdata:Ordinal="0" />
<xs:element name="Nazwisko" type="xs:string" minOccurs="0" msdata:Ordinal="1" />
<xs:element name="DataUr" type="xs:string" minOccurs="0" msdata:Ordinal="2" />
</xs:sequence>
<xs:attribute name="obyw_polskie" form="unqualified" type="xs:string" />
</xs:complexType>
</xs:element>
</xs:choice>
</xs:complexType>
</xs:element>
</xs:schema>

Tak przygotowany opis struktury danych może posłużyć do automatycznego wygenerowania
kodu, który będzie potrafił wczytywać pliki XML. Wystarczy ponownie uruchomić xsd.exe,
tym razem z przełącznikiem classes i jako parametr podać plik XSD. Efektem będzie plik
zawierający w sobie kod C#.

//--
// <autogenerated>
// This code was generated by a tool.
// Runtime Version: 1.0.3705.0
//
// Changes to this file may cause incorrect behavior and will be lost if
// the code is regenerated.
// </autogenerated>
//--

//
// This source code was auto-generated by xsd, Version=1.0.3705.0.
//
using System.Xml.Serialization;

/// <remarks/>
[System.Xml.Serialization.XmlTypeAttribute(Namespace="MojeDane")]
[System.Xml.Serialization.XmlRootAttribute("ListaOsob",

Namespace="MojeDane", IsNullable=false)]
public class ListaOsob {

/// <remarks/>
[System.Xml.Serialization.XmlElementAttribute("Osoba")]
public ListaOsobOsoba[] Items;

}

/// <remarks/>
[System.Xml.Serialization.XmlTypeAttribute(Namespace="MojeDane")]
public class ListaOsobOsoba {

/// <remarks/>
public string Imie;

/// <remarks/>
public string Nazwisko;

/// <remarks/>
public string DataUr;

/// <remarks/>
[System.Xml.Serialization.XmlAttributeAttribute(

172 ROZDZIAŁ C. ŚWIAT .NET

Form=System.Xml.Schema.XmlSchemaForm.Unqualified)]
public string obyw_polskie;

}

Jak widać kod ten zawiera klasy ListaOsob i ListaOsobOsoba, których składowe odpowia-
dają relacjom między odpowiednimi węzłami opisanymi w strukturze XML. Wystarczy jedynie
dopisać kod do deserializacji obiektu17:

using System;
using System.IO;
using System.Xml;
using System.Xml.Serialization;

public class CMain
{
public static void Main()
{
XmlSerializer xS = new XmlSerializer(typeof(ListaOsob));

FileStream fs = new FileStream("dane.xml", FileMode.Open);
ListaOsob ds = (ListaOsob)xS.Deserialize(fs);

foreach (ListaOsobOsoba o in ds.Items)
{
Console.WriteLine(String.Format("{0}, {1}, {2}",
o.Imie, o.Nazwisko, o.DataUr));
}
}
}

Całość można już skompilować i uruchomić:

C:\Example>csc.exe example.cs dane.cs
Microsoft (R) Visual C# .NET Compiler version 7.10.3052.4
for Microsoft (R) .NET Framework version 1.1.4322
Copyright (C) Microsoft Corporation 2001-2002. All rights reserved.

C:\Example>example
Jan, Kowalski, 1950-02-07
Tomasz, Malinowski, 1976-10-04
Adam, Nowak, 1984-02-17

Podsumujmy: dysponując danymi w postaci XML mogliśmy automatycznie wygenerować
opis struktury danych w postaci pliku XSD, zaś ten posłużył do automatycznego wygenerowania
kodu C#. Po dopisaniu kilku linijek kodu deserializującego obiekt, otrzymaliśmy możliwość
łatwego ładowania pliku XML i przenoszenia jego zawartości do programu.

Weryfikacja poprawności danych XML

Okazuje się, że schemat XSD nadaje się nie tylko do automatycznego generowania kodu odpo-
wiednich klas do przechowywania danych w programie, ale może być wykorzystany do dyna-
micznej walidacji poprawności danych XML.
Do tego celu wykorzystamy obiekt typu XmlValidatingReader. Podczas ładowania doku-

mentu sprawdza on poprawność danych, a ściśle - zgodność ze specyfikacją zawartą w strukturze
XSD. Ewentualne błędy lub ostrzeżenia są zgłaszane za pomocą zdarzenia ValidationEven-
tHandler.

17Mechanizm serializacji danych opisano dokładniej w rozdziale 3.9

3. PRZEGLĄD BIBLIOTEK PLATFORMY .NET 173

using System;
using System.IO;
using System.Xml;
using System.Xml.Schema;

namespace Example
{
public class CMain
{
public static void Main()
{
XmlDocument xml = new XmlDocument();

XmlTextReader tr = new XmlTextReader("dane.xml");
XmlValidatingReader reader = new XmlValidatingReader(tr);

reader.ValidationType = ValidationType.Schema;
reader.ValidationEventHandler += new ValidationEventHandler (ValidationHandler);

xml.Load(reader);

Console.WriteLine("Wczytano plik.");
}

public static void ValidationHandler(object sender, ValidationEventArgs args)
{
Console.WriteLine("*Błąd walidacji*");
Console.WriteLine("\tWaznosc: {0}", args.Severity);
Console.WriteLine("\tInfo: {0}", args.Message);

}
}
}

Efekt uruchomienia powyższego programu może być w pierwszej chwili dość zaskakujący:
każda linia pliku z danymi powoduje zgłoszenie ostrzeżenia o braku schematu do walidacji. Dzieje
się tak dlatego, że nigdzie nie skojarzyliśmy pliku z danymi (dane.xml) z plikiem zawierającym
schemat struktury (dane.xsd). Poza tym, że fizycznie mogą znajdować się w jednym folderze,
nic tych plików nie łączy.
Aby plik XML był walidowany przy użyciu schematu XSD, należy odpowiednią informację

zaszyć we wnętrzu pliku XML.

<?xml version="1.0" encoding="windows-1250"?>
<ListaOsob xmlns=’MojeDane’

xmlns:MojWalidator=’http://www.w3.org/2001/XMLSchema-instance’
MojWalidator:schemaLocation=’MojeDane dane.xsd’>

...
</ListaOsob>

Tak osygnowany plik XML będzie już poprawnie walidowany i każde odstępstwo od schematu
będzie wyłapywane jako błąd.
Dokładne zapoznanie się z możliwościami schematów XSD umożliwia bardzo szczegółowe

zapanowanie nad regułami walidacji dokumentów XML. Jest to bardzo przydatne w sytuacji,
kiedy producent danych nie jest znany, nie jest wiarygodny bądź po prostu struktura danych
ulega modyfikacji w czasie życia aplikacji.

3.7 Komunikacja między procesami

Biblioteka System.Net udostępnia komplet funkcji wspomagających komunikację za pomocą me-
chanizmów sieciowych. Programista znajdzie tu nie tylko obiektowe interfejsy dla gniazd, ale
również wyspecjalizowane funkcje do bezpośredniej komunikacji z wybranymi usługami siecio-
wymi.

174 ROZDZIAŁ C. ŚWIAT .NET

/* Wiktor Zychla, 2003 */
using System;
using System.IO
using System.Net;

namespace SimpleHttpReader
{
public class CMain
{
public static void Main()
{
Uri uri = new Uri("http://www.ii.uni.wroc.pl");
WebRequest req = WebRequest.Create(uri);
WebResponse resp = req.GetResponse();
Stream stream = resp.GetResponseStream();
StreamReader sr = new StreamReader(stream);

string s = sr.ReadToEnd();
Console.Write(s);
}
}
}

Aby przekonać się jak łatwo oprogramować gniazda, napiszmy .NETowe odpowiedniki ser-
wera i klienta z rozdziału 4.
Kod serwera:

/* Wiktor Zychla, 2003 */
// prosty moduł serwera
// użycie: server.exe
using System;
using System.IO;
using System.Net;
using System.Net.Sockets;
using System.Threading;

namespace TcpSever
{
public class CClientThread
{
const string serverMsg = "Tu serwer. Odpowiadam.";
Socket clientSocket;

public CClientThread(Socket clientSocket)
{
this.clientSocket = clientSocket;
}

public void ClientThreadFunc()
{
NetworkStream nS = new NetworkStream(clientSocket);
StreamReader sR = new StreamReader(nS);
StreamWriter sW = new StreamWriter(nS);

while(true)
{
// odbierz wiadomość
string clientMessage = sR.ReadLine();
if (clientMessage != null)
Console.WriteLine("Otrzymano wiadomość: {0}", clientMessage);
else
break;

// odeślij odpowiedź
sW.WriteLine(serverMsg);
sW.Flush();
}

sR.Close();

3. PRZEGLĄD BIBLIOTEK PLATFORMY .NET 175

sW.Close();
}
}

public class CServer
{
public const int DEFAULT_PORT = 5000;

public static void Main()
{
TcpListener tcpListener = new TcpListener(DEFAULT_PORT);
tcpListener.Start() ;

Console.WriteLine("Serwer nasłuchuje.");
Console.WriteLine("Adres: {0}, port: {1}", Dns.GetHostName(), DEFAULT_PORT);

while (true)
{
Thread.Sleep(1);
if (tcpListener.Pending())
{
Socket socketForClient = tcpListener.AcceptSocket();
string clientName =
String.Format("{0} [{1}]",
Dns.GetHostByAddress(((IPEndPoint)socketForClient.RemoteEndPoint).Address).HostName,
((IPEndPoint)socketForClient.RemoteEndPoint).Address.ToString()

);
Console.WriteLine("Zaakceptowano połączenie: serwer {0}", clientName);

CClientThread ct = new CClientThread(socketForClient);
Thread t = new Thread(new ThreadStart(ct.ClientThreadFunc));
t.Start();
}
}
}
}
}

Kod klienta:

/* Wiktor Zychla, 2003 */
// prosty moduł klienta
// użycie: klient.exe -s:IP
using System;
using System.IO;
using System.Net;
using System.Net.Sockets;
using System.Threading;

namespace TcpClientNS
{
public class CClient
{
const int DEFAULT_COUNT=5;
const int DEFAULT_PORT =5000;
const string DEFAULT_MESSAGE="Tu klient. Witam.";

static string szServer;

static void sposob_uzycia()
{
Console.WriteLine("client.exe -s:IP");
Environment.Exit(1);
}

static void WalidacjaLiniiPolecen(string[] args)
{
int i;

if (args.Length < 1)

176 ROZDZIAŁ C. ŚWIAT .NET

{
sposob_uzycia();
}

for (i=0; i<args.Length; i++)
{
if (args[i][0] == ’-’)
{
switch(args[i][1].ToString().ToLower())
{
case "s" : if (args[i].Length > 3)

{
szServer = args[i].Substring(3);
};
break;

default : sposob_uzycia(); break;
}
}
}
}

public static void Main(string[] args)
{
WalidacjaLiniiPolecen(args);

TcpClient socketForServer = new TcpClient(szServer, DEFAULT_PORT);

NetworkStream nS = socketForServer.GetStream();
StreamWriter sW = new StreamWriter(nS);
StreamReader sR = new StreamReader(nS);

for (int i=0; i<DEFAULT_COUNT; i++)
{
sW.WriteLine(DEFAULT_MESSAGE);
sW.Flush();
string message = sR.ReadLine();
if (message != null)
Console.WriteLine("Serwer odpowiada: {0}", message);

}

sR.Close();
sW.Close();
}
}
}

Jak widać, opakowanie gniazd w obiektowe klasy TcpListener i TcpClient (przeznaczone do
komunikacji przez TCP/IP), znacznie upraszcza kod odpowiedzialny za wysyłanie i odbieranie
danych.

3.8 Wyrażenia regularne

Biblioteki do obsługi wyrażeń regularnych są standardowo dołączane do współczesnych języków
programowania. Szczycą się nimi zwłaszcza języki skryptowe, ale jak zobaczymy w kolejnych
przykładach, wszystko zależy od dobrej biblioteki.

Czym są wyrażenia regularne

Pojęcie ”wyrażenia regularne” związane jest z przetwarzaniem tekstu. Wyrażenia regularne two-
rzą pewien szczególny język, niezależny od żadnego języka programowania, za pomocą którego
definiujemy wzorce, wykorzystywane następnie do wyszukiwania, usuwania, czy zamieniania
fragmentów tekstu. Wyrażenia regularne znakomicie upraszają proces parsowania na przykład
stron HTML, plików XML, logów systemowych itd.

3. PRZEGLĄD BIBLIOTEK PLATFORMY .NET 177

Język wyrażeń regularnych

Poniższa tabela podsumowuje wybrane zasady budowania wyrażeń regularnych.

Wyrażenie Opis
. Każdy znak za wyjątkiem \n
[znaki] Pojedyńcze znaki z listy
[znakA-znakB] Znaki z podanego zakresu
\ w Znak tworzący słowo, równoważnie [a-zA-Z 0-9]
\ W Znak nie tworzący słowa
\ s Znak biały, równoważnie [\n\r\t\f]
\ S Znak inny niż biały
\ d Cyfra, równoważnie [0-9]
\ D Nie-cyfra
\ b Na granicy słowa
\ B Nie na granicy słowa
* Zero lub więcej
+ Jeden lub więcej
? Zero lub jeden
{n} Dokładnie n-razy
{n, } Co najmniej n-razy
{n,m} Co najmniej n ale nie więcej niż m
() Podwyrażenie
(?<nazwa>) Podwyrażenie jako nazwa
| Alternatywa

Tak naprawdę zaprojektowanie odpowiedniego często nie jest łatwe i wymaga po prostu
trochę wprawy.

Dzielenie tekstu

Pierwszym przykładem zastosowania wyrażeń regularnych jest dzielenie tekstu. Tekst jest dzie-
lony w miejscach, które dopasowują się do zadanego wyrażenia regularnego.

/* Wiktor Zychla, 2003 */
using System;
using System.Text;
using System.Text.RegularExpressions;

class CExample
{
public static void Main()
{
string sSplit = "Ala ma kota a kot ma Ale";
Regex r = new Regex("[]+");

foreach(string s in r.Split(sSplit))
Console.Write(s+",");

}
}

C:\example>example
Ala,ma,kota,a,kot,ma,Ale,

178 ROZDZIAŁ C. ŚWIAT .NET

Wyszukiwanie wzorca

Wyszukiwanie zadanego wyrażeniem regularnym wzorca w zadanym tekście możliwe jest dzięki
obiektom Match i MatchCollection.

/* Wiktor Zychla, 2003 */
using System;
using System.Text;
using System.Text.RegularExpressions;

class CExample
{
public static void Main()
{
string sFind = "Dobrze jest dojsc do domu radosnie i wydobrzec do rana";
Regex r = new Regex("(do)|(a)");

for (Match m = r.Match(sFind); m.Success; m = m.NextMatch())
Console.Write("’{0}’ na pozycji {1}\n", m.Value, m.Index);

}
}

C:\example>example
’do’ na pozycji 12
’do’ na pozycji 18
’do’ na pozycji 21
’a’ na pozycji 27
’do’ na pozycji 28
’do’ na pozycji 39
’do’ na pozycji 47
’a’ na pozycji 51
’a’ na pozycji 53

Edycja, usuwanie tekstu

Dzięki metodzie Replace wyrażeń regularnych można użyć do zastępowania tekstu.

/* Wiktor Zychla, 2003 */
using System;
using System.Text;
using System.Text.RegularExpressions;

class CExample
{
public static void Main()
{
string sFind = "Dobrze jest dojsc do domu radosnie i wydobrzec do rana";
Regex r = new Regex("(do)|(a)");

Console.Write(r.Replace(sFind, ""));
}
}

C:\example>example
Dobrze jest jsc mu rsnie i wybrzec rn

3.9 Serializacja

O serializacji mówimy wtedy, gdy instancja obiektu jest składowana na nośniku zewnętrznym.
Mechanizm ten wykorzystywany jest również do transferu zawartości obiektów między odległymi
środowiskami. Oczywiście łatwo wyobrazić sobie mechanizm zapisu zawartości obiektu przygo-
towany przez programistę, ale serializacja jest mechanizmem niezależnym od postaci obiektu i
od tego, czy programista przewidział możliwość zapisu zawartości obiektu czy nie.

3. PRZEGLĄD BIBLIOTEK PLATFORMY .NET 179

Serializacja binarna

Aby zawartość obiektu mogła być składowana w postaci binarnej, klasa musi spełniać kilka
warunków:

� Musi być oznakowana artybutem Serializable

� Musi implementować interfejs ISerializable

� Musi mieć specjalny konstruktor do deserializacji

/* Wiktor Zychla, 2003 */
using System;
using System.IO;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Formatters.Binary;
using System.Runtime.Serialization.Formatters.Soap;

namespace NExample
{
[Serializable()]
public class CObiekt : ISerializable
{
int v;
DateTime d;
string s;

public CObiekt(int v, DateTime d, string s)
{
this.v = v; this.d = d; this.s = s;
}

// konstruktor do deserializacji
public CObiekt(SerializationInfo info, StreamingContext context)
{
v = (int)info.GetValue("v", typeof(int));
d = (DateTime)info.GetValue("d", typeof(DateTime));
s = (string)info.GetValue("s", typeof(string));
}

// serializacja
public void GetObjectData(SerializationInfo info,

StreamingContext context)
{
info.AddValue("v", v);
info.AddValue("d", d);
info.AddValue("s", s);
}

public override string ToString()
{
return String.Format("{0}, {1:d}, {2}", v, d, s);
}
}

public class CMain
{
static void SerializujBinarnie()
{
Console.WriteLine("Serializacja binarna");

CObiekt o = new CObiekt(5, DateTime.Now, "Ala ma kota");
Console.WriteLine(o);

// serializuj
Stream s = File.Create("binary.dat");
BinaryFormatter b = new BinaryFormatter();
b.Serialize(s, o);

180 ROZDZIAŁ C. ŚWIAT .NET

s.Close();

// deserializuj
Stream t = File.Open("binary.dat", FileMode.Open);
BinaryFormatter c = new BinaryFormatter();
CObiekt p = (CObiekt)c.Deserialize(t);
t.Close();

Console.WriteLine("Po deserializacji: " + p.ToString());
}

public static void Main()
{
SerializujBinarnie();
}
}
}

c:\Example>example.exe
Serializacja binarna
5, 2003-04-24, Ala ma kota
Po deserializacji: 5, 2003-04-24, Ala ma kota

Serializacja SOAP

Serializacja binarna ma jak widać wady (wymaga specjalnie przygotowanej klasy), ma również
zalety (jest szybka, plik wynikowy zajmuje niewiele miejsca).
Alternatywne podejście możliwe jest dzięki mechanizmom SOAP (Simple Object Access Pro-

tocol). SOAP jest protokołem do wymiany danych, opartym o nośnik XML, niezależny od sys-
temu operacyjnego. Serializacja SOAP jest wolniejsza niż serializacja binarna, wynik zajmuje
więcej miejsca (w końcu to plik XML), jednak w ten sposób można serializować dowolne obiekty.

/* Wiktor Zychla, 2003 */
using System;
using System.IO;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Formatters.Binary;
using System.Runtime.Serialization.Formatters.Soap;

namespace NExample
{
[Serializable()]
public class CObiekt
{
int v;
DateTime d;
string s;

public CObiekt(int v, DateTime d, string s)
{
this.v = v; this.d = d; this.s = s;
}

public override string ToString()
{
return String.Format("{0}, {1:d}, {2}", v, d, s);
}
}

public class CMain
{
static void SerializujSOAP()
{
Console.WriteLine("Serializacja SOAP");

CObiekt o = new CObiekt(5, DateTime.Now, "Ala ma kota");
Console.WriteLine(o);

3. PRZEGLĄD BIBLIOTEK PLATFORMY .NET 181

// serializuj
Stream s = File.Create("binary.soap");
SoapFormatter b = new SoapFormatter();
b.Serialize(s, o);
s.Close();

// deserializuj
Stream t = File.Open("binary.soap", FileMode.Open);
SoapFormatter c = new SoapFormatter();
CObiekt p = (CObiekt)c.Deserialize(t);
t.Close();

Console.WriteLine("Po deserializacji: " + p.ToString());

}

public static void Main()
{
SerializujSOAP();
}
}
}

c:\Example>example.exe
Serializacja binarna
5, 2003-04-24, Ala ma kota
Po deserializacji: 5, 2003-04-24, Ala ma kota

3.10 Wołanie kodu niezarządzanego

Współpraca z już istniejącymi bibliotekami jest bardzo ważnym elementem platformy .NET.
Programista może nie tylko wołać funkcje z natywnych bibliotek, ale również korzystać z biblio-
tek obiektowych COM.

/* Wiktor Zychla, 2003 */
using System;
using System.Runtime.InteropServices;

namespace NExample
{
public class CMain
{
[DllImport("user32.dll", EntryPoint="MessageBox")]
public static extern int MsgBox(int hWnd, String text,

String caption, uint type);

public static void Main()
{
MsgBox(0, "Witam", "", 0);
}
}
}

Wygląda to dość prosto, jednak w rzeczywistości wymaga starannego przekazania parame-
trów do funkcji napisanej najczęściej w C, a następnie odebrania wyników. Każdy typ w świecie
.NET ma domyślnie swojego odpowiednika w kodzie niezarządzanym, który będzie używany
w komunikacji między oboma światami. Na przykład domyślny sposób przekazywana zmiennej
zadeklarowanej jako string to LPSTR (wskaźnik na tablicę znaków). Programista może dość
szczegółowo zapanować nad domyślnymi konwencjami dzięki atrybutowi MarshalAs.

/* Wiktor Zychla, 2003 */
using System;
using System.Runtime.InteropServices;

182 ROZDZIAŁ C. ŚWIAT .NET

namespace NExample
{
public class CMain
{
[DllImport("user32.dll", EntryPoint="MessageBox")]
public static extern int MsgBox(int hWnd,

[MarshalAs(UnmanagedType.LPStr)]
String text,

String caption, uint type);

public static void Main()
{
MsgBox(0, "Witam", "", 0);
}
}
}

Aby ustalić w ten sposób typ wartości zwracanej z funkcji należałoby napisać:

...
[DllImport("user32.dll", EntryPoint="MessageBox")]
[return: MarshalAs(UnmanagedType.I4)]
public static extern int MsgBox(int hWnd, ...
...

Możliwość tak dokładnego wpływania na postać parametrów jest szczególnie przydatna w ty-
powym przypadku przekazywania jakiejś struktury do jakiejś funkcji, na przykład z Win32API.
Przykładowa struktura z Win32API

typedef struct tagLOGFONT
{
LONG lfHeight;
LONG lfWidth;
LONG lfEscapement;
LONG lfOrientation;
LONG lfWeight;
BYTE lfItalic;
BYTE lfUnderline;
BYTE lfStrikeOut;
BYTE lfCharSet;
BYTE lfOutPrecision;
BYTE lfClipPrecision;
BYTE lfQuality;
BYTE lfPitchAndFamily;
TCHAR lfFaceName[LF_FACESIZE];

} LOGFONT;

powinna być przetłumaczona tak, aby zachować kolejność ułożenia pól oraz ograniczoną
długość napisu.

[StructLayout(LayoutKind.Sequential)]
public class LOGFONT
{
public const int LF_FACESIZE = 32;
public int lfHeight;
public int lfWidth;
public int lfEscapement;
public int lfOrientation;
public int lfWeight;
public byte lfItalic;
public byte lfUnderline;
public byte lfStrikeOut;
public byte lfCharSet;
public byte lfOutPrecision;
public byte lfClipPrecision;
public byte lfQuality;
public byte lfPitchAndFamily;

3. PRZEGLĄD BIBLIOTEK PLATFORMY .NET 183

[MarshalAs(UnmanagedType.ByValTStr, SizeConst=LF_FACESIZE)]
public string lfFaceName;

}

Czasami nawet konieczne jest dokładne wyznaczenie położenia wszystkich pól struktury.

[StructLayout(LayoutKind.Explicit, Size=16, CharSet=CharSet.Ansi)]
public class MySystemTime
{
[FieldOffset(0)]public ushort wYear;
[FieldOffset(2)]public ushort wMonth;
[FieldOffset(4)]public ushort wDayOfWeek;
[FieldOffset(6)]public ushort wDay;
[FieldOffset(8)]public ushort wHour;
[FieldOffset(10)]public ushort wMinute;
[FieldOffset(12)]public ushort wSecond;
[FieldOffset(14)]public ushort wMilliseconds;

}

Funkcje zwrotne

Funkcje Win32Api, które zwracają więcej niż jeden element, najczęściej korzystają z mechani-
zmu funkcji zwrotnych. Programista przekazuje wskaźnik na funkcję zwrotną, która jest wywo-
ływana dla każdego elementu na liście wyników (tak działa na przykład EnumWindows, czy
EnumDesktops).

BOOL EnumDesktops {
HWINSTA hwinsta,
DESKTOPENUMPROC lpEnumFunc,
LPARAM lParam
}

Parametr typu HWINSTA można przekazać jako IntPtr, zaś LPARAM jako int. Wskaźnik na
funkcję

BOOL CALLBACK EnumDesktopProc (
LPTSTR lpszDesktop, LPARAM lParam
)

należy zamienić na delegata

delegate bool EnumDesktopProc(
[MarshalAs(UnmanagedType.LPTStr)]
string desktopName, int lParam
)

Definicja funkcji EnumDesktops będzie więc wyglądać tak:

[DllImport("user32.dll"), CharSet = CharSet.Auto)]
static extern bool EnumDesktops (
IntPtr windowStation,
EnumDesktopProc callback,
int lParam
)

3.11 Odśmiecacz

Mechanizm odśmiecania funkcjonuje samodzielnie, bez kontroli programisty. W szczególnych
sytuacjach odśmiecanie może być wymuszone przez wywołanie metody obiektu odśmiecacza:

GC.Collect();

184 ROZDZIAŁ C. ŚWIAT .NET

Należy pamiętać o tym, że destruktory obiektów są wykonywane w osobnym wątku, dlatego
zakończenie metody Collect nie oznacza, że wszystkie destruktory są już zakończone. Można
oczywiście wymusić oczekiwanie na zakończenie się wszystkich czekających destruktorów:

GC.Collect();
GC.WaitForPendingFinalizers();

Działanie odśmiecacza jest dość proste. W momencie, w którym aplikacji brakuje pamięci,
odśmiecacz rozpoczyna przeglądanie wszystkich referencji od zmiennych statycznych, global-
nych i lokalnych, oznaczając kolejne obiekty jako używane. Wszystkie obiekty, które nie zostaną
oznaczone, mogą zostać usunięte, bowiem żaden aktualnie aktywny obiekt z nich nie korzysta.
Taki sposób postępowania, mimo że poprawny, byłby dość powolny. Dlatego w rzeczywistości

wykorzystuje się dodatkowo pojęcie tzw. generacji. Chodzi o to, że obiekt tuż po wykreowaniu
należy do zerowej generacji obiektów, czyli obiektów ”najmłodszych”. Po ”przeżyciu” odśmieca-
nia, obiektom inkrementuje się numery generacji. Kiedy odśmiecacz zabiera się za przeglądanie
obiektów, zaczyna od obiektów najmłodszych, dopiero jeśli okaże się, że pamięci nadal jest zbyt
mało, usuwa obiekty coraz starsze.
Idea ta ma proste uzasadnienie - obiektami najmłodszymi najcześciej będą na przykład

zmienne lokalne funkcji czy bloków kodu. Te zmienne powinny być usuwane najszybciej. Zmienne
statyczne, kilkukrotnie wykorzystane w czasie działania programu, będą usuwane najpóźniej.

using System;

public class CObiekt
{
private string name;
public CObiekt(string name) { this.name = name; }
override public string ToString() { return name; }

}

namespace Example
{
public class CMainForm
{
const int IL = 3;

public static void Main()
{
Console.WriteLine("Maksymalna generacja odsmiecacza " + GC.MaxGeneration);

CObiekt[] t = new CObiekt[IL];

Console.WriteLine("Tworzenie obiektow.");
for (int i=0; i<IL; i++)
{
t[i] = new CObiekt("obiekt " + i);
Console.WriteLine("{0}, generacja {1}", t[i], GC.GetGeneration(t[i]));
}

// spróbuj usuwać nieużywane obiekty
GC.Collect();
GC.WaitForPendingFinalizers();

Console.WriteLine("Usuwanie obiektow.");
for (int i=0; i<IL; i++)
{
Console.WriteLine("{0}, generacja {1}", t[i], GC.GetGeneration(t[i]));
t[i] = null;

GC.Collect();
GC.WaitForPendingFinalizers();
}
}
}

3. PRZEGLĄD BIBLIOTEK PLATFORMY .NET 185

}

C:\Example>example
Maksymalna generacja odsmiecacza 2
Tworzenie obiektow.
obiekt 0, generacja 0
obiekt 1, generacja 0
obiekt 2, generacja 0
Usuwanie obiektow.
obiekt 0, generacja 1
obiekt 1, generacja 2
obiekt 2, generacja 2

3.12 DirectX.NET

Czym jest DirectX.NET

Pojawienie się w 1995 pierwszej wersji DirectX, przeznaczonej dla nowo zaprojektowanego sys-
temu operacyjnego Windows 95, oznaczało ostateczne otwarcie się świata Windows na zaawan-
sowane aplikacje multimedialne. Celem projektantów DirectX było stworzenie jednolitego in-
terfejsu programowania, który pozwoliłby programistom tworzyć kod dający się uruchomić na
dowolnie skonfigurowanym PC-cie.
Niemal od samego początku DirectX był przez programistów mocno krytykowany. Krytyka

była szczególnie zjadliwa, gdy porównywano DirectX do OpenGL - mimo dość dużych różnic
technologicznych, programistom trudno było wytłumaczyć dlaczego kod w DirectX musi być tak
brzydki i zagmatwany w porównaniu z analogicznym kodem w OpenGL.
Pojawienie się platformy .NET i języka C# dawało nadzieję na zmianę tej sytuacji. Jednak

okazało się, że programiści owszem, mogą korzystać z DirectX, ale wymaga to warstwy pośred-
niej między DirectX 8 zbudowanym w modelu COM, a kodem zarządzanym. Dopiero pojawienie
się DirectX 9 oznacza prawdziwy przełom. Zgodnie z obietnicami, Microsoft dołączył do najnow-
szej wersji DirectX 9.0 zestaw bibliotek, umożliwiających korzystanie z DirectX bezpośrednio z
poziomu kodu zarządzanego. Biblioteki te nazwano DirectX.NET.
Możliwość bezpośredniego operowania obiektami DirectX z poziomu kodu zarządzanego ma

mnóstwo zalet, m.in.:

� kod w pełni zarządzany jest znacznie prostszy, interfejs DirectX.NET jest bardzo intuicyjny

� kod zarządzany oznacza brak zmartwień związanych z obsługą błędów i zarządzaniem
pamięcią

� brak pośredniej warstwy między COM a kodem zarządzanym oznacza większą szybkość
kodu DirectX

DirectX.NET jest nareszcie porządnym interfejsem zorientowanym obiektowo. Do tej pory
interfejs DirectX był przedziwną mieszaniną funkcji globalnych, makr i klas, a wszystko to
podlane było ciężkostrawnym sosem modelu COM.
Dość już magicznych funkcji do operacji na obiektach. Teraz zamiast:

D3DXMATRIX turnLeft;
D3DXMatrixRotationY(&turnLeft, -10.0);

napiszemy:

Matrix turnLeft = Matrix.RotationY(-10.0f);

Dość już magicznych stałych, teraz zamiast:

186 ROZDZIAŁ C. ŚWIAT .NET

_device->SetRenderState(D3DRS_LIGHTING, true);

napiszemy:

_device.RenderState.Lighting = true;

Dość ciągłych HRESULTów i makr SUCCEEDED/FAILED. Teraz błędy zgłaszane są za pomo-
cą wyjątków. Dość tysięcy typów danych, jak choćby D3DCOLOR - biblioteki DirectX.NET są
zintegrowane z biblioteką standardową .NET, a to oznacza że teraz użyjmy po prostu Sys-
tem.Drawing.Color.
A jak jest z wydajnością? Zaskakująco dobrze - zarządzany DirectX jest niewiele lub pra-

wie wcale wolniejszy od niezarządzanego. Decydujące znaczenie dla prędkości działania kodu
ma najczęściej i tak wydajność akceleratora, zaś prędkość wykonywania się samego kodu jest
porównywalna.

Struktura DirectX.NET

Zarządzane biblioteki DirectX są wspólne dla wszystkich języków platformy .NET. Należy pa-
miętać o tym, że tylko w C++ można tworzyć kod DirectX ”po staremu”, czyli nie korzystając
z obiektowych bibliotek zarządzanych.
DirectX.NET składa się z następujących komponentów:

Direct3D - interfejs do programowania efektów 3D

DirectDraw - niskopoziomowy dostęp do grafiki 2D

DirectInput - obsługa różnych urządzeń wejściowych, łącznie z pełnym wsparciem technologii
force-feedback.

DirectPlay - wsparcie dla gier sieciowych gier wieloosobowych

DirectSound - tworzenie i przechwytywanie dźwięki

Audio Video Playback - kontrola nad odtwarzaniem zasobów audio i video

Instalacja DirectX.NET

Biblioteki DirectX.NET instalowane są automatycznie podczas instalacji DirectX 9. Ich obecność
można zbadać zaglądając do katalogu Microsoft.NET w katalogu systemowymWindows. Oprócz
katalogu Framework, gdzie domyślnie instaluje się .NET Framework, powinien być tam również
katalog Managed DirectX. Programiści powinni pamiętać o wybraniu odpowiedniej wersji Di-
rectX 9: oprócz wersji standardowej, w DirectX 9 SDK znajduje się specjalna wersja umożliwia-
jąca również śledzenie kodu DirectX z poziomu środowiska (po zainstalowaniu SDK obie wersje
znajdują się odpowiednio w ./DX9SDK/SDKDev/Retail lub ./DX9SDK/SDKDev/Debug).
Natychmiast po zainstalowaniu DirectX9 SDK można zajrzeć do katalogu ./Samples, gdzie

znajdują się przykładowe programy w C++, C# i VB.NET. Spora część programów pojawia się
we wszystkich tych językach, można więc porównać nie tylko przejrzystość kodu, ale i prędkość
działania. Przykładów jest dużo i są naprawdę interesujące.
Programy DirectX.NET mogą być kompilowane zarówno z poziomu środowiska Visual Studio

.NET, bezpośrednio z linii poleceń ale także z poziomu na przykład Sharp Developa. Dla celów
kompilacji z linii poleceń przygotujmy prosty skrypt (nazwijmy go compile.bat):

csc.exe "/lib:C:\WINNT\Microsoft.NET\Managed DirectX\v4.09.00.0900"
/r:Microsoft.DirectX.dll %1

3. PRZEGLĄD BIBLIOTEK PLATFORMY .NET 187

Rysunek C.5: Jeden z przykładowych programów z DirectX 9 SDK

188 ROZDZIAŁ C. ŚWIAT .NET

Skrypt ten będziemy wołać z parametrem zawierającym nazwę kompilowanego programu.
Jeśli kompilowany program będzie wymagał referencji do większej ilości bibliotek, wystarczy
dodać je jako kolejne parametry.

Pierwszy program w DirectX.NET

Pierwszy i najprostszy programem jaki napiszemy będzie tworzył powierzchnię DirectDraw i
kopiował jej zawartość do okna. Tak naprawdę będzie nam potrzebna jedynie instancja obiektu
urządzenia DirectDraw oraz obiektu opisującego powierzchnię DirectDraw.

private Device draw = null;
private Surface primary = null;

Oba obiekty są tworzone i kojarzone - urządzenie z oknem, a powierzchnia z urządzeniem:

draw = new Device();
draw.SetCooperativeLevel(this, CooperativeLevelFlags.Normal);
. . .
SurfaceDescription description = new SurfaceDescription();
description.SurfaceCaps.PrimarySurface = true;
primary = new Surface(description, draw);

Ponieważ powierzchnia DirectDraw jest obiektem, wszelkie operacje takie jak rysowanie,
blokowanie czy zamiana stron są po prostu metodami odpowiedniego obiektu. Prosty kształt
narysujemy więc za pomocą metody:

primary.DrawCircle(....);

a tekst za pomocą metody:

primary.DrawText(...);

Interfejs obiektowy sprawdza się zwłaszcza w przypadku środowisk z autouzupełnianiem
kodu - tam programista nie musi nawet zaglądać do dokumentacji biblioteki, ponieważ wszystkie
metody obiektu pojawią się natychmiast po wpisaniu kropki po nazwie obiektu.
Poniższy przykład można bez trudu rozbudować o prostą animację, dodać podwójne bufo-

rowanie oraz wyświetlanie obrazu na pełnym ekranie. Proponuję potraktować to jako ćwiczenie,
zerkając w razie potrzeby do przykładów z SDK.

/* Wiktor Zychla, 2003 */
using System;
using System.Drawing;
using System.ComponentModel;
using System.Windows.Forms;
using Microsoft.DirectX;
using Microsoft.DirectX.DirectDraw;

namespace DirectXTutorial
{
public class DirectDrawForm : System.Windows.Forms.Form
{
private Device draw = null;
private Surface primary = null;
private Clipper clip = null;

static void Main()
{
Application.Run(new DirectDrawForm());
}

public DirectDrawForm()

3. PRZEGLĄD BIBLIOTEK PLATFORMY .NET 189

{
this.ClientSize = new System.Drawing.Size(292, 266);
this.Name = "DirectDraw w oknie";
this.Text = "DirectDraw w oknie";
this.Resize += new System.EventHandler(this.DDForm_SizeChanged);
this.SizeChanged += new System.EventHandler(this.DDForm_SizeChanged);
this.Paint +=

new System.Windows.Forms.PaintEventHandler(this.DDForm_Paint);

draw = new Device();
draw.SetCooperativeLevel(this, CooperativeLevelFlags.Normal);
CreateSurfaces();

}

private void DDForm_Paint(object sender, System.Windows.Forms.PaintEventArgs e)
{
Draw();

}

private void DDForm_SizeChanged(object sender, System.EventArgs e)
{
Draw();

}

private void Draw()
{
if (primary == null) return;
if (WindowState == FormWindowState.Minimized) return;

Point p = this.PointToScreen(new Point(0, 0));
primary.ColorFill(Color.Blue);
primary.ForeColor = Color.White;
primary.DrawText(p.X, p.Y, "Pierwszy program w DirectX.NET", false);

}

private void CreateSurfaces()
{
SurfaceDescription description = new SurfaceDescription();

description.SurfaceCaps.PrimarySurface = true;
primary = new Surface(description, draw);
clip = new Clipper(draw);
clip.Window = this;
primary.Clipper = clip;

}
}

}

Direct3D

Direct3D jest najciekawszą częścią DirectX.NET. W każdej kolejnej wersji DirectX programiści
dostają do rąk coraz potężniejsze narzędzia do tworzenia grafiki 3D. W wersji 9 możliwości są
przeogromne: od tworzenia prostych obiektów, modelowania światła, tekstur, przez manipulację
siatkami obiektów (vertex shading) aż do zaawansowanego nakładania tekstur (pixel shading).
Aby przekonać się jak sprawuje się obiektowy interfejs Direct3D, napiszemy prosty przykład.

Z pliku załadujemy opis siatki obiektu 3d (mesh), dodamy 2 światła, kamerę i na koniec ożywimy
całość dodając jakiś ruch.

/* Wiktor Zychla, 2003 */
using System;
using System.Drawing;
using System.Windows.Forms;
using Microsoft.DirectX;
using Microsoft.DirectX.Direct3D;

namespace DirectXTutorial
{

190 ROZDZIAŁ C. ŚWIAT .NET

Rysunek C.6: Trójwymiarowy świat Direct3D

public class DirectXForm : Form
{
Device device;
Mesh mesh;
int meshParts = 0;
Material material;
float rotationAngle = 0;
PresentParameters pp;

public DirectXForm()
{
this.Size = new Size(300, 300);
this.Text = "DirectX.NET";
}

bool InitializeGraphics()
{
try
{
pp = new PresentParameters();
pp.Windowed = true;
pp.SwapEffect = SwapEffect.Discard;
pp.EnableAutoDepthStencil = true;
pp.AutoDepthStencilFormat = DepthFormat.D16;

device = new Device(0, DeviceType.Hardware, this,
CreateFlags.SoftwareVertexProcessing, pp);

device.DeviceReset += new EventHandler(OnDeviceReset);

InitializeD3DObjects();

return true;
}
catch (DirectXException)
{
return false;
}
}

void InitializeD3DObjects()

3. PRZEGLĄD BIBLIOTEK PLATFORMY .NET 191

{
CreateMesh();
CreateMaterials();
CreateLights();
InitializeView();
}

void OnDeviceReset(object o, EventArgs e)
{
InitializeD3DObjects();
}

protected override void OnKeyPress(System.Windows.Forms.KeyPressEventArgs e)
{
if ((int)(byte)e.KeyChar == (int)Keys.Escape)
this.Close(); // zakończ

}

void CreateMesh()
{
//mesh = Mesh.Teapot(device);
//meshParts = 1;

ExtendedMaterial[] m = null;

mesh = Mesh.FromFile("heli.x", 0, device, out m);
meshParts = m.Length;
}

void CreateMaterials()
{
material = new Material();
material.Ambient = Color.FromArgb(0, 80, 80, 80);
material.Diffuse = Color.FromArgb(0, 200, 200, 200);
material.Specular = Color.FromArgb(0, 255, 255, 255);
material.SpecularSharpness = 128.0f;
}

void CreateLights()
{
Light light0 = device.Lights[0];
Light light1 = device.Lights[1];

light0.Type = LightType.Directional;
light0.Direction = new Vector3(-1, 1, 5);
light0.Diffuse = Color.Blue;
light0.Enabled = true;
light0.Commit();

light1.Type = LightType.Spot;
light1.Position = new Vector3(-10, 10, -50);
light1.Direction = new Vector3(10, -10, 50);
light1.InnerConeAngle = 0.5f;
light1.OuterConeAngle = 1.0f;
light1.Diffuse = Color.LightBlue;
light1.Specular = Color.White;
light1.Range = 1000.0f;
light1.Falloff = 1.0f;
light1.Attenuation0 = 1.0f;
light1.Enabled = true;
light1.Commit();

device.RenderState.Lighting = true;
device.RenderState.DitherEnable = false;
device.RenderState.SpecularEnable = true;
device.RenderState.Ambient = Color.FromArgb(0, 20, 20, 20);
}

void InitializeView()
{

192 ROZDZIAŁ C. ŚWIAT .NET

Vector3 eyePosition = new Vector3(0, 0, -20);
Vector3 direction = new Vector3(0, 0, 0);
Vector3 upDirection = new Vector3(0, 1, 0);

Matrix view = Matrix.LookAtLH(eyePosition, direction, upDirection);
device.SetTransform(TransformType.View, view);

float fieldOfView = (float)Math.PI/4;
float aspectRatio = 1.0f;
float nearPlane = 1.0f;
float farPlane = 500.0f;

Matrix projection = Matrix.PerspectiveFovLH(fieldOfView,
aspectRatio, nearPlane, farPlane);

device.SetTransform(TransformType.Projection, projection);
}

void AdvanceFrame()
{
rotationAngle += 0.02f;
rotationAngle %= Geometry.DegreeToRadian(360);

Matrix rotateX = Matrix.RotationX(rotationAngle);
Matrix rotateY = Matrix.RotationY(rotationAngle);
Matrix world = Matrix.Multiply(rotateX, rotateY);
device.SetTransform(TransformType.World, world);
}

void Render()
{
device.Clear(ClearFlags.Target | ClearFlags.ZBuffer,

Color.Black.ToArgb(), 1.0f, 0);
device.BeginScene();
device.Material = material;

for (int i=0; i<meshParts; i++)
mesh.DrawSubset(i);

device.EndScene();
device.Present();
}

public static void Main()
{
using (DirectXForm dxForm = new DirectXForm())
{
if (!dxForm.InitializeGraphics())
{
MessageBox.Show("Błąd inicjowania Direct3D.");
return;
}

dxForm.Show();

DateTime start = DateTime.Now;
int frame = 0;
while (dxForm.Created)
{
frame++;
dxForm.AdvanceFrame();
dxForm.Render();

dxForm.Text = String.Format("FPS: {0:N}",
frame/((TimeSpan)(DateTime.Now-start)).TotalSeconds);

Application.DoEvents();
}
}
}
}
}

4. APLIKACJE OKIENKOWE 193

Przyjrzyjmy się przykładowemu fragmentowi, który tworzy macierze widoku i perspektywy
i po raz kolejny zwróćmy uwagę jak elegancko spisuje się tutaj model obiektowy DirectX.NET:

Vector3 eyePosition = new Vector3(0, 0, -20);
Vector3 direction = new Vector3(0, 0, 0);
Vector3 upDirection = new Vector3(0, 1, 0);
Matrix view = Matrix.LookAtLH(eyePosition, direction, upDirection);
device.SetTransform(TransformType.View, view);
float fieldOfView = (float)Math.PI/4;
float aspectRatio = 1.0f;
float nearPlane = 1.0f;
float farPlane = 500.0f;
Matrix projection = Matrix.PerspectiveFovLH(fieldOfView, aspectRatio,
nearPlane, farPlane);
device.SetTransform(TransformType.Projection, projection);

Na uwagę zasługuje także nieco inna niż w typowej aplikacji okienkowej konstrukcja pętli
głównej programu, dzięki której uzyskuje się maksymalną możliwą wydajność animacji.
Otóż w zwykłej aplikacji okienkowej w C# w funkcji Main pisze się najczęściej po prostu:

Application.Run(new fMain());

Jednak przy takiej konstrukcji aby uzyskać jakikolwiek ruch musielibyśmy utworzyć zegar,
ustawić go na jakiś kwant czasu i podczas obsługi zdarzenia zegara tworzyć kolejną ramkę ani-
macji. Takie rozwiązanie ma dużą wadę: zakładamy bowiem że kwant czasu zaprogramowanego
zegara odpowiada mniej więcej możliwości tworzenia płynnego obrazu przez maszynę. O wiele
lepiej byłoby tworzyć obraz natychmiast po tym, kiedy skończy się tworzenie poprzedniej ramki.
W pierwszej chwili wydaje się, że wymagałoby to zejścia aż na poziom pętli obsługi komu-

nikatów, jednak nieoczekiwane, jest to możliwe w C# na poziomie kodu obiektowego:

using (DirectXForm dxForm = new DirectXForm())
{
. . .
dxForm.Show();
. . .
while (dxForm.Created)
{
dxForm.AdvanceFrame();
dxForm.Render();

Application.DoEvents();
}
}

Podobnie jak w przypadku DirectDraw, proponuję ten prosty przykład potraktować jako
szablon do dalszych eksperymentów.

4 Aplikacje okienkowe

Jak widzieliśmy w poprzednich rozdziałach, programowanie Windows nie polega wyłącznie na
tworzeniu okien, jednak z pewnością to właśnie temu zagadnieniu programista poświęca zwykle
sporo czasu. Od dobrej biblioteki wspierającej tworzenie okien i własnych komponentów należa-
łoby oczekiwać prostoty i spójności. Z perspektywy historycznej można powiedzieć, że Win32Api
jest interfejsem spójnym jednak dość żmudnym. W kolejnych latach powstawały więc kolejne wy-
specjalizowane bibilioteki, wspierające tworzenie aplikacji okienkowych. Dużą populaność zdobył
sobie również Visual Basic, w którym projektowanie interfejsu użytkownika było wyjątkowo pro-
ste, jednak interfejs programowania był bardzo niespójny - często podobne czynności w różnych
kontekstach realizowane były za pomocą zupełnie różnych mechanizmów18.
18Visual Basic z czasów przed VB.NET jest również dość słaby jako język programowania, ponieważ ma ubogi
i nieprzemyślany model obiektowy.

194 ROZDZIAŁ C. ŚWIAT .NET

Biblioteka System.Windows.Forms, która umożliwia tworzenie aplikacji okienkowych w
świecie .NET jest zarówno prosta jak i spójna. Nie sprawi kłopotu ani nowicjuszowi, który
chciałby nauczyć się tworzyć okna jak najszybciej, ani profesjonaliście, który znając ułomności
innych interfejsów szybko nauczy się korzystać z zaawansowanych mechanizmów biblioteki Sys-
tem.Windows.Forms. Tworzenie interfejsu użytkownika jest równie proste jak w ”starym” Visual
Basicu, zaś kontrola, jaką programista ma nad oprogramowywanym interfejsem, dorównuje tej,
jaką daje Win32Api.
System.Windows.Forms, jako interfejs w pełni obiektowy, najbardziej przypomina bi-

blioteki okienkowe Javy. Dla programisty najważniejsze jest to, że cały opis komponentu (okna,
kontrolki) jest częścią kodu, dzięki czemu kod nie jest w żaden sposób związany z jakimś środowi-
skiem developerskim. Przy odrobinie wprawy można z powodzeniem pisać programy okienkowe
używając dowolnego edytora tekstu, nawet zwykłego Notatnika.
Interfejs obiekty oznacza również, że funkcjonalność każdego komponentu można bardzo

łatwo rozszerzyć tworząc w razie potrzeby klasę potomną dziedziczącą z niego. Programista
może również w łatwy sposób tworzyć własne komponenty wizualne (kontrolki), do których
może zaprojektować własne zdarzenia.

4.1 Tworzenie okien

Przypomnijmy sobie najprostszy program ze strony 18, który tworzył zwykłe, proste okno na
pulpicie. Jego odpowiednik w świecie .NET wygląda tak:

/* Wiktor Zychla, 2003 */
using System;
using System.Windows.Forms;

namespace Example
{
public class CMainForm : Form
{
public CMainForm()
{
this.Text = "Okna w świecie .NET";
}

public static void Main()
{
Application.Run(new CMainForm());
}
}
}

Różnica w przejrzystości programu jest kolosalna! Interfejs biblioteki System.Windows.Forms
jest w pełni obiektowy. Utworzenie okna polega po prostu na utworzeniu klasy dziedziczącej z
klasy Form. Klasa ta zamyka w sobie całą funkcjonalność jakiej potrzeba aby obsłużyć proste
okno: obiekt który utworzyliśmy w przykładowym programie powyżej ma kilkadziesiąt propercji
i metod oraz obsługuje kilkadziesiąt zdarzeń.
Powyższy kod może w pierwszej chwili wydawać się dość zaskakujący, bowiem nie ma tu

nigdzie pętli obsługi komunikatów. Okazuje się, że pętla obsługi komunikatów jest ukryta w
funkcji Run klasy Application. Dodatkowym, opcjonalnym parametrem metody Run jest
obiekt, będący głównym oknem aplikacji. Aplikacja automatycznie zakończy się, kiedy główne
okno aplikacji zostanie zniszczone.
Oczywiście taka konstrukcja utrudnia nieco sterowanie aplikacją wtedy, gdy powinna ona

zajmować się czymś oprócz przetwarzania komunikatów. Na stronie 25 widzieliśmy jak radzić
sobie z takim problemem w Win32Api (zamiast GetMessage użyliśmy PeekMessage), zaś na
stronie 193 pokazano jak wygląda analogiczna konstrukcja w świecie .NET.

4. APLIKACJE OKIENKOWE 195

Rysunek C.7: Proste okno w świecie .NET

Widać również, że programista w przeciwieństwie do Win32API nie musi samodzielnie reje-
strować klasy okna w systemie. Właściwości klasy okna opisuje definicja klasy, zaś sama operacja
rejestrowania klasy okna w systemie odbywa się bez udziału programisty19.

4.2 Okna potomne

W obiektowym świecie System.Windows.Forms, każdy obiekt dziedziczący z klasy Control
(klasa Form dziedziczy z klasy Control i jest od niej odległa o 4 pokolenia) ma propercję
Controls, która zwraca kolekcję okien potomnych względem tego obiektu. Oznacza to, że okna
potomne mogą być łatwo tworzone w czasie działania programu. Te okna potomne, które po-
winny być widoczne od razu po utworzeniu okna można utworzyć po prostu w konstruktorze
okna macierzystego.
Najwygodniej jest uczynić okna potomne polami składowymi klasy opisującej okno macie-

rzyste. Wtedy wszystkie inne składowe klasy okna macierzystego mają dostęp do okien potom-
nych. Okna potomne są również obiektami, podlegają więc dokładnie takim samym prawom jak
wszystkie obiekty - muszą być jawnie skonstruowane, są odśmiecane itd.

/* Wiktor Zychla, 2003 */
using System;
using System.Drawing;
using System.Windows.Forms;

namespace Example
{
public class CMainForm : Form
{
Button btOK;
TextBox pTxt;

public CMainForm()
{
btOK = new Button();
btOK.Location = new Point(25, 20);
btOK.Size = new Size(150, 25);
btOK.Text = "Naciśnij mnie";

pTxt = new TextBox();

19W świecie .NET definicja okna jest klasą. Aby takie okno mogło pojawić się w systemie, w systemie rejestro-
wana jest oczywiście klasa okna. Nie należy jednak mylić tych dwóch pojęć i dlatego wprowadzimy dwa różne
określenia: klasą okna będziemy nazywać obiekt systemowy, opisujący właściwości okna i rejestrowany w systemie
za pomocą funkcji RegisterClass, zaś klasą opisującą okno, będziemy nazywać definicję klasy dziedziczącej z
klasy Form, opisującej właściwości okna w C#.

196 ROZDZIAŁ C. ŚWIAT .NET

pTxt.Location = new Point(25, 60);
pTxt.Size = new Size(150, 40);
pTxt.Multiline = true;
pTxt.Text = "Pole tekstowe";

this.Controls.AddRange(new Control[] { btOK, pTxt });

this.Text = "Okno";
this.Size = new Size(200, 200);
}

public static void Main()
{
Application.Run(new CMainForm());

}
}
}

Tworząc okna można zejść aż na poziom równy funkcji CreateWindow, na którym można
utworzyć okno podając nazwę klasy okna, jego styl i rozmiary.

/* Wiktor Zychla, 2003 */
using System;
using System.Drawing;
using System.Windows.Forms;

namespace Example
{
public class CMainForm : Form
{
const int WS_VISIBLE = 0x10000000;
const int WS_CHILD = 0x40000000;

public CMainForm()
{
CreateParams cp = new CreateParams();
cp.ClassName = "EDIT";
cp.Style = WS_CHILD | WS_VISIBLE;
cp.Parent = this.Handle;
cp.Width = 150;
cp.Height = 25;
cp.X = 20;
cp.Y = 20;

NativeWindow t = new NativeWindow();
t.CreateHandle(cp);

this.Text = "Okno";
this.Size = new Size(200, 200);
}

public static void Main()
{
Application.Run(new CMainForm());

}
}
}

4.3 Zdarzenia

W rozdziale 2.13 na stronie 108 widzieliśmy w jaki sposób C# rozwiązuje problem zdarzeń.
Dzięki temu, że zdarzenie jest tak naprawdę listą odpowiednich delegatów, zajście zdarzenia
może śledzić dowolna ilość słuchaczy.
Taki model doskonale sprawda się w aplikacjach okienkowych, gdzie tak naprawdę istotne

są właśnie reakcje na zdarzenia zgłaszane do okien aplikacji. Aby okna reagowały na działa-
nia użytkownika, wystarczy więc pod odpowiednie zdarzenia ”przypiąć”ich słuchaczy. Zdarzenia

4. APLIKACJE OKIENKOWE 197

udostępniane przez komponenty wizualne dość dobrze odpowiadają komunikatom, jakie kompo-
nenty te mogłyby obsługiwać.

/* Wiktor Zychla, 2003 */
using System;
using System.Drawing;
using System.Windows.Forms;

namespace Example
{
public class CMainForm : Form
{
Button btOK;
TextBox pTxt;

public CMainForm()
{
btOK = new Button();
btOK.Location = new Point(25, 20);
btOK.Size = new Size(150, 25);
btOK.Text = "Naciśnij mnie";

pTxt = new TextBox();
pTxt.Location = new Point(25, 60);
pTxt.Size = new Size(150, 40);
pTxt.Multiline = true;
pTxt.Text = "Pole tekstowe";

// dodaj zdarzenia
btOK.Click += new EventHandler(btOk_Click);
pTxt.KeyPress += new KeyPressEventHandler(pTxt_KeyPress);

this.Controls.AddRange(new Control[] { btOK, pTxt });

this.Text = "Okno";
this.Size = new Size(200, 200);
}

void btOk_Click(object sender, EventArgs e)
{
MessageBox.Show("Kliknięto przycisk");
}

void pTxt_KeyPress(object sender, KeyPressEventArgs e)
{
this.Text = e.KeyChar.ToString();
}

public static void Main()
{
Application.Run(new CMainForm());

}
}
}

Wśród ważniejszych zdarzeń warto wymienić:

� Click

� DoubleClick

� Enter

� KeyDown

� KeyPress

� KeyUp

198 ROZDZIAŁ C. ŚWIAT .NET

� Leave

� MouseDown

� MouseHover

� MouseUp

� Move

� Paint

� Resize

� Validating

� Validated

Parametry zdarzeń

Przy tak dużej ilości zdarzeń pojawiają się różne problemy. Na przykład - różne zdarzenia
mogą mieć różne ilości parametrów. Informacja o naciśnięciu klawisza powinna nieść ze sobą
informację o tym klawiszu, zaś informacja o naciśnięciu przycisku myszy powinna mówić który
przycisk został naciśnięty i jaka jest pozycja wskaźnika w oknie. Ponadto, gdyby jedna i ta
sama funkcja została przypisana do obsługi różnych zdarzeń różnych komponentów, to wewnątrz
funkcji obsługującej to zdarzenie zdecydowanie powinno dać się określić ten komponent, który
spowodował powstanie zdarzenia.
Na szczęście te problemy rozwiązano dość elegancko. Przyjęto konwencję, wedle której obiekt

będący źródłem zdarzenia przekazuje się zawsze jako pierwszy parametr do delegata reagującego
na zajście zdarzenia, zaś parametry zdarzenia przekazuje się w obiektach klas dziedziczących z
klasy EventArgs jako drugi parametr tych delegatów. Na przykład zdarzenie naciśnięcia kla-
wisza przekazuje swoje parametry w obiekcie typu KeyPressEventArgs, zaś zdarzenia myszy
w obiektach typu MouseEventArgs.
Oznacza to, że wszyscy delegaci będący słuchaczami zdarzeń związanych z obsługą kompo-

nentów wizualnych mają bardzo podobną postać. Nazwy tych delegatów i nazwy ich parametrów
odpowiadają nazwom odpowiednich zdarzeń.

delegate void EventHandler(object sender, EventArgs e);
delegate void KeyPressEventHandler(object sender, KeyPressEventArgs e);
...

Pokrywanie funkcji obsługi zdarzeń

Oprócz możliwości przypinania słuchaczy do odpowiednich zdarzeń, istnieje możliwość przecią-
żenia funkcji wirtualnych dziedziczonych z klasy Control, będących reakcjami na zdarzenia. W
tym przypadku funkcja ma już tylko jeden parametr, określający parametry zdarzenia.

/* Wiktor Zychla, 2003 */
using System;
using System.Drawing;
using System.Windows.Forms;

namespace Example
{
public class CMyButton : Button
{
protected override void OnClick(EventArgs e)
{

4. APLIKACJE OKIENKOWE 199

base.OnClick(e);
MessageBox.Show("Kliknięto mnie!");
}
}

public class CMainForm : Form
{
public CMainForm()
{
CMyButton btOK;

btOK = new CMyButton();
btOK.Location = new Point(25, 20);
btOK.Size = new Size(150, 25);
btOK.Text = "Naciśnij mnie";

this.Controls.Add(btOK);

this.Text = "Okno";
this.Size = new Size(200, 200);
}

public static void Main()
{
Application.Run(new CMainForm());

}
}
}

Nic nie stoi na przeszkodzie, aby równolegle dodać funkcje reagujące na to samo zdarzenie
do odpowiedniej listy delegatów (przy okazji zwróćmy uwagę na to w jakiej kolejności wywołają
się oba zdarzenia. Od czego to zależy?):

/* Wiktor Zychla, 2003 */
using System;
using System.Drawing;
using System.Windows.Forms;

namespace Example
{
public class CMyButton : Button
{
protected override void OnClick(EventArgs e)
{
base.OnClick(e);
MessageBox.Show("Kliknięto mnie!");
}
}

public class CMainForm : Form
{
public CMainForm()
{
CMyButton btOK;

btOK = new CMyButton();
btOK.Location = new Point(25, 20);
btOK.Size = new Size(150, 25);
btOK.Text = "Naciśnij mnie";

btOK.Click += new EventHandler(btOK_Click);

this.Controls.Add(btOK);

this.Text = "Okno";
this.Size = new Size(200, 200);
}

public void btOK_Click(object sender, EventArgs e)

200 ROZDZIAŁ C. ŚWIAT .NET

{
MessageBox.Show("I znów mnie kliknięto!");
}

public static void Main()
{
Application.Run(new CMainForm());

}
}
}

Powstaje więc pytanie: gdzie w takim razie określać reakcje na zdarzenia, czy przeciążając
odpowiednią funkcję czy dokładając delegata do listy słuchaczy zdarzenia?
Odpowiedź wbrew pozorom jest dość prosta: przeciążanie funkcji obsługi zdarzenia powinno

stosować się tylko tam, gdzie reakcja na zdarzenie powinna być taka sama dla wszystkich instancji
tworzonego komponentu i w dodatku powinna być jego trwałą właściwością. Takiej funkcji nie
można już bowiem odwołać.
Jeśli zaś reakcja na zdarzenie ma być wewnętrzną sprawą jakiejś konkretnej instancji kom-

ponentu, tam reakcja ta powinna być delegatem na liście słuchaczy zdarzenia.

4.4 Okna dialogowe

Skoro okna w świecie .NET są instancjami odpowiednich klas, to tworzenie nowych okien jest
tak proste jak wykreowanie nowych obiektów. Po wykreowaniu okno może być pokazane jako
modalne za pomocą metody ShowDialog lub jako niemodalne za pomocą Show.

/* Wiktor Zychla, 2003 */
using System;
using System.Drawing;
using System.Windows.Forms;

namespace Example
{
public class CSecondaryForm : Form
{
public CSecondaryForm()
{
this.Text = "Okno dialogowe";
}
}

public class CMainForm : Form
{
public CMainForm()
{
Button btOK;

btOK = new Button();
btOK.Location = new Point(25, 20);
btOK.Size = new Size(150, 25);
btOK.Text = "Pokaż okno dialogowe";

btOK.Click += new EventHandler(btOK_Click);

this.Controls.Add(btOK);

this.Text = "Okno";
this.Size = new Size(200, 200);
}

public void btOK_Click(object sender, EventArgs e)
{
CSecondaryForm f = new CSecondaryForm();
f.ShowDialog();
}

4. APLIKACJE OKIENKOWE 201

public static void Main()
{
Application.Run(new CMainForm());
}
}
}

Klasa opisująca okno może mieć dowolną ilość konstruktorów, których można użyć do prze-
kazania parametrów nowo tworzonym oknom.

4.5 Subclassowanie okien

Często przechwytywanie zdarzeń nie wystarcza, a programista chciałby sięgnąć głębiej, aż na
poziom komunikatów.

Obsługa komunikatów własnych okien

Obsługa komunikatów nie nastręcza żadnych kłopotów jeśli to programista tworzy klasę opisu-
jącą okno. Wystarczy po prostu przeciążyć metodęWndProc.

/* Wiktor Zychla, 2003 */
using System;
using System.Drawing;
using System.Windows.Forms;

namespace Example
{
public class CMainForm : Form
{
const int WM_LBUTTONDBLCLK = 0x0203;

protected override void WndProc(ref Message m)
{
switch (m.Msg)
{
case WM_LBUTTONDBLCLK : MessageBox.Show("Dwuklik!"); break;
}
base.WndProc(ref m);

}

public CMainForm()
{
this.Text = "Okno";
this.Size = new Size(200, 200);
}

public static void Main()
{
Application.Run(new CMainForm());

}
}
}

StrukturaMessage przechowuje w sobie wszystkie parametry komunikatu (LParam,WPa-
ram, itd.), ma również metodę GetLParam, która służy do rzutowania parametru przekaza-
nego w LParam na wskazany typ.
Warto zwrócić uwagę na konieczność wywołania funkcjiWndProc z klasy bazowej. Bez tego

wywołania okno nie utworzy się, bowiem zabraknie mu większości potrzebnej funkcjonalności.

202 ROZDZIAŁ C. ŚWIAT .NET

Obsługa komunikatów istniejących okien

Przedstawiona w poprzednim podrozdziale technika nie nadaje się do obsługi komunikatów w już
istniejących komponentach, na przykład TextBox czy Button. Możnaby co prawda przeciążyć
już istniejący komponent i dodać obsługę komunikatów do klasy potomnej, ale interesująca
byłaby możliwość taka jak opisana na stronie 31, czyli dodawanie własnej funkcji obsługi do już
istniejącego okna.
Okazuje się, że i taki scenariusz jest możliwy, wymaga jedynie utworzenia klasy dziedziczącej

z klasy NativeWindow i skojarzenia uchwytów okien.

/* Wiktor Zychla, 2003 */
using System;
using System.Drawing;
using System.Windows.Forms;

namespace Example
{
public class CSubclass : NativeWindow
{
const int WM_LBUTTONDBLCLK = 0x0203;

protected override void WndProc(ref Message m)
{
switch (m.Msg)
{
case WM_LBUTTONDBLCLK : MessageBox.Show("Dwuklik!"); break;
}
base.WndProc(ref m);

}

public CSubclass() {}
}

public class CMainForm : Form
{
CSubclass subclass = new CSubclass();
TextBox t;

public CMainForm()
{
t = new TextBox();
this.Controls.Add(t);

// subclassing okna potomnego
subclass.AssignHandle(t.Handle);

this.Text = "Okno";
this.Size = new Size(200, 200);
}

public static void Main()
{
Application.Run(new CMainForm());

}
}
}

4.6 Komponenty wizualne

Biblioteka System.Windows.Forms udostępnia szereg gotowych komponentów. Wszystkie
właściwości obiektów są odpowiednimi składowymi klas opisujących te obiekty. Oprócz typo-
wych składowych, przynależnych wszystkim obiektom dziedziczącym w klasy Control, każdy
komponent ma szereg własnych, jemu tylko właściwych składowych. Na przykład pole tekstowe
ma właściwość MaxLength, pozwalającą ustalić maksymalną długość wprowadzanego napisu,

4. APLIKACJE OKIENKOWE 203

czy propercję AcceptsEnter, decydującą o tym, czy naciśnięcie klawisza Enter w obrębie pola
tekstowego dołączy do wprowadzanego tekstu znak przejścia do nowej linii, czy też spowoduje
przejście do kolejnego komponentu w oknie.

ComboBox, ListBox

Oba komponenty, ComboBox i ListBox, mają bardzo podobne zastosowanie i bardzo podobny
interfejs służący do oprogramowywania ich. Udostępniają one kolekcję Items, która przechowuje
elementy pokazywane na listach tych komponentów. W najprostszym scenariuszu napisalibyśmy
po prostu:

...
ComboBox cbItems;
...
cbItems.Add("napis 1");
cbItems.Add("napis 2");
cbItems.Add("napis 3");
...

Pojawia się jednak pytanie: w jaki sposób aplikacja może być poinformowana o wyborze
konkretnego elementu przez użytkownika? Przypomnijmy sobie, że na poziomie Win32API z
każdym elementem ComboBoxa można skojarzyć 32-bitową wartość, która może służyć do
identyfikowania elementów (może na przykład przechowywać identyfikator bazodanowy elementu
na liście)20.
W bibliotece okienkowej .NET elementami ComboBoxa i ListBoxa mogą być dowolne obiekty,

nie tylko napisy. Jeśli do listy zostaje dodany obiekt innego typu niż string, na liście pojawia
się jego reprezentacja napisowa, zaś na liście zapamiętana jest referencja do obiektu.
Aby zasymulować możliwość jaką daje Win32API, czyli umieszczanie na liście napisów i

kojarzenie z każdym z nich wartości 32-bitowej, można posłużyć się pomocniczą klasą, która
będzie przechowywać pary: napis i wartość 32-bitową. Zauważmy jednak, że programista nie
jest ograniczony do jednej wartości skojarzonej z napisem, ponieważ jest to tylko i wyłącznie
kwestią zaprojektowania odpowiedniej klasy.

/* Wiktor Zychla, 2003 */
using System;
using System.Windows.Forms;

namespace Example
{
public class MyComboBoxItem
{
string text;
int id;

public string Text
{
get { return text; }
}

public int ID
{
get { return id; }
}

public MyComboBoxItem(string text, int id)
{
this.text = text;
this.id = id;

20Wartość tą można ustalić bądź pobrać za pomocą par komunikatów CB SETITEMDATA,
CB GETITEMDATA oraz LB SETITEMDATA, LB GETITEMDATA.

204 ROZDZIAŁ C. ŚWIAT .NET

}

public override string ToString()
{
return text;
}
}

public class CMainForm : Form
{
ComboBox cbItems;

public CMainForm()
{
cbItems = new ComboBox();
cbItems.Items.Add(new MyComboBoxItem("ala", 17));
cbItems.Items.Add(new MyComboBoxItem("ma", 24));
cbItems.Items.Add(new MyComboBoxItem("kota", 19));
cbItems.Items.Add(new MyComboBoxItem("!", 78));
cbItems.SelectedIndexChanged +=
new EventHandler(cbItems_SelectedIndexChanged);

this.Controls.Add(cbItems);
}

void cbItems_SelectedIndexChanged(object sender, EventArgs e)
{
if (cbItems.SelectedItem != null)
{
MyComboBoxItem myItem = cbItems.SelectedItem as MyComboBoxItem;
MessageBox.Show(String.Format("Wybrano element: {0} - {1}",

myItem.Text, myItem.ID));
}
}

public static void Main()
{
Application.Run(new CMainForm());
}
}
}

ToolTip

Wyświetlaniem podpowiedzi zajmuje się obiekt typu ToolTip. Podpowiedzi mogą składać się z
kilku linii tekstu.

/* Wiktor Zychla, 2003 */
using System;
using System.Drawing;
using System.Windows.Forms;

namespace Example
{
public class CMainForm : Form
{
Button b;

public CMainForm()
{
b = new Button();
b.Text = "Kliknij mnie";
this.Controls.Add(b);

ToolTip tTip = new ToolTip();
tTip.SetToolTip(b, "Podpowiedź\r\nwielolinijkowa");
}

public static void Main()

4. APLIKACJE OKIENKOWE 205

Rysunek C.8: ListView potrafi sam sortować elementy umieszczone na liście

{
Application.Run(new CMainForm());
}
}
}

ListView

Komponent ListView jest bardzo przydatny i w związku z tym często wykorzystywany w aplika-
cjach Windowsowych. Potrafi pokazywać elementy w 4 różnych widokach21. Najczęściej korzysta
się z widoku szczegółowego, w którym ListView staje się wielokolumnową listą elementów.
Inaczej niż w przypadku ComboBoxa, elementy ListView są typu ListViewItem. Jeżeli

programista chce skojarzyć własną informację z elementem listy, powinien skorzystać z propercji
Tag elementu, która może przechować referencję na dowolny obiekt. Również inaczej niż w
przypadku ComboBoxa, każdy element ListView może mieć własny kolor tła i tekstu.
ListView wyróżnia się spośród innych komponentów tym, że potrafi samodzielnie sortować

swoje elementy. Wymaga to zdefiniowania klasy implementującej interfejs IComparer i przy-
pisania obiektu tej klasy do propercji ListViewItemSorter komponentu ListView.

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;
using System.Drawing;
using System.Windows.Forms;

namespace Example
{
// klasa do porównywania elementów ListView
// wg. wskazanej kolumny
public class MyLVItemSorter : IComparer
{

21Cztery możliwości prezentowania elementów listy przez ListView najszybciej można zobaczyć w Eksplorerze
Windows, który do pokazywania elementów systemu plików używa właśnie ListView i pozwala przełączać się
pomiędzy wszystkimi dostępnymi widokami.

206 ROZDZIAŁ C. ŚWIAT .NET

int kolumna; // kolumna wg. której sortujemy

public MyLVItemSorter(int kolumna)
{
this.kolumna = kolumna;
}

public int Compare(object o1, object o2)
{
ListViewItem l1 = o1 as ListViewItem;
ListViewItem l2 = o2 as ListViewItem;

return string.Compare(l1.SubItems[kolumna].Text,
l2.SubItems[kolumna].Text);

}
}

public class CMainForm : Form
{
ListView lstItems;

void InitListViewElements()
{
string[] sHeaders = new string[] { "Imię", "Nazwisko", "Data urodzenia" };
ListViewItem li;

// nagłówki
lstItems.Columns.Clear();
foreach (string s in sHeaders)
lstItems.Columns.Add(s, 60, HorizontalAlignment.Left);

// elementy
li = lstItems.Items.Add("Jan");
li.SubItems.Add("Kowalski");
li.SubItems.Add("1971-05-05");

li = lstItems.Items.Add("Adam");
li.SubItems.Add("Malinowski");
li.SubItems.Add("1975-02-13");

li = lstItems.Items.Add("Zbigniew");
li.SubItems.Add("Abacki");
li.SubItems.Add("1972-05-11");

// dopasuj szerokości kolumn
foreach (ColumnHeader ch in lstItems.Columns)
ch.Width = -2;

}

// po kliku w kolumnę ListView ustal sortowanie wg. tej kolumny
void LV_ColumnClick(object sender, ColumnClickEventArgs e)
{
lstItems.ListViewItemSorter = new MyLVItemSorter(e.Column);
}

public CMainForm()
{
lstItems = new ListView();
lstItems.Dock = DockStyle.Fill;
lstItems.FullRowSelect = true;
lstItems.GridLines = true;
lstItems.View = System.Windows.Forms.View.Details;
lstItems.ColumnClick += new ColumnClickEventHandler(LV_ColumnClick);

this.Controls.Add(lstItems);

InitListViewElements();
}

public static void Main()

4. APLIKACJE OKIENKOWE 207

Rysunek C.9: TreeView pozwala pokazać zależności między obiektami

{
Application.Run(new CMainForm());
}
}
}

TreeView

Komponent TreeView zyskał nowy, obiektowy interfejs, w którym każdy węzeł ma kolekcję
Nodes, przechowującą jego podwęzły.
Z komponentem tym wiąże się klasyczny problem: jak radzić sobie z wypełnianiem struktury

TreeView, jeśli powinien on przechowywać bardzo dużo danych? Oczywiście zainicjowanie całego
drzewa w konstruktorze okna macierzystego może nie wchodzić w grę, właśnie z powodu dużej
ilości danych.
Problem ten rozwiązuje się zwykle tak, że inicjuje się tylko jeden poziom drzewa, poziom

główny, dodając przy okazji tym węzłom, które mają przechowywać jakieś podwęzły, tylko jeden,
bardzo specjalny ”pusty” podwęzeł, oznaczony w propercji Tag w jakiś określony sposób.
Następnie należy dodać funkcję obsługi zdarzenia BeforeExpand, które pojawia się, gdy

użytkownik próbuje ”rozwijać” węzeł drzewa przy pomocy symbolu ”+” umieszczonego przy
węźle. Wewnątrz funkcji obsługi zdarzenia należy sprawdzić, czy rozwijany węzeł ma tylko jeden
podwęzeł i to w dodatku ten specjalnie oznakowany. Jeśli tak - należy ten podwęzeł usunąć
i dobudować kolejny poziom drzewa, znów dodając specjalne ”puste” podwęzły określonym
węzłom.
W ten sposób drzewo budowane jest zawsze ”na życzenie”, przy czym dobudowywany jest

zawsze tylko ten poziom drzewa, który jest akurat potrzebny.

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;
using System.Drawing;
using System.Windows.Forms;

208 ROZDZIAŁ C. ŚWIAT .NET

namespace Example
{
public class CMainForm : Form
{
TreeView tvItems;

void InitTVElements()
{
TreeNode treeRoot = new TreeNode("Opis struktury");
treeRoot.ForeColor = Color.Blue;

TreeNode treeSubNode;
for (int i=0; i<45; i++)
{
treeSubNode = new TreeNode(String.Format("Podwęzeł {0}", i));
treeRoot.Nodes.Add(treeSubNode);
}

tvItems.Nodes.Add(treeRoot);
}

public CMainForm()
{
tvItems = new TreeView();
tvItems.Dock = DockStyle.Fill;

this.Controls.Add(tvItems);

InitTVElements();
}

public static void Main()
{
Application.Run(new CMainForm());
}
}
}

4.7 Rozmieszczanie okien potomnych

Dobrze zaprojektowany interfejs użytkownika powinien być czytelny i przejrzysty. Jednak przy
odrobinie wprawy i doświadczenia można sobie z tym poradzić. O wiele trudniej jest zaprojek-
tować interfejs tak, aby pozostawał spójny gdy okno zmienia swoje rozmiary, na przykład gdy
jest rozciągane przez użytkownika.
Istnieją dwa możliwe rozwiązania: można albo zabronić zmian rozmiaru okna (przez usta-

wienie propercji FormBorderStyle na FormBorderStyle.FixedDialog) albo reagować na
zmianę rozmiaru okna i dopasowywać rozmiary okien potomnych do rozmiaru okna macierzy-
stego. Oczywiście nie zawsze można po prostu zabronić zmian rozmiaru okna. Czy w związku z
tym .NET wspomaga jakoś proces rozmieszczania okien potomnych przy zmianie rozmiaru okna
macierzystego? Otóż tak.

Kotwice i dokowanie

Najprostszy sposób dopasowywania rozmiarów okna potomnego do rozmiarów okna macierzy-
stego to tzw. kotwicowanie. Wystarczy nadać oknu potomnemu właściwość bycia zaczepionym
któregoś z boków okna macierzystego, aby okno potomne zachowywało odległość od odpowied-
niego boku podczas zmiany rozmiarów okna macierzystego.

/* Wiktor Zychla, 2003 */
using System;
using System.Drawing;
using System.Windows.Forms;

4. APLIKACJE OKIENKOWE 209

Rysunek C.10: Okna potomne zadokowane w obrębie okna macierzystego

namespace Example
{
public class CMainForm : Form
{
Button b;

public CMainForm()
{
b = new Button();
b.Text = "Kliknij mnie";
b.Location = new Point(40, 40);
b.Anchor = AnchorStyles.Bottom |

AnchorStyles.Top |
AnchorStyles.Left |
AnchorStyles.Right;

this.Controls.Add(b);
}

public static void Main()
{
Application.Run(new CMainForm());
}
}
}

Okna potomne można również dokować, czyli przywiązywać na stałe do któregoś z boków lub
całego obszaru okna macierzystego. Dokowanie jest szczególnie przydatne w przypadku dwóch
okien potomnych, bowiem jedno z nich można zadokować do któregoś z boków, a drugie do
całego obszaru okna. Oba okna potomne zajmą wtedy cały obszar okna macierzystego i będą
poprawnie dostosowywać się do zmian jego rozmiaru.
Należy jedynie pamiętać o tym, aby to okno potomne, które powinno wypełniać obszar okna

macierzystego było umieszczone ”na wierzchu”, czyli nad oknem zadokowanym do któregoś z
boków.

/* Wiktor Zychla, 2003 */
using System;
using System.Drawing;
using System.Windows.Forms;

namespace Example

210 ROZDZIAŁ C. ŚWIAT .NET

{
public class CMainForm : Form
{
Button b;
TextBox t;

public CMainForm()
{
b = new Button();
b.Text = "Kliknij mnie";
b.Dock = DockStyle.Left;

t = new TextBox();
t.Multiline = true;
t.Dock = DockStyle.Fill;

this.Controls.Add(t);
this.Controls.Add(b);
}

public static void Main()
{
Application.Run(new CMainForm());
}
}
}

Panele

Sytuacja, w której okno macierzyste ma tylko dwa okna potomne jest niezwykle rzadka. Zasto-
sowanie pokazanej powyżej metody wydaje się być więc dość ograniczone. Okazuje się jednak,
że istnieje specjalny typ komponentu, Panel, który z jednej strony zachowuje się jak okno po-
tomne, bowiem jest komponentem umieszczanym wewnątrz jakiegoś okna dialogowego, z drugiej
strony zachowuje się jak okno macierzyste, bowiem ma swoją własną kolekcję okien potomnych,
które są kotwicowane i dokowane względem obszaru Panela, a nie okna macierzystego.
Można więc używać paneli do podziału okna macierzystego na drobniejsze fragmenty, w ob-

rębie których można dokonywać odpowiednich ustaleń rozmieszczenia okien potomnych. Panele
można zagnieżdżać.

/* Wiktor Zychla, 2003 */
using System;
using System.Drawing;
using System.Windows.Forms;

namespace Example
{
public class CMainForm : Form
{
Panel p;
Button b1;
Button b2;
TextBox t;

public CMainForm()
{
// panel zadokowany do lewej, a w nim dwa przyciski
p = new Panel();
p.Dock = DockStyle.Left;

b1 = new Button();
b1.Text = "Kliknij mnie";
b1.Dock = DockStyle.Top;

b2 = new Button();
b2.Text = "Kliknij mnie";
b2.Dock = DockStyle.Fill;

4. APLIKACJE OKIENKOWE 211

p.Controls.Add(b2);
p.Controls.Add(b1);

// pole tekstowe wypełnia obszar okna
t = new TextBox();
t.Multiline = true;
t.Dock = DockStyle.Fill;

this.Controls.Add(t);
this.Controls.Add(p);
}

public static void Main()
{
Application.Run(new CMainForm());
}
}
}

Splittery

Splittery są elementami graficznymi w postaci poziomych lub pionowych ”belek”, pozwalających
użytkownikowi zmienić rozmiary okien potomnych. Splitterów używa się tam, gdzie używa się
dokowania.

/* Wiktor Zychla, 2003 */
using System;
using System.Drawing;
using System.Windows.Forms;

namespace Example
{
public class CMainForm : Form
{
Panel p; // zawiera b1 i b2
Button b1;
Button b2;
TextBox t;

Splitter s1; // rozdziela b1 i b2
Splitter s2; // rozdziela p i t

public CMainForm()
{
// panel zadokowany do lewej, a w nim dwa przyciski
p = new Panel();
p.Dock = DockStyle.Left;

b1 = new Button();
b1.Text = "Kliknij mnie";
b1.Dock = DockStyle.Top;

s1 = new Splitter();
s1.Dock = DockStyle.Top;

b2 = new Button();
b2.Text = "Kliknij mnie";
b2.Dock = DockStyle.Fill;

p.Controls.Add(b2);
p.Controls.Add(s1); // splitter rozdziela b2 i b1
p.Controls.Add(b1);

// pole tekstowe wypełnia obszar okna
s2 = new Splitter();
s2.Dock = DockStyle.Left;

212 ROZDZIAŁ C. ŚWIAT .NET

t = new TextBox();
t.Multiline = true;
t.Dock = DockStyle.Fill;

this.Controls.Add(t);
this.Controls.Add(s2); // splitter rozdziela t i p
this.Controls.Add(p);
}

public static void Main()
{
Application.Run(new CMainForm());
}
}
}

4.8 GDI+

Tak jak w Win32API istnieją funkcje GDI, tak w świecie .NET istnieje biblioteka GDI+, która
udostępnia obiektowy interfejs do funkcji GDI.
Używając GDI+ programista musi pamiętać o jednej bardzo ważnej rzeczy. Otóż zainicjowa-

nie obiektu graficznego, takiego jak pędzel, szczotka, font, obiekt typuGraphics itd., spowoduje
utworzenie odpowiedniego elementu w systemie, do którego uchwyt będzie przechowywany we-
wnątrz obiektu.
Interfejs GDI skonstruowany jest jednak tak, że gdy element graficzny przestaje być potrzeb-

ny, powinien być usunięty, aby system mógł zwolnić zasoby związane z nim. W GDI+ rozwiązano
ten problem tak, że wszystkie obiekty graficzne implementują interfejs IDisposable, zaś zasoby
systemowe są zwracane w metodzie Dispose. Warto w tym miejscu przypomnieć sobie więc
cukierek syntaktyczny ze strony 95, dzięki któremu programista nie musi pamiętać o wywołaniu
metody Dispose.

Obiekt Graphics

W GDI do narysowania czegokolwiek potrzebny był kontekst urządzenia. W GDI+ analogiczną
rolę pełni obiekt typu Graphics.
Obiekt ten jest dostarczany do wszystkich funkcji obsługujących zdarzenia związane z ry-

sowaniem w parametrze typu PaintEventArgs i jest to pewna analogia do obsługi zdarzenia
WM PAINT w Win32API.
Obiekt ten może być również utworzony w dowolnej chwili działania aplikacji za pomocą

statycznych funkcji FromHdc, FromHwnd czy FromImage.
Obiekt Graphics potrafi wykonać większość operacji związanych z rysowaniem (wymagają

wskazania pędzla jako jednego z parametrów), m.in.:

� DrawArc

� DrawBezier

� DrawEllipse

� DrawIcon

� DrawImage

� DrawLine

� DrawPath

4. APLIKACJE OKIENKOWE 213

� DrawPie

� DrawRectangle

� DrawString

oraz kilka funkcji związanych z wypełnianiem obszarów (wymagają szczotki jako parametru),
m.in:

� FillEllipse

� FillPie

� FillRectangle

� FillRegion

Kolory

W każdym miejscu, w którym potrzebne jest określenie koloru, należy skorzystać z obiektu Co-
lor. Klasa kolor ma predefiniowane około 140 nazw kolorów, dostępnych jako statyczne propercje,
na przykład Color.Black, Color.AliceBlue, czy Color.Red. Oprócz tego istnieje klasa Sys-
temColors, która udostępnia wartości kolorów przypisanych elementom interfejsu graficznego
Windows. Mamy tu więc m.in. SystemColors.ActiveBorder, SystemColors.Control, czy
SystemColors.WindowText (w sumie około 25 predefiniowanych kolorów).
W każdej chwili programista może utworzyć własny kolor, opisując jego składowe:

Color c = Color.FromArgb(40, 50, 60);

Czcionki

Konstruktor obiektu Font pozwala na określenie parametrów czcionki m.in.: wielkości, stylu,
zestawu znaków. Poniższy przykład jest interesujący również z innego powodu: czcionka jest
tworzona i usuwana, zaś obiekt Graphics nie jest usuwany. Jak to wytłumaczyć?
Otóż zauważmy, że obiekt typu Graphics jest dostarczony jako parametr w zmiennej typu

PaintEventArgs. Oznacza to, że jest on konstruowany gdzieś indziej. Również gdzieś indziej
może być więc wykorzystywany. Usunięcie go przez Dispose mogłoby w szczególnym przypadku
objawić się trudnym do zdiagnozowania błędem.
W przeciwieństwie do obiektu Graphics, czcionka jest konstruowana lokalnie i powinna być

usunięta po użyciu.

/* Wiktor Zychla, 2003 */
using System;
using System.Drawing;
using System.Windows.Forms;

namespace Example
{
public class CMainForm : Form
{
public CMainForm() {}

protected override void OnPaint(PaintEventArgs e)
{
Graphics g = e.Graphics;

using (Font f = new Font("Courier", 24, FontStyle.Italic))
{

214 ROZDZIAŁ C. ŚWIAT .NET

g.DrawString("Przykład GDI+", f, Brushes.Black, 0, 0);
}
}

public static void Main()
{
Application.Run(new CMainForm());
}
}
}

Pędzle, szczotki

GDI+ dostarcza całego zestawu gotowych pędzli i szczotek w obiektach Pens i Brushes. W
każdym miejscu kodu można z nich skorzystać, a jest to o tyle łatwe, że nazwano je po prostu
nazwami kolorów. Mamy więc na przykład pióro czarne Pens.Black czy szczotkę niebieską
Brushes.Blue.
Oprócz gotowych piór i szczotek, programista może tworzyć własne. Konstruktor pióra przyj-

muje jako parametr kolor i opcjonalnie grubość pióra:

/* Wiktor Zychla, 2003 */
using System;
using System.Drawing;
using System.Windows.Forms;

namespace Example
{
public class CMainForm : Form
{
public CMainForm() {}

protected override void OnPaint(PaintEventArgs e)
{
Graphics g = e.Graphics;

using (Pen p = new Pen(Color.FromArgb(40, 50, 130), 5))
{
g.DrawLine(p, 0, 0, 50, 50);
}
}

public static void Main()
{
Application.Run(new CMainForm());
}
}
}

W przypadku szczotek możliwości jest trochę więcej. Istnieje klasa bazowa Brush, z której
wyprowadzono klasy umożliwiające tworzenie róznego rodzaju szczotek: SolidBrush, Hatch-
Brush, LinearGradientBrush, PathGradientBrush czy TextureBrush.
Zobaczmy na przykład jak za pomocą szczotki gradientowej wyposażyć okno w automatycz-

nie odrysowywane gradientowe tło:

/* Wiktor Zychla, 2003 */
using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

namespace Example
{
public class CMainForm : Form
{

4. APLIKACJE OKIENKOWE 215

Rysunek C.11: Gradientowe tło uzyskane dzięki odpowiedniej szczotce

public CMainForm() {}

protected override void OnPaint(PaintEventArgs e)
{
Graphics g = e.Graphics;

using (LinearGradientBrush lgb =
new LinearGradientBrush(this.ClientRectangle, Color.Green,

Color.LightGreen, -45f, false))
{
g.FillRectangle(lgb, this.ClientRectangle);
}
}

protected override void OnResize(EventArgs e)
{
Invalidate();
}

public static void Main()
{
Application.Run(new CMainForm());
}
}
}

Obrazki

Tworzenie obrazków możliwe jest dzięki dwóm klasom: Image i dziedziczącej z niej Bitmap.
Obrazek może być utworzony dynamiczne bądź załadowany z pliku (Image.FromFile). Ob-
razek w pamięci można poddać różnym operacjom, można nawet utworzyć obiekt Graphics
dzięki funkcji Graphics.FromImage i rysować na powierzchni obrazka za pomocą funkcji z
GDI+.
Gotowy obrazek można zapisać za pomocą metody Save, wybierając przy okazji jeden z

dostępnych formatów m.in. GIF, BMP, PNG, JPG.
Zawartość obrazka można dzięki funkcji DrawImage obiektu Graphics narysować w kon-

216 ROZDZIAŁ C. ŚWIAT .NET

Rysunek C.12: Zegarek w C# z podwójnym buforowaniem grafiki

tekście, na który wskazuje obiekt Graphics lub umieścić w komponencie typu PictureBox,
który może być umieszczony w oknie. Komponent PictureBox sam dba o automatycznie od-
świeżanie swojej zawartości, programista nie musi więc odrysowywać zawartości obrazka gdy
okno wymaga odświeżenia.

Podwójne buforowanie

GDI+ udostępnia możliwość automatycznego podwójnego buforowania wyświetlanej grafiki.
Dzięki temu obraz rysowany jest na niewidocznej stronie graficznej i jest błyskawicznie przeno-
szony na powierzchnię okna. Podwójne buforowanie umożliwia całkowite wyeliminowanie efektu
”migania” obrazu podczas rysowania.
Aktywowanie podwójnego bufowania wymaga jedynie 3 lini kodu w konstruktorze okna:

/* Wiktor Zychla, 2003 */
this.SetStyle(ControlStyles.UserPaint, true);
this.SetStyle(ControlStyles.AllPaintingInWmPaint, true);
this.SetStyle(ControlStyles.DoubleBuffer, true);

4.9 Zegary

Oprogramowanie zegarów jest bardzo proste, ponieważ wystarczy utworzyć obiekt typu Timer,
przypiąć funkcję do listy słuchaczy zdarzenia Tick i ustalić interwał czasu między kolejnymi
zgłoszeniami zdarzenia.

/* Wiktor Zychla, 2003 */
using System;
using System.Drawing;
using System.Windows.Forms;

namespace Example
{
public class CMainForm : Form
{
Timer timer;

4. APLIKACJE OKIENKOWE 217

public CMainForm()
{
timer = new Timer();
timer.Tick += new EventHandler(Timer_Tick);
timer.Interval = 50;
timer.Start();

this.SetStyle(ControlStyles.UserPaint, true);
this.SetStyle(ControlStyles.AllPaintingInWmPaint, true);
this.SetStyle(ControlStyles.DoubleBuffer, true);
}

void Timer_Tick(object sender, EventArgs e)
{
this.Invalidate();
}

protected override void OnPaint(PaintEventArgs e)
{
Graphics g = e.Graphics;
using (Font f = new Font("LED", 48))
{
StringFormat sf = new StringFormat();
sf.Alignment = StringAlignment.Center;
sf.LineAlignment = StringAlignment.Center;

g.Clear(SystemColors.Control);
g.DrawString(DateTime.Now.ToLongTimeString(), f, Brushes.Black,

this.Width / 2, this.Height / 2, sf);
}
}

public static void Main()
{
Application.Run(new CMainForm());
}
}
}

4.10 Menu

Tworzenie menu

Tworzenie menu możliwe jest dzięki dwóm typom danych:

MainMenu który służy do tworzenia menu dla okna dialogowego

ContextMenu który służy do tworzenia menu kontekstowych dla okien

/* Wiktor Zychla, 2003 */
using System;
using System.Drawing;
using System.Windows.Forms;

namespace Example
{
public class CMainForm : Form
{
TextBox tb;

void InitMenus()
{
// MainMenu
MainMenu mainMenu = new MainMenu();

MenuItem mPlik = new MenuItem("Plik");
MenuItem mPlikZakoncz = new MenuItem("Zakończ");

218 ROZDZIAŁ C. ŚWIAT .NET

mPlikZakoncz.Click += new EventHandler(mPlikZakoncz_Click);

mPlik.MenuItems.Add(mPlikZakoncz);
mainMenu.MenuItems.Add(mPlik);

this.Menu = mainMenu;

// ContextMenu
ContextMenu cMenu = new ContextMenu();
MenuItem mZakoncz = new MenuItem("Zakończ");
cMenu.MenuItems.Add(mZakoncz);

this.tb.ContextMenu = cMenu;
}

void mPlikZakoncz_Click(object sender, EventArgs e)
{
this.Close();
}

public CMainForm()
{
tb = new TextBox();
this.Controls.Add(tb);

InitMenus();
}

public static void Main()
{
Application.Run(new CMainForm());
}
}
}

Obiekt typu ContextMenu, reprezentujący menu kontekstowe, ma jeszcze jedną interesu-
jącą właściwość. Otóż ma on metodę Show, która po prostu pokazuje menu kontekstowe przy
wskazanym oknie potomnym. Jest to bardzo wygodne wtedy, kiedy menu kontekstowe powinno
zostać ujawnione w jakiejś nietypowej sytuacji.
Wyobraźmy sobie na przykład scenariusz, w którym każdemu elementowi drzewa TreeView

powinno odpowiadać jakieś inne menu kontekstowe, zależne od tego, co zawiera wskazany ele-
ment. Zamiast przywiązywać jakieś konkretne menu kontekstowe do obiektu TreeView, pro-
gramista może po prostu przechwycić zdarzenie kliknięcia myszą w węzeł drzewa, sprawdzić
czy kliknięto prawy klawisz myszy i dopiero wtedy wykorzystać metodę Show do pokazania
odpowiedniego menu kontekstowego.

Własne funkcje rysowania menu

Wygląd menu można uatrakcyjnić dzięki możliwości określenia własnych funkcji odpowiedzial-
nych za rysowanie elementów menu. Programista musi jedynie dodać funkcje obsługi zdarzeń
DrawItem, odpowiedzialnej za rysowanie i MeasureItem, odpowiedzialnej za określanie ob-
szaru zajmowanego przez element menu22.
W poniższym przykładzie zmieniamy sposób rysowania tylko tych pozycji menu, które wi-

doczne są na pasku menu w oknie. W analogiczny sposób można jednak określić sposób rysowania
pozycji rozwijalnych, dodając na przykład możliwość rysowania ikon obok pozycji menu itp.

/* Wiktor Zychla, 2003 */
using System;
using System.Drawing;
using System.Windows.Forms;

22Kilku innym komponentom wizualnym również można zmieniać wygląd w taki sposób.

4. APLIKACJE OKIENKOWE 219

namespace WinForms_Dodatki
{
public class C_XMainMenu : System.Windows.Forms.MainMenu
{
private void topMenu_DrawItem(object sender,

System.Windows.Forms.DrawItemEventArgs e)
{
Rectangle mRect =
new Rectangle(e.Bounds.X, e.Bounds.Y, e.Bounds.Width, e.Bounds.Height);
Rectangle mRect2 =
new Rectangle(e.Bounds.X, e.Bounds.Y, e.Bounds.Width+1, e.Bounds.Height+1);

if ((e.State & DrawItemState.Selected) != 0)
{
e.Graphics.FillRectangle(new SolidBrush(SystemColors.Control), mRect);
e.Graphics.DrawRectangle(
new Pen(new SolidBrush(SystemColors.ControlDark), 1), mRect);

}
else
if ((e.State & DrawItemState.HotLight) != 0)
{
e.Graphics.FillRectangle(new SolidBrush(SystemColors.ControlLightLight), mRect);
e.Graphics.DrawRectangle(
new Pen(new SolidBrush(SystemColors.ControlDark), 1), mRect);

}
else
{
e.Graphics.FillRectangle(new SolidBrush(SystemColors.Control), mRect2);
}

MenuItem mItem = (MenuItem)sender;
Font mFont = new Font("MS Sans Serif", 10);
StringFormat sFormat = new StringFormat();

sFormat.Alignment = StringAlignment.Center;
sFormat.LineAlignment = StringAlignment.Center;

e.Graphics.DrawString(mItem.Text, mFont, new SolidBrush(Color.Black), mRect, sFormat);

mFont.Dispose();
}

private void topMenu_MeasureItem(object sender,
System.Windows.Forms.MeasureItemEventArgs e)

{
MenuItem mItem = (MenuItem)sender;
Font mFont = new Font("MS Sans Serif", 10);

SizeF sizeF = e.Graphics.MeasureString(mItem.Text, mFont);
e.ItemWidth = (int)sizeF.Width;

mFont.Dispose();
}

public C_XMainMenu(Menu mMenu)
{
foreach (MenuItem mItem in mMenu.MenuItems)
{
MenuItem newMenuItem = mItem.CloneMenu();

ApplyMenuProperties (newMenuItem);
this.MenuItems.Add (newMenuItem);
}
}

private void ApplyMenuProperties(MenuItem mItem)
{
if (IsTopMenu(mItem))
{

220 ROZDZIAŁ C. ŚWIAT .NET

mItem.OwnerDraw = true;
mItem.DrawItem +=

new System.Windows.Forms.DrawItemEventHandler(this.topMenu_DrawItem);
mItem.MeasureItem +=

new System.Windows.Forms.MeasureItemEventHandler(this.topMenu_MeasureItem);
}

foreach (MenuItem subMenu in mItem.MenuItems)
ApplyMenuProperties(subMenu);

}

private static bool IsTopMenu(MenuItem mItem)
{
if (mItem.Parent == null) return true;
return mItem.Parent == mItem.GetMainMenu();
}
}
}

Klasa C XMainMenu określona jest tak, że w kodzie inicjującym menu należy po prostu
napisać:

MainMenu mainMenu;
...
C_XMainMenu cxMainMenu = new C_XMainMenu(mainMenu);
this.Menu = cxMainMenu;

4.11 Schowek

Dostęp do schowka systemowego możliwy jest dzięki obiektowi Clipboard. W schowku można
umieścić dowolny obiekt lub sprawdzić czy znajduje się tam obiekt określonego typu.
Poniższy przykład umieszcza w schowku napis, a następnie wydobywa go stamtąd. Dane

przekazane do schowka w ten sposób są dostępne dla wszystkich aplikacji w systemie, podobnie
dane pobierane ze schowka mogą pochodzić z dowolnej aplikacji w systemie.

/* Wiktor Zychla, 2003 */
using System;
using System.Drawing;
using System.Windows.Forms;

namespace Example
{
public class CMainForm : Form
{
public CMainForm()
{
// umieść dane w schowku
Clipboard.SetDataObject("Tekst przesyłany do schowka", true);

// wydobądź dane ze schowka
IDataObject ido = Clipboard.GetDataObject();
if (ido.GetDataPresent(typeof(string)))
{
string s = ido.GetData(typeof(string)) as string;
MessageBox.Show(s);
}
}

public static void Main()
{
Application.Run(new CMainForm());
}
}
}

4. APLIKACJE OKIENKOWE 221

4.12 Drag & drop

4.13 Tworzenie własnych komponentów

Jedną z najciekawszych możliwości nowoczesnych technologii informatycznych jest możliwość
definiowania własnych komponentów wizualnych. Kiedy nie było jeszcze technologii .NET własne
komponenty można było tworzyć w technologii COM, używając do tego Visual Basica lub C++.
Możliwości .NET jeszcze bardziej ułatwiają cały ten proces. Tak naprawdę wystarczy utwo-

rzyć klasę dziedziczącą z UserControl i już może ona funkcjonować jako komponent wizualny.
Taki własny komponent może na przykład składać się z dowolnej ilości już istniejących kom-
ponentów i automatyzować pewne zależności między nimi, może też tworzyć całkowicie nowe
możliwości interfejsowe.
Do czego może przydawać się możliwość tworzenia własnych komponentów?
Wyobraźmy sobie na przykład, że standardowy komponent ComboBox chcielibyśmy wypo-

sażyć w automatyczne dopasowywanie elementu na liście do tekstu wpisywanego przez użytkow-
nika. Zwykły ComboBox tego nie potrafi, ale można utworzyć własny komponent i dodać reakcje
na odpowiednie zdarzenia, by uzyskać porządaną funkcjonalność. Można taki problem rozwią-
zać bez tworzenia nowego komponentu, tyle że gdyby chcieć użyć takiego ComboBoxa więcej niż
raz, utworzenie jednego komponentu wielokrotnego użycia, po prostu ogromnie upraszcza życie
programisty.
Wyobraźmy sobie również, że chcielibyśmy mieć zupełnie nowy komponent wizualny, siatkę,

z możliwością dodawania wierszy i kolumn i to taką, żeby każda komórka mogła mieć inny
kolor, czcionkę wyrównanie czy orientację tekstu. Takiego komponentu standardowo w bibliotece
komponentów .NET nie ma. Możnaby jednak utworzyć własny komponent, dodać mu jakieś
struktury danych do przechowywania danych, dodać jakieś propercje, metody i zdarzenia, tak
aby można było sterować takim komponentem z poziomu kodu konkretnego okna, w którym
byłby on osadzony, a następnie przeciążyć całkowicie metodę OnPaint, dzięki czemu wizualna
zawartość komponentu mogłaby być tworzona całkowicie dowolnie, bez żadnego związku z już
istniejącymi komponentami.

Najprostszy komponent

Zaczniemy od bardzo prostego przykładu komponentu, który będzie tylko wypisywał tekst w
swoim obszarze. Komponent taki jset oknem leżącym gdzieś w jakimś innym oknie. Wewnątrz
kodu może więc dowiedzieć się jakie są jego bieżące rozmiary za pomocą propercjiWidth i He-
ight. Również propercje takie jak Font, Text, BackColor czy ForeColor są, jako dziedziczone
z klasy UserControl, dostępne dla klienta komponentu.
Klient komponentu (czyli kod, który korzysta z tego komponentu) traktuje więc nowo zapro-

jektowany komponent jak każdy inny - może ustalać rozmiary komponentu, jego kotwicowanie
czy dokowanie oraz używać wszystkich potrzebnnych propercji, zdarzeń i metod (tak prosty kom-
ponent nie ma żadnych sensownych składowych poza tymi dziedziczonymi z UserControl).
W środowisku wizualnym tak zaprojektowany komponent po umieszczeniu w bibliotece

obiektowej (takie jest ograniczenie na przykład VisualStudio) mógłby być umieszczony na przy-
borniku z komponentami i umieszczany na oknach jak każdy inny komponent z przybornika!

/* Wiktor Zychla, 2003 */
using System;
using System.Drawing;
using System.Windows.Forms;

namespace Example
{
public class CKomponent : UserControl
{

222 ROZDZIAŁ C. ŚWIAT .NET

Rysunek C.13: Najprostszy komponent

public CKomponent() {}

protected override void OnPaint(PaintEventArgs e)
{
StringFormat sf = new StringFormat();
sf.Alignment = StringAlignment.Center;
sf.LineAlignment = StringAlignment.Center;

e.Graphics.Clear(this.BackColor);
e.Graphics.DrawString(this.Text, this.Font, Brushes.Black,

this.Width / 2, this.Height / 2, sf);
}

protected override void OnResize(EventArgs e)
{
Invalidate();
}
}

public class CMainForm : Form
{
CKomponent ck1, ck2;

public CMainForm()
{
ck1 = new CKomponent();
ck1.Text = "Komponent 1";
ck1.BackColor = Color.Red;
ck1.Font = new Font("Tahoma", 18);
ck1.Size = new Size(50, 50);
ck1.Dock = DockStyle.Fill;

ck2 = new CKomponent();
ck2.Text = "Komponent 2";
ck2.Font = new Font("Courier", 32);
ck2.Dock = DockStyle.Top;

this.Controls.AddRange(new Control[] { ck1, ck2 });
}

4. APLIKACJE OKIENKOWE 223

public static void Main()
{
Application.Run(new CMainForm());
}
}
}

Komponent złożony

Komponent może zawierać w sobie dowolną ilość innych komponentów i wewnątrz swojego kodu
przechwytywać ich zdarzenia.

/* Wiktor Zychla, 2003 */
using System;
using System.Drawing;
using System.Windows.Forms;

namespace Example
{
public class CKomponent : UserControl
{
Button b1, b2;

public CKomponent()
{
b1 = new Button();
b1.Text = "1";
b1.Dock = DockStyle.Fill;
b1.Click += new EventHandler(bt_Click);

b2 = new Button();
b2.Text = "2";
b2.Size = new Size(40, 40);
b2.Dock = DockStyle.Right;
b2.Click += new EventHandler(bt_Click);

this.Controls.AddRange(new Control[] { b1, b2 });
}

public void bt_Click(object sender, EventArgs e)
{
MessageBox.Show(((Control)sender).Text);
}
}

public class CMainForm : Form
{
CKomponent ck1, ck2;

public CMainForm()
{
ck1 = new CKomponent();
ck1.Text = "Komponent 1";
ck1.BackColor = Color.Red;
ck1.Font = new Font("Tahoma", 8);
ck1.Size = new Size(50, 50);
ck1.Dock = DockStyle.Fill;

ck2 = new CKomponent();
ck2.Text = "Komponent 2";
ck2.Font = new Font("Courier", 12);
ck2.Dock = DockStyle.Top;

this.Controls.AddRange(new Control[] { ck1, ck2 });
}

public static void Main()
{
Application.Run(new CMainForm());

224 ROZDZIAŁ C. ŚWIAT .NET

}
}
}

Definiowanie własnych zdarzeń

Zestaw zdarzeń udostępnianych przez komponenty również może być rozbudowany. Wyobraźmy
sobie, że chcielibyśmy mieć komponent, który zawierałby ComboBox i mały przycisk z napisem
”+” z boku. Chcielibyśmy, aby użytkownik mógł użyć tego przycisku do dodawania nowych
elementów do ComboBoxa. Z punktu widzenia logiki tego komponentu zdarzenie oznaczające
chęć dodania nowego elementu mogłoby jednak pojawiać się również wtedy, kiedy użytkownik
wpisałby w pole tekstowe ComboBoxa jakiś tekst spoza tekstów dostępnych na liście. To już
aż dwa przypadki, kiedy takie zdarzenie mogłoby się pojawić.
Możemy więc zaprojektować nowe zdarzenie. Nazwiemy je AddNewText. Być może w

toku prac okazałobysię, że zdarzenie takie powinno mieć jakieś dodatkowe parametry. Zapro-
jektowalibyśmy wtedy nową klasę, AddNewTextEventArgs i zmodyfikowalibyśmy deklarację
zdarzenia. Należałoby jedynie pamiętać o zachowaniu konwencji: odpowiedni delegat powinien
mieć dwa parametry, z czego pierwszy powinien wskazywać na źródło zdarzenia, drugi powinien
dziedziczyć z klasy EventArgs, rozszerzając ją o dodatkowe parametry zdarzenia.
Zauważmy, że kod klienta korzysta z tego zdarzenia tak samo jak z każdego zdarzenia. Z

punktu widzenia kodu nie ma różnicy między naszym nowym zdarzeniem, a już istniejącymi
zdarzeniami.

/* Wiktor Zychla, 2003 */
using System;
using System.Drawing;
using System.Windows.Forms;

namespace Example
{
public class CComboBox : UserControl
{
ComboBox cb;
Button bt;

// własne zdarzenie definiowane przez komponent
public event EventHandler AddNewText;

public CComboBox()
{
cb = new ComboBox();
cb.Dock = DockStyle.Fill;

bt = new Button();
bt.FlatStyle = FlatStyle.Popup;
bt.Text = "+";
bt.Dock = DockStyle.Right;
bt.Click += new EventHandler(bt_Click);

this.Controls.AddRange(new Control[] { cb, bt });
}

protected override void OnResize(EventArgs e)
{
bt.Size = new Size(this.Height, this.Height);
}

// przechwyć klik w przycisk i na zewnątrz wystaw jako AddNewText
void bt_Click(object sender, EventArgs e)
{
// sprawdź czy są jacyś słuchacze
if (AddNewText != null)
AddNewText(this, new EventArgs());

4. APLIKACJE OKIENKOWE 225

}
}

public class CMainForm : Form
{
CComboBox cb1;

public CMainForm()
{
cb1 = new CComboBox();
cb1.Size = new Size(150, 20);

cb1.AddNewText += new EventHandler(cb_AddNewText);

this.Controls.Add(cb1);
}

void cb_AddNewText(object sender, EventArgs e)
{
MessageBox.Show("Zgłoszono zdarzenie AddNewText!");
}

public static void Main()
{
Application.Run(new CMainForm());
}
}
}

4.14 Typowe okna dialogowe

Okna wyboru plików

Standardowo, programista ma do dyspozycji okno wyboru pliku do otwarcia i zamknięcia (Open-
FileDialog i SaveFileSialog). Oba działają bardzo podobnie - po ustaleniu właściwości należy
wywołać metodę do pokazania okna i przechwycić rezultat, wskazujący na to czy przypadkiem
użytkownik nie anulował okna. Lista wybranych plików dostępna jest dzięki propercji FileNa-
me[s].

/* Wiktor Zychla, 2003 */
using System;
using System.Drawing;
using System.Windows.Forms;

namespace Example
{
public class CMainForm : Form
{
public CMainForm()
{
OpenFileDialog of = new OpenFileDialog();
of.InitialDirectory =
Environment.GetFolderPath(Environment.SpecialFolder.ProgramFiles);
of.Title = "Wybierz plik do otwarcia...";
of.Filter = "Moje pliki (*.xyz)|*.xyz|"+

"Wszystkie pliki (*.*)|*.*";
of.Multiselect = true;

DialogResult res = of.ShowDialog();
if (res == DialogResult.OK)
foreach (string fileName in of.FileNames)
MessageBox.Show("Wybrano plik " + fileName);

}

public static void Main()
{
Application.Run(new CMainForm());

226 ROZDZIAŁ C. ŚWIAT .NET

}
}
}

Okno wyboru czcionki

/* Wiktor Zychla, 2003 */
using System;
using System.Drawing;
using System.Windows.Forms;

namespace Example
{
public class CMainForm : Form
{
public CMainForm()
{
FontDialog fd = new FontDialog();
fd.ShowColor = true;
fd.ShowEffects = true;

DialogResult res = fd.ShowDialog();
if (res == DialogResult.OK)
MessageBox.Show("Wybrano czcionkę: " + fd.Font.ToString());

}

public static void Main()
{
Application.Run(new CMainForm());
}
}
}

Okno wyboru koloru

/* Wiktor Zychla, 2003 */
using System;
using System.Drawing;
using System.Windows.Forms;

namespace Example
{
public class CMainForm : Form
{
public CMainForm()
{
ColorDialog cd = new ColorDialog();
cd.AllowFullOpen = true;

DialogResult res = cd.ShowDialog();
if (res == DialogResult.OK)
MessageBox.Show("Wybrano kolor: " + cd.Color.ToString());

}

public static void Main()
{
Application.Run(new CMainForm());
}
}
}

5. CIEKAWOSTKI .NET 227

5 Ciekawostki .NET

5.1 Błąd odśmiecania we wczesnych wersjach Frameworka

Odśmiecacz, jako kluczowy element środowiska uruchomieniowego, powinien radzić sobie w wielu
różnych sytuacjach. Ciekawostką jst fakt, że w pierwszej wersji .NET Frameworka odśmiecacz
czasami nie potrafił radzić sobie z usuwaniem niepotrzebnej pamięci.
Przykładowy program próbował w pętli rezerwować sobie coraz większy fragment pamięci,

zaczynając od bloku 10MB i zwiększając wielkość bloku o 10kB w każdej iteracji. Rezerwowany
wewnątrz pętli blok powinien być oznaczony jako nieużywany, tak się jednak nie działo. W
konsekwencji program działał tak długo, aż skończyła się dostępna w systemie pamięć, po czym
kończył się z wyjątkiem Out of memory.
Problem został usunięty w poprawce SP2 do Frameworka 1.0. Nie występuje we Frameworku

1.1.

/* Wiktor Zychla, 2003 */
using System;

class Test
{
public static void Main(string [] args)
{
for (int tries=0; tries < 200; tries++)
{
int iNElements = 10000000 + tries*10000;

try
{
byte [] aMyMem = new byte [iNElements-1];

}

catch (Exception e)
{
Console.WriteLine (e);
Console.WriteLine (iNElements);
return;

}
}

}
}

5.2 Dostęp do prywatnych metod klasy

Mimo, że CLS dość mocno broni się przed dostępem do prywatnych składowych obiektów, istnie-
je sposób na dostęp do prytwatnych metod. Okazuje się, że przydaje się tu mechanizm refleksji.
Sposób ten, z oczywistych powodów, nie nadaje się do wydobywania informacji o prywatnych
polach klas. Metody są bowiem składowymi statycznymi i są częścią opisu klasy. Pola zaś są
składowymi dynamicznymi, unikalnymi dla każdej nowej instancji obiektu.

/* Wiktor Zychla, 2003 */
using System;
using System.Reflection;

namespace Example
{

// Klasa z metodą prywatną
public class ClassA
{
private void metodaPrywatna()
{
Console.WriteLine("Metoda prywatna.");

228 ROZDZIAŁ C. ŚWIAT .NET

}
}

public class CMain
{
static void Main()
{
ClassA classA = new ClassA();
Type type = classA.GetType();

foreach (MethodInfo method in type.GetMethods(
BindingFlags.Instance | BindingFlags.NonPublic))

{
if (method.Name == "metodaPrywatna")
{
method.Invoke(classA, new object[] {});
}
}
}
}
}

5.3 Informacje o systemie

Informacje o konfiguracji systemu

Informacje o konfiguracji systemu dostępne są dzięki propercjom i metodom klasy Environ-
ment. Istnieje m.in. możliwość uzyskania informacji:

CommandLine - parametry linii poleceń

CurrentDirectory - bieżąca ścieżka

GetEnvironmentVariables - zmienne systemowe

GetFolderPath - lokalizacja specjalnych folderów systemowych

GetLogicalDrives - lista napędów logicznych w systemie

MachineName - nazwa komputera

SystemDirectory - folder systemowy

Version - wersja systemu

Informacje o środowisku graficznym

Dostęp do informacji o konfiguracji środowiska graficznego możliwy jest dzięki klasie Syste-
mInformation. Dostępne są m.in. następujące informacje :

ComputerName - nazwa komputera

MonitorCount - liczba monitorów

MouseButtons - liczba przycisków myszy

MouseWheelPresent - dodatkowa możliwość myszy (obecność kółka)

oraz mnóstwo propercji opisujących rozmiary obiektów graficznych: kursora, ikon, czcionki
menu, rozmiaru ekranu itd.

5. CIEKAWOSTKI .NET 229

Informacje o środowisku uruchomieniowym

Istnieje również możliwość zasięgnięcia informacji o środowisku uruchomieniowym. Służy do tego
klasa RuntimeEnvironment z biblioteki System.Runtime.InteropServices. Udostępnia
informacje:

GetRuntimeDirectory - ścieżka, w której zainstalowano środowisko uruchomieniowe

GetSystemVersion - wersja środowiska uruchomieniowego

5.4 Własny kształt kursora myszy

W szczególnych przypadkach można zmienić kształt kursora myszy. Biblioteki .NET udostęp-
niają klasę Cursors, która udostępnia większość typowych kursorów systemowych. Co jednak
zrobić, gdy typowe kształty nie wystarczają?
Otóż można skorzystać z możliwości przekształcenia dowolnej bitmapy na kursor myszy:

...
// twórz bitmapę, można użyć już istniejącej
Bitmap b = new Bitmap(30, 15);
Graphics g = Graphics.FromImage (b);
g.DrawString ("NAPIS", this.Font, Brushes.Black, 0, 0);

// uchwyt do ikony utworzonej z bitmapy
IntPtr ptr = b.GetHicon();

// zamień na ikonę lub kursor
Icon i = Icon.FromHandle (ptr);
Cursor c = new Cursor(ptr);

// przypisz kursor oknu
this.Cursor = c;

5.5 Własne kształty okien

Windows potrafi wykorzystać maski bitowe do definiowana kształtów okien. W świecie .NET
nieregularne okna można definiować dzięki obiektom GraphicsPath, na przykład:

...
// elipsoidalny kształt okna
GraphicsPath gP = new GraphicsPath();

gP.AddEllipse (0, 0, this.Width, this.Height);
this.Region = new Region (gP);

5.6 Podwójne buforowanie grafiki w GDI+

W GDI+ istnieje możliwość włączenia automatycznego podwójnego buforowania wyświetlanej
grafiki. Obraz zyskuje dzięki temu na płynności, co jest szczególnie przydatne gdy obraz odświe-
żany jest dość często.

...
SetStyle(ControlStyles.UserPaint, true);
SetStyle(ControlStyles.AllPaintingInWmPaint, true);
SetStyle(ControlStyles.DoubleBuffer, true);

230 ROZDZIAŁ C. ŚWIAT .NET

5.7 Sprawdzanie uprawnień użytkownika

Jeśli podczas pracy aplikacji zachodzi potrzeba sprawdzenia, czy użytkownik ma uprawnienia
administratora można posłużyć się następującym kodem:

using System.Security;
using System.Security.Permissions;
using System.Security.Principal;

...
WindowsPrincipal wid = new WindowsPrincipal(WindowsIdentity.GetCurrent());
bool isAdmin = wid.IsInRole(WindowsBuiltInRole.Administrator);

5.8 Ikona skojarzona z plikiem

System operacyjny Windows z niektórymi rozszerzeniami plików kojarzy aplikacje, służące do ich
otwierania. Menedżery plików pokazując listę plików, pokazują też ikony skojarzone z plikami,
czyli ikony aplikacji służących do otwierania tych plików.
Biblioteki .NET nie udostępniają bezpośrednio funkcji do wydobywania ikon skojarzonych z

plikami, należy więc sięgnąć do Win32API:

public class ExtractIcon
{
[DllImport("Shell32.dll")]
private static extern int SHGetFileInfo
(
string pszPath,
uint dwFileAttributes,
out SHFILEINFO psfi,
uint cbfileInfo,
SHGFI uFlags
);

[StructLayout(LayoutKind.Sequential)]
private struct SHFILEINFO
{
public SHFILEINFO(bool b)
{
hIcon=IntPtr.Zero;iIcon=0;dwAttributes=0;szDisplayName="";szTypeName="";
}
public IntPtr hIcon;
public int iIcon;
public uint dwAttributes;
[MarshalAs(UnmanagedType.LPStr, SizeConst=260)]
public string szDisplayName;
[MarshalAs(UnmanagedType.LPStr, SizeConst=80)]
public string szTypeName;
};

private ExtractIcon() {}

private enum SHGFI
{
SmallIcon = 0x00000001,
LargeIcon = 0x00000000,
Icon = 0x00000100,
DisplayName = 0x00000200,
Typename = 0x00000400,
SysIconIndex = 0x00004000,
UseFileAttributes = 0x00000010
}

public static Icon GetIcon(string strPath, bool bSmall)
{
SHFILEINFO info = new SHFILEINFO(true);
int cbFileInfo = Marshal.SizeOf(info);
SHGFI flags;

5. CIEKAWOSTKI .NET 231

if (bSmall)
flags = SHGFI.Icon|SHGFI.SmallIcon|SHGFI.UseFileAttributes;
else
flags = SHGFI.Icon|SHGFI.LargeIcon|SHGFI.UseFileAttributes;

SHGetFileInfo(strPath, 256, out info,(uint)cbFileInfo, flags);
return Icon.FromHandle(info.hIcon);
}
}

5.9 WMI

WMI (ang. Windows Management Instrumentation) jest mechanizmem umożliwiającym dia-
gnozowanie stanu komputera i systemu operacyjnego w jednorodny sposób: WMI udostępnia
obiekt, który interfejsem przypomina bazę danych. Aby uzyskać interesujące informacje, należy
po prostu zadać odpowiednie zapytanie w języku SQL, odwołując się do odpowiedniego obiektu
WMI.

Możliwości WMI są naprawdę duże. Zadając odpowiednie zapytanie można dowiedzieć się
mnóstwo szczegółów takich jak np. marka producenta płyty głównej, częstotliwość taktowania
procesora, numer wersji BIOSu i wiele, wiele innych.

WMI jest dostępne w Windows począwszy od Windows 2000. W Windows 98 musi być
doinstalowane przez użytkownika.

using System;
using System.Management;
namespace WMI
{
class CExample
{
static void Main(string[] args)
{
ManagementObjectSearcher query1 =
new ManagementObjectSearcher("SELECT * FROM win32_OperatingSystem") ;
ManagementObjectCollection queryCollection1 = query1.Get();
foreach(ManagementObject mo in queryCollection1)
{
Console.WriteLine("Name : " + mo["name"].ToString());
Console.WriteLine("Version : " + mo["version"].ToString());
Console.WriteLine("Manufacturer : " + mo["Manufacturer"].ToString());
Console.WriteLine("Computer Name : " +mo["csname"].ToString());
Console.WriteLine("Windows Directory : " + mo["WindowsDirectory"].ToString());
}

query1 = new ManagementObjectSearcher("SELECT * FROM win32_Processor") ;
queryCollection1 = query1.Get();
foreach(ManagementObject mo in queryCollection1)
{
Console.WriteLine(mo["Caption"].ToString());
Console.WriteLine(mo["CurrentClockSpeed"].ToString());
}

query1 = new ManagementObjectSearcher("SELECT * FROM win32_BIOS") ;
queryCollection1 = query1.Get();
foreach(ManagementObject mo in queryCollection1)
{
Console.WriteLine(mo["version"].ToString());
}
}
}
}

232 ROZDZIAŁ C. ŚWIAT .NET

6 Bazy danych i ADO.NET

6.1 Interfejsy komunikacji z bazami danych

Pisząc aplikację, której zadaniem jest gromadzenie i przetwarzanie informacji, programista czę-
sto staje przed wyborem sposobu gromadzenia danych. Współcześnie najczęściej wykorzystuje
się do tego serwery baz danych, bowiem gwarantują one, m.in bezpieczeństwo, integralność i
nienaruszalność danych.
Z punktu widzenia programisty, serwer baz danych jest zwykłym programem, który swoje

usługi dostępu do danych oferuje wielu klientom. Schemat takiej komunikacji jest identyczny jak
znany nam już z poprzednich rozdziałów schemat wymiany danych między serwerem, a klientem
sieciowym: jakiś protokół fizyczny pełni rolę nośnika informacji, zaś jakiś protokół logiczny
określa postać wymienianych komunikatów.
Interfejsy programowania baz danych zwalniają programistę z konieczności czuwania nad

szczegółami komunikacji, pozwalają zaś skupić się na wymianie danych między klientem a ser-
werem. Jak zobaczymy w kolejnych podrozdziałach, istnieją trzy podstawowe operacje udostęp-
niane przez interfejs programowania baz danych, których programista musi użyć do komunikacji
z serwerem:

1. Otwarcie połączenia z wybranym serwerem baz danych

2. Wykonanie operacji na otwartym połączeniu

3. Zamknięcie połączenia do bazy danych

Możliwości oferowane przez poszczególne serwery baz danych różnią się od siebie. Mogło-
by się więc wydawać, że interfejs programowania serwera MySQL, Microsoft SQL Server, czy
Oracle muszą się od siebie różnić. Na szczęście nie jest aż tak źle, opracowano bowiem takie
interfejsy, które są oderwane od szczegółów implementacji konkretnego serwera i (przynajmniej
teoretycznie) pozwalają oprogramować komunikację z każdym dostępnym serwerem baz danych
w dokładnie taki sam sposób.

ODBC

Open DataBase Connectivity jest interfejsem umożliwiającym dostęp do danych składo-
wanych w dowolnym systemie zarządzania bazami danych (DataBase Maganement System,
DBMS23). ODBC jest zbudowany w oparciu o specyfikacje X/Open i ISO/IEC.
W systemie Windows za komunikację z systemami zarządzania baz danych odpowiada biblio-

teka odbc32.dll. Zaimplementowano wiele sterowników ODBC dla różnych DBMSów. Jeśli na
rynku pojawia się nowy system bazodanowy, to jest niemal pewne, że będzie on potrafił komuni-
kować się za pomocą ODBC. System Windows potrafi komuikować się za pomocą ODBC m.in.
z MS SQL Severem, Oracle, Visual Fox Pro, czy bazami MS Access. Producenci nowych rozwią-
zań bazodanowych najczęściej sami dostarczają odpowiednie sterowniki, tak jest na przykład w
przypadku serwera MySQL.

OLE DB

OLE DB jest rozwinięciem idei ODBC. W teorii umożliwia dostęp do dowolnych danych, nie
tylko relacyjnym DBMSów.
Idea OLE DB polega na współistnieniu trzech rodzajów obiektów. Są to:

23DBMSami są na przykład serwery baz danych.

6. BAZY DANYCH I ADO.NET 233

� dostawcy danych (data providers), którzy przechowują i udostępniają dane

� konsumenci danych (data consumers, którzy mogą korzystać z danych

� składniki usługowe (service components), które przetwarzają dane

Obiekty z każdej z tych grup muszą po prostu udostępniać pewien ściśle określony (przez
standard OLE DB) zbiór funkcji. Teoretycznie można sobie wyobrazić na przykład taki scena-
riusz, w którym dostawca danych przechowuje dane w pliku tekstowym, składnik usługowy te
dane sortuje, zaś konsument pobiera wynik.

ADO i ADO.NET

Tak naprawdę programista piszący aplikacje klienckie raczej nigdy nie będzie zmuszony do pisa-
nia własnych obiektów - dostawców danych, ani własnych usług OLE DB. Obie te funkcje speł-
niane są przez systemy zarządzania bazami danych i istotne są z punktu widzenia projektantów
tych systemów. Programista aplikacji klienckiej jest za to zainteresowany interfejsem progra-
mowania przeznaczonym do konsumowania danych udostępnianych przez systemy bazodanowe.
Najpopularniejszym interfejsem programowania konsumentów danych, dodatkowo opakowują-
cym interfejs OLE DB, jest ADO.
Interfejs ADO (ActiveX Data Objects) został zaprojektowany jako interfejs obiektowy,

udostępniany w modelu COM. Zdobył dużą populaność wśród programistów, ponieważ szybko
powstały komponenty ADO dla popularnych systemów RAD (Visual Basic, Delphi, języki
skryptowe). Siłą ADO od początku była jego prostota i jednorodność - ADO umożliwia pisanie
aplikacji w dużym stopniu niezależnych od sposobu składowania danych.
ADO.NET jest kolejnym krokiem w stronę uproszczenia interfejsu klienta OLE DB, dostęp-

nego dla programistów aplikacji na platformie .NET. Dzięki ADO.NET dostęp do baz danych
wygląda niemal identycznie nie tylko w różnych językach platformy .NET, ale jest niezależny od
dostawcy danych. Oznacza to, że praktycznie nie powinno mieć większego znaczenia czy składo-
wiskiem danych aplikacji jest MySQL, MS SQL Server czy Oracle, bowiem aplikacja komunikuje
się z nimi wszystkimi w prawie identyczny sposób.
Dla połączeń OLEDB, interfejs ADO.NET udostępnia szereg klas, których nazwy rozpo-

czynają się od OleDb..., na przykład OleDbConnection. Specjalnie dla MS SQL Servera
przygotowano specjalizowany zestaw klas przeznaczonych wyłącznie dla MS SQL Servera, któ-
rych funkcjonalność jest identyczna, tyle że ich nazwy rozpoczynają się od Sql.... Inni dostawcy
systemów baz danych podjęli tę konwencję, przygotowując specjalizowane klasy dla komunikacji
z serwerem Oracle czy MySQL.
Zaletą specjalizowanych klas jest ich szybkość. Na przykład dzięki użyciu klas Sql... aplikacja

wymienia dane z serwerem MS SQL około 2 razy szybciej niż za pomocą klas OleDb....
Ich wada polega zaś na tym, że obsługują tylko jeden typ dostawcy danych, w przeciwieństwie

do klas OleDb..., które są ogólne i jedyna różnica w dostępie do danych z różnych serwerów
wynika z konieczności nieco innego zainicjowania połączenia do bazy danych.

6.2 Manualne zakładanie bazy danych

Sposoby wymiany danych między serwerem bazy danych a aplikacją omówimy na przykładzie
serwera bazodanowego Microsoft SQL Server. Wymiana danych z innymi serwerami baz da-
nych wygląda identycznie od strony interfejsu programowego. Różnice mogą pojawiać się tylko
wtedy, kiedy serwer bazodanowy, z którym komunikuje się aplikacja, nie obsługuje pewnych
mechanizmów, których spodziewa się aplikacja.

234 ROZDZIAŁ C. ŚWIAT .NET

Przykład rozpoczniemy od założenia bazy danych. Większość serwerów baz danych wspo-
maga operacje administracji specjalnymi narzędziami z wygodnym interfejsem użytkownika24,
jednak prawie zawsze dają możliwość korzystania bezpośrednio z poleceń języka SQL.
Skorzystamy więc z tej możliwości, aby utworzyć prostą bazę danych na serwerze MS SQL

Server. Do każdej wersji serwera SQL Server (dotyczy to nawet wersji ”Desktop”, czyli MSDE)
dołączone jest narzędzie o nazwie osql, które pozwala na wydawanie poleceń SQL serwerowi.
Zacznijmy od połączenia się ze wskazanym serwerem (nazwa (local) oznacza serwer lokalny)

jako wskazany użytkownik. MS SQL Server może podczas pracy używać własnych mechanizmów
uwierzytelniania, niezależnych od uwierzytelniania w systemie. W takim scenariuszu admini-
strator serwera nazywa się sa i on tworzy kolejnych użytkowników i nadaje im uprawnienia do
korzystania z poszczególnych baz danych.

C:\MSSQL7\Binn>osql -H (local) -U sa
Password:
1>

Program OSQL nawiązał połączenie z serwerem i oczekuje na polecenia w języku SQL. Użyt-
kownik może podać dowolną ilość poleceń rozdzielonych znakiem ”;” i zakończonych poleceniem
GO, które spowoduje wykonanie poleceń i zwrócenie wyników do okna konsoli.

1> SELECT @@VERSION
2> GO

Microsoft SQL Server 7.00 - 7.00.623 (Intel X86)
Nov 27 1998 22:20:07
Copy
right (c) 1988-1998 Microsoft Corporation
MSDE on Windows 4.10 (Build 1998:)

(1 row affected)

Najpierw utworzymy nową bazę danych i uczynimy ją bieżącą:

CREATE DATABASE sqlTEST
GO
USE sqlTEST
GO

Następnie utworzymy dwie tabele z danymi,T STUDENT iT UCZELNIA, tworząc przy
okazji relację jeden-do-wielu między nimi (wielu studentów może uczęszczać do jednej uczelni).

CREATE TABLE T_UCZELNIA
(ID_UCZELNIA INT IDENTITY(1,1) NOT NULL
CONSTRAINT PK_UCZELNIA PRIMARY KEY NONCLUSTERED,
Nazwa varchar(150) NOT NULL,
Miejscowosc varchar(50) NOT NULL)

CREATE TABLE T_STUDENT
(ID_UCZEN INT IDENTITY(1,1) NOT NULL
CONSTRAINT PK_STUDENT PRIMARY KEY NONCLUSTERED,
ID_UCZELNIA INT NOT NULL
CONSTRAINT FK_STUDENT_UCZELNIA REFERENCES T_UCZELNIA(ID_UCZELNIA),
Nazwisko varchar(150) NOT NULL,
Imie varchar(150) NOT NULL)

Mając przygotowane tabele, dodajmy jakieś przykładowe dane:

24W przypadku serwera MS SQL Server, okienkowym narzędziem administracyjnym może być nawet Microsoft
Access

6. BAZY DANYCH I ADO.NET 235

INSERT T_UCZELNIA VALUES (’Uniwersytet Wrocławski’, ’Wrocław’)
INSERT T_UCZELNIA VALUES (’Uniwersytet Warszawski’, ’Warszawa’)
INSERT T_STUDENT VALUES (1, ’Kowalski’, ’Jan’)
INSERT T_STUDENT VALUES (1, ’Malinowski’, ’Tomasz’)
INSERT T_STUDENT VALUES (2, ’Nowak’, ’Adam’)
INSERT T_STUDENT VALUES (2, ’Kamińska’, ’Barbara’)

Sprawdźmy na wszelki wypadek poprawność wpisanych danych:

SELECT * FROM T_STUDENT WHERE ID_UCZELNIA=1

6.3 Nawiązywanie połączenia z bazą danych

Naszą bazodanową aplikację rozpoczniemy od napisania szkieletu kodu - próby połączenia się z
bazą danych. Aplikację tę będziemy rozwijać o kolejne elementy komunikacji z serwerem bazy
danych.
Do nawiązania połączenia potrzebne jest poprawne zainicjowanie obiektu typu SqlCon-

nection (w przypadku protokołu OleDb - OleDbConnection). Przyjęto pewną zasadę, wedle
której parametry połączenia przekazuje się w postaci napisu w propercji ConnectionString
obiektu połączenia. Napis ten jest odpowiednio sformatowany i przechowuje informacje m.in. o:

� Rodzaju dostawcy protokołu OleDb Provider

� Nazwie serwera Server

� Nazwie bazy danych Database

� Nazwie użytkownika User ID

� Haśle użytkownika Pwd

using System;
using System.Data;
using System.Data.SqlClient;

namespace Example
{
class CExample
{
public static string BuildConnectionString(string serverName,

string dbName,
string userName,
string passWd)

{
return String.Format(
@"Server={0};Database={1};User ID={2};Pwd={3};Connect Timeout=15",
serverName, dbName, userName, passWd);

}

static void PracaZSerwerem(SqlConnection sqlConn)
{
Console.WriteLine("Połączony z serwerem!");
}

public static void Main(string[] args)
{
SqlConnection sqlConn = new SqlConnection();

sqlConn.ConnectionString =
BuildConnectionString("(local)", "sqlTEST", "sa", String.Empty);

try
{
sqlConn.Open();

236 ROZDZIAŁ C. ŚWIAT .NET

PracaZSerwerem(sqlConn);

sqlConn.Close();
}
catch (Exception ex)
{
Console.WriteLine(ex.Message);
}
}
}
}

6.4 Pasywna wymiana danych

Pierwszym ze sposobów komunikacji z serwerem baz danych jaki udostępnia ADO.NET jest
komunikacja pasywna. Serwer otrzyma polecenie do wykonania i ew. zwróci wyniki, jednak po
zakończeniu operacji to programista będzie musiał podejmować decyzje co do dalszej pracy
z serwerem. W tym scenariuszu dane mogą zostać pobrane i od tej pory serwer przestanie
interesować się tym, co się z nimi stało. Jeżeli po pewnym czasie program przyśle serwerowi
zestaw poleceń dotyczący na przykład aktualizacji wcześniej pobranych danych, to z punktu
widzenia serwera będzie to niezależna operacja.
Do realizacji pasywnej wymiany danych potrzebny jest obiekt SqlCommand, który okre-

śla parametry komendy przekazywanej serwerowi. Obiekt ten może zadaną komendę wykonać,
zwracając zbiór rekordów z bazy danych, wartość skalarną lub pusty zbiór wyników, w zależności
od postaci komendy. Komendy specyfikuje się oczywiście w języku SQL.
Zbiór rekordów będących wynikiem działania komendy SQL zostanie zwrócony dzięki me-

todzie ExecuteReader obiektu SqlCommand. Ściślej, wynikiem działania tej metody będzie
obiekt typu SqlDataReader, który pozwala na obejrzenie wszystkich wierszy wyniku. Obiekt
ten, dzięki indekserowi, pozwala na obejrzenie poszczególnych kolumn z zapytania SQL.

...
static void PracaZSerwerem(SqlConnection sqlConn)
{
SqlCommand sqlCmd = new SqlCommand();

sqlCmd.Connection = sqlConn;
sqlCmd.CommandText = "SELECT Imie, Nazwisko, Nazwa FROM T_STUDENT, T_UCZELNIA "+

"WHERE T_STUDENT.ID_UCZELNIA = T_UCZELNIA.ID_UCZELNIA";

SqlDataReader sqlReader = sqlCmd.ExecuteReader();
while (sqlReader.Read())
{
Console.WriteLine("{0,-12}{1,-12}{2,-20}",

(string)sqlReader["Imie"],
(string)sqlReader["Nazwisko"],
(string)sqlReader["Nazwa"]);

}
}
...

C:\Example>example
Jan Kowalski Uniwersytet Wrocławski
Tomasz Malinowski Uniwersytet Wrocławski
Adam Nowak Uniwersytet Warszawski
Barbara Kamińska Uniwersytet Warszawski

Zwrócenie wartości skalarnej jest prostsze, bowiem wystarczy po prostu przechwycić wynik
działania metody ExecuteScalar obiektu SqlCommand.

static void PracaZSerwerem(SqlConnection sqlConn)
{
SqlCommand sqlCmd = new SqlCommand();

6. BAZY DANYCH I ADO.NET 237

sqlCmd.Connection = sqlConn;
sqlCmd.CommandText = "SELECT @@VERSION";

string version = (string)sqlCmd.ExecuteScalar();
Console.WriteLine(version);
}

Wykonanie komendy nie zwracającej wyników jest najprostsze. Wystarczy wykonać metodę
ExecuteNonQuery obiektu SqlCommand.

static void PracaZSerwerem(SqlConnection sqlConn)
{
SqlCommand sqlCmd = new SqlCommand();

sqlCmd.Connection = sqlConn;
sqlCmd.CommandText = "UPDATE T_STUDENT SET Imie=’Janusz’ WHERE Imie=’Jan’";

sqlCmd.ExecuteNonQuery();
}

6.5 Lokalne struktury danych

Dane przechowywane w tabelach relacyjnych bazy danych przesyłane są do aplikacji w postaci
wierszy spełniających kryteria odpowiedniego zapytania. Programista staje więc przed wyborem
sposobu, w jaki aplikacja przechowa te dane do (być może) wielokrotnego użycia.
Jest to jedno z najbardziej złożonych zagadnień związanych z programowaniem aplikacji

bazodanowych. Okazuje się, że istnieje wiele możliwości, zaś każda z nich ma swoje zalety i
swoje wady. Każda z nich określa pewien lokalny model danych, czyli:

� zakres danych, które aplikacja powinna pobierać z serwera na czas jednej sesji pracy z
programem

� zbiór struktur danych, których program używa do przechowania danych pobranych z ser-
wera

� sposób w jaki aplikacja poinformuje serwer o zmianach w danych, jakich użytkownik do-
konuje podczas sesji pracy z programem

� sposób w jaki aplikacja reaguje na zmiany danych wprowadzane przez wielu użytkowników
pracujących jednocześnie, czyli wsparcie dla wielodostępu do danych

Punktem wyjścia do budowania modelu struktur danych po stronie aplikacji powinien być
zbiór klas odpowiadających mniej lub bardziej zbiorowi tabel w bazie danych. Jest to podej-
ście naturalne i elastyczne. Na przykład jeśli w bazie danych istnieją tabele T UCZELNIA i
T STUDENT, to po stronie aplikacji odpowiadać im będą klasy CUczelnia i CStudent.

Zakres danych Czy podczas startu aplikacja powinna pobrać wszystkie dane z bazy danych
serwera, czy też powinna pobierać tyle danych, ile potrzeba do zbudowania bieżącego
kontekstu?

� Aplikacja powinna pobierać wszystkie dane z serwera wtedy, kiedy baza danych jest
relatywnie mała. Jeżeli z szacunków wynika, że w żadnej tabeli nie będzie więcej niż
powiedzmy sto tysięcy rekordów, a tabel jest powiedzmy nie więcej niż pięćdziesiąt,
to z powodzeniem można podczas staru aplikacji przeczytać je wszystkie. Mając kom-
plet danych, aplikacja może sama tworzyć proste zestawienia i obliczenia na danych,
nie angażując do tego procesu serwera. Aplikacja może również posiadać szybką i jed-
norodną warstwę pośrednią między danymi zgromadzonymi na serwerze, a danymi
udostępnianymi komponentom wizualnym w oknach.

238 ROZDZIAŁ C. ŚWIAT .NET

� Jeśli z szacunków wynika, że liczba danych w niektórych tabelach może być większa
niż kilkaset tysięcy rekordów, to pobranie ich w całości może być kłopotliwe, z powodu
ograniczeń czasowych i pamięciowych. Należy rozważyć model, w którym aplikacja
pobiera tylko tyle danych, ile potrzeba do pokazania jakiegoś widoku (okna), bądź
zastosować model mieszany (czyli pobierać wszystkie dane z małych tabel i aktualnie
potrzebne fragmenty większych tabel.

Struktury danych Jakich struktur danych należy użyć, do przechowania danych pobieranych
z serwera?

� Jeżeli struktura danych powinna odzwierciedlać relacje między danymi, to można na
przykład rozważyć struktury drzewopodobne. Na przykład dla naszej aplikacji moż-
naby klasy CUczelnia i CStudent zaprojektować tak, aby elementem klasy CUczelnia
była kolekcja CStudenci, zaś w samej aplikacji możnaby zadeklarować kolekcję CUczelnie.
Taki projekt klas w naturalny sposób odpowiada logicznym powiązaniom istnieją-
cym między danymi, a które wynikają z modelu obiektowego danych. Zainicjowanie
komponentów wizualnych wydaje się dość proste, na przykład komponent TreeView
możnaby zainicjować wyjątkowo łatwo.
Inne relacje między obiektami należałoby zamodelować w podobny sposób, kierując
się ogólnymi zasadami modelowania obiektowego.

public class CUczelnia
{
public string Nazwa;
public string Miejscowosc;
...
public ArrayList CStudenci;
}
public class CStudent
{
public string Imie;
public string Nazwisko;
...
}
public class CDane
{
...
public static ArrayList CUczelnie;
}

� Jeżeli struktura danych powinna uwypuklać nie tyle zależności między danymi, co
sposób ich składowania, to można rozważyć model, w którym dane w pamięci prze-
chowywane są w kolekcjach, będących dokładnymi kopiami tabel bazodanowych. Lo-
gika zależności miedzy danymi musiałaby być wtedy zawarta w pewnym dodatkowym
zbiorze funkcji, z konieczności ”duplikujących” pewne funkcje serwera bazodanowego.
Taka struktura byłaby jednak jednorodna i ułatwiałaby komunikację zwrotną z ser-
werem.

public class CUczelnia
{
public string Nazwa;
public string Miejscowosc;
...

public Hashtable Studenci()
{
Hashtable hRet = new Hashtable();

foreach (CStudent student in CDane.CStudenci.Values)
if (student.ID_UCZELNIA == this.ID)

6. BAZY DANYCH I ADO.NET 239

hRet.Add(student.ID, student);

return hRet;
}
}
public class CStudent
{
public string Imie;
public string Nazwisko;
...
}
public class CDane
{
...
public static Hashtable ArrayList CUczelnie;
public static Hashtable ArrayList CStudenci;
}

Powiadamianie o zmianach W jaki sposób aplikacja powinna powiadamiać serwer o zmia-
nach w danych, jakich dokonał użytkownik? Jak zareagować, jeśli użytkownik zmodyfiko-
wał na przykład imię Jana Kowalskiego na Janusz?

� Aplikacja może śledzić zmiany w danych dokonywane przez użytkownika w kolejnych
widokach. Na przykład jeśli użytkownik ogląda dane w komponencie ListView w
jakimś oknie, to po dokonaniu każdej zmiany aplikacja może zapamiętać ten fakt
w jakiejś dodatkowej strukturze (na przykład w ArrayList zachować identyfikator
zmodyfikowanej danej). Przy próbie zamykania widoku, aplikacja mogłaby zapytać
użytkownika o chęć zapamiętania zmian w bazie danych. Do tego celu aplikacja wy-
słałaby do serwera baz danych odpowiednią ilość poleceń UPDATE

� Aplikacja może śledzić zmiany w danych dokonywane przez użytkownika w samych
obiektach, na przykład obsługując pole zmodyfikowany w klasach. Jeżeli użytkow-
nik chce odesłać swoje dane do serwera niezależnie od aktualnego kontekstu, to apli-
kacja po prostu przegląda wszystkie dane i sprawdza, które zostały zmodyfikowane,
a następnie konstruuje odpowiednie polecenie SQL (UPDATE ...) dla każdego zmo-
dyfikowanego obiektu.

� Aplikacja może również zlecić śledzenie zmian danych w specjalnie zaprojektowanych
do tego w ADO.NET obiektach, takich jak DataSet i DataGrid.

Wielodostęp Czy aplikacja powinna informować inne aplikacje korzystające z tych samych
danych o wprowadzanych zmianach? A może powinna blokować dostęp do danych użyt-
kownikowi A, jeśli w tym samym czasie dane te ogląda użytkownik B? Możliwości jest tu
dużo i są w różnym stopniu wspierane przez różne serwery baz danych.

� Najbardziej restrykcyjny scenariusz zakłada, że z danych może korzystać tylko jeden
użytkownik w jednej chwili. Aplikacja odpytuje serwer baz danych o już podłączonych
użytkowników i jeśli takowi istnieją, to odmawia pracy.

� Bardziej liberalny model zakłada, że wielu użytkowników może korzystać z tych sa-
mych danych, jednak uzytkownicy w danej chwili mogą oglądać tylko rozłączne dane.
Jeżeli aplikacja konstruuje widok, w którym pokazana jest lista studentów, to ten
fakt odnotowywany jest w bazie danych i żaden inny użytkownik nie ma dostępu do
danych o studentach, dopóki dane te nie zostaną zwolnione.

� Jeszcze liberalniejszy model zakłada, że możliwy jest dostęp do tych samych danych
przez wielu użytkowników, przy czym tylko pierwszy z nich może dane modyfikować,
a pozostali mogą je tylko oglądać.

240 ROZDZIAŁ C. ŚWIAT .NET

� Kolejny model zakłada, że użytkownicy mogą jednocześnie oglądać i modifikować
dane, jednak nie możliwe jest jednoczesne modyfikowanie tych samych danych.

� Jeszcze inny model (dostępny w ADO.NET) umożliwia wielu użytkownikom jedno-
czesny dostęp do danych. Jeżeli użytkownicy A i B pobiorą pewien zestaw danych,
a użytkownik A zmodyfikuje je, to kolejna modyfikacja danych przez użytkownika B
powinna zakończyć się stosownym powiadomieniem.

� Najdoskonalszy model wielodostępu zakłada natychmiastowe informowanie wszyst-
kich użytkowników korzystających z danych o modyfikacji danych przez jednego z
nich. Model ten może być zrealizowany w różny sposób, jednak najczęściej jest naj-
bardziej pracochłonny i dlatego w praktyce używany jest rzadziej niż któryś z po-
przednich.

Powyższy przegląd możliwości, jakie stają przed programistą projektującym lokalny mo-
del danych dla aplikacji bazodanowej wskazuje na wiele różnych wariantów, będących efektem
składania, jak z klocków, różnych wariantów z kolejnych zagadnień projektowych. Można na
przykład wyobrazić sobie aplikację, która do drzewiastych struktur danych pobiera minimalny
zbiór danych, potrzebnych do budowania potrzebnego widoku, śledzi dokonywane przez użyt-
kownika zmiany danych w bieżącym widoku i nie pozwala innym użytkownikom pracującym
jednocześnie na korzystanie z danych zablokowanych przez bieżącego użytkownika.
Wybór konkretnego lokalnego modelu danych zależy od wielu czynników, wśród których

warto wymienić:

� łatwość implementacji - pewne modele są bardziej wymagające, co automatycznie prze-
kłada się na czas, jaki należy poświęcić danej aplikacji

� skalowalność - pewne modele sprawdzają się tylko dla małych danych, inne dobrze radzą
sobie z dowolną ilością danych

� wsparce ze strony mechanizmów serwera lub języka programowania - pewne modele są
wspierane bądź przez mechanizmy serwera, bądź przez mechanizmy programowe.

Decyzja o wyborze któregoś z modeli powinna być dobrze przedyskutowana w gronie pro-
jektantów i programistów aplikacji, ponieważ zły wybór oznacza możliwą katastrofę, gdyby w
połowie prac okazało się, że z jakichś powodów wybrany model należy zmodyfikować lub zmienić.

6.6 Programowe zakładanie bazy danych

Aplikacja podczas startu powinna umożliwić użytkownikowi utworzenie bazy danych bezpośred-
nio z poziomu interfejsu użytkownika. Sytuacja, w której użytkownik musiałby do konstrukcji
bazy danych używać narzędzi typu osql jest niedopuszczalna.
Dysponujemy teraz wystarczającą ilością informacji, aby procedurę zakładania bazy danych,

którą przeprowadziliśmy za pomocą osql, przenieść do kodu aplikacji. Sposób postępowania jest
następujący:

1. Poprosić użytkownika o podanie hasła administratora serwera.

2. Nawiązać połączenie do wskazanego serwera bazy danych do bazy master jako admini-
strator serwera.

3. Za pomocą obiektu SqlCommand wykonać komendę CREATE DATABASE ... aby utwo-
rzyć bazę danych.

6. BAZY DANYCH I ADO.NET 241

4. W taki sam sposób zmienić kontekst bazy danych na nowo utworzoną bazę danych pole-
ceniem USE

5. Wykonać odpowiedni zestaw poleceń CREATE TABLE ...

Cała procedura może działać tak, że zestaw poleceń jest wczytywany z pliku - skryptu insta-
lacyjnego, przygotowanego ”na boku”. Cały zestaw poleceń można wysłać do bazy jako jedną
komendę lub w razie potrzeby podzielić go na mniejsze fragmenty, po to by na przykład w trakcie
zakładania bazy przez program użytkownikowi pokazać pasek postępu prac.

6.7 Transakcje

Podczas pracy z bazą danych możliwa jest sytuacja, w której w pewnej chwili aplikacja wykona
więcej niż jedną operację na serwerze.
Wyobraźmy sobie na przykład, że aplikacja śledzi zmiany w danych, których dokonuje użyt-

kownik i w pewnej chwili wysyła do serwera sekwencję poleceń SQL, powodujących odświeżenie
informacji w bazie danych. Podczas wykonania takiej operacji błąd może pojawić się praktycznie
w dowolnej chwili i choć zostanie wychwycony i przekazany aplikacji jako wyjątek, jego skutki
mogłyby być bardzo poważne.
Gdyby na przykład aplikacja zdążyła odświeżyć tylko część informacji, zaś błąd uniemożli-

wiłby odświeżenie całości zmian, to przy następnym uruchomieniu użytkownik mógłby zastać
dane swojego programu w postaci kompletnie nie nadającej się do dalszej pracy.
Na szczęście takiego scenariusza można uniknąć, wykorzystując mechanizm tzw. transakcji.

Transakcja gwarantuje, że serwer albo przyjmie wszystkie polecenia będące jej częścią jako niepo-
dzielną całość, albo wszystkie je odrzuci. Transakcje gwarantują więc niepodzielność wykonania
się operacji na serwerze SQL.
W ADO.NET transakcja jest obiektem typu SqlTransaction, który inicjowany jest unikal-

ną nazwą, odróżniającą transakcje od siebie. Każde polecenie wykonywane za pomocą obiektu
SqlCommand może być wykonane jako część rozpoczętej transakcji.

string T_NAME = "TRANSAKCJA";
SqlTransaction sqlT;

try
{
// rozpocznij transakcję
sqlT = sqlConn.BeginTransaction(T_NAME);
...
SqlCommand cmd = new SqlCommand("INSERT/UPDATE/DELETE ...",

sqlConn, sqlT);
cmd.ExecuteNonQuery();
...
// zatwierdź transakcję
sqlT.Commit();
}
catch
{
...
// wycofaj transakcję
sqlT.Rollback(T_NAME);
}

6.8 Typ DataSet

W poprzednich rozdziałach dyskutowaliśmy zagadnienie projektowania lokalnych struktur da-
nych po stronie aplikacji, odpowiadających danym pobranym z serwera baz danych. Okazuje
się, że ADO.NET udostępnia typ danych DataSet, który dość dobrze nadaje się do przechowy-
wania danych z relacyjnych baz danych. Obiekt typu DataSet przechowuje dane pogrupowane

242 ROZDZIAŁ C. ŚWIAT .NET

w kolekcji obiektów typu DataTable. Każdy obiekt DataTable odpowiada jednemu zbiorowi
danych z serwera SQL. Obiekt DataTable ma kolekcję obiektów typu DataColumn, której
elementy charakteryzują kolejne kolumny danych zgromadzonych w kolekcji elementów typu
DataRow.
Aby nabrać nieco wprawy w używaniu obiektu DataSet, spróbujmy zacząć od prostego

przykładu, w którym obiekt ten zostanie zbudowany ”od zera”, niezależnie od żadnego źródła
danych.

using System;
using System.Data;

public class CMain
{
static void WypiszInfoODataSet(DataSet d)
{
Console.WriteLine("DataSet {0} zawiera {1} tabele", d.DataSetName, d.Tables.Count);

foreach (DataTable t in d.Tables)
{
Console.WriteLine("Tabela {0} zawiera {1} wiersze", t.TableName, t.Rows.Count);
foreach (DataRow r in t.Rows)
{
Console.Write("-> ");
foreach (DataColumn c in t.Columns)
Console.Write("{0}={1}, ", c.ColumnName, r[c.ColumnName]);
Console.WriteLine();
}
}
}

public static void Main()
{
// zbiór danych
DataSet dataSet = new DataSet("DataSetOsoby");

// tabela
DataTable dataTable = new DataTable("Osoby");
dataSet.Tables.Add(dataTable);

// kolumny tabeli
DataColumn dataColumn1 = new DataColumn("Imię", typeof(string));
DataColumn dataColumn2 = new DataColumn("Nazwisko", typeof(string));
DataColumn dataColumn3 = new DataColumn("Data urodzenia", typeof(DateTime));

dataTable.Columns.AddRange(new DataColumn[] { dataColumn1, dataColumn2, dataColumn3 });

// wiersze
DataRow row;

row = dataTable.NewRow();
row["Imię"] = "Adam";
row["Nazwisko"] = "Kowalski";
row["Data urodzenia"] = DateTime.Parse("1992-05-01");
dataTable.Rows.Add(row);

row = dataTable.NewRow();
row["Imię"] = "Tomasz";
row["Nazwisko"] = "Malinowski";
row["Data urodzenia"] = DateTime.Parse("1997-07-12");
dataTable.Rows.Add(row);

WypiszInfoODataSet(dataSet);
}
}

C:\Example>example.exe
DataSet DataSetOsoby zawiera 1 tabele
Tabela Osoby zawiera 2 wiersze

6. BAZY DANYCH I ADO.NET 243

-> Imię=Adam, Nazwisko=Kowalski, Data urodzenia=1992-05-01 00:00:00,
-> Imię=Tomasz, Nazwisko=Malinowski, Data urodzenia=1997-07-12 00:00:00,

Wiedząc już w jaki sposób działa DataSet, skorzystajmy z możliwości jaką daje ADO.NET,
czyli wypełnienia obiektu DataSet danymi z serwera baz danych. Do tego celu użyjemy obiektu
typu SqlDataAdapter.

using System;
using System.Data;
using System.Data.SqlClient;

public class CMain
{
static void WypiszInfoODataSet(DataSet d)
{
...
}

public static string BuildConnectionString(string serverName,
string dbName,
string userName,
string passWd)

{
...
}

public static void Main()
{
try
{
SqlConnection sqlConn = new SqlConnection();

sqlConn.ConnectionString =
BuildConnectionString("(local)", "sqlTEST", "sa", String.Empty);

sqlConn.Open();

SqlDataAdapter adapter = new SqlDataAdapter(
"SELECT * FROM T_UCZELNIA; SELECT * FROM T_STUDENT", sqlConn);
DataSet dataSet = new DataSet("Dane");

// napełnij DataSet przez IDataAdapter
adapter.Fill(dataSet);

WypiszInfoODataSet(dataSet);

// zamknij połączenie
sqlConn.Close();
}
catch (Exception ex)
{
Console.WriteLine(ex.Message);
}
}
}

C:\Example>example
DataSet Dane zawiera 2 tabele
Tabela Table zawiera 2 wiersze
-> ID_UCZELNIA=1, Nazwa=Uniwersytet Wrocławski, Miejscowosc=Wrocław,
-> ID_UCZELNIA=2, Nazwa=Uniwersytet Warszawski, Miejscowosc=Warszawa,
Tabela Table1 zawiera 4 wiersze
-> ID_UCZEN=1, ID_UCZELNIA=1, Nazwisko=Kowalski, Imie=Janusz,
-> ID_UCZEN=2, ID_UCZELNIA=1, Nazwisko=Malinowski, Imie=Tomasz,
-> ID_UCZEN=3, ID_UCZELNIA=2, Nazwisko=Nowak, Imie=Adam,
-> ID_UCZEN=4, ID_UCZELNIA=2, Nazwisko=Kamińska, Imie=Barbara,

244 ROZDZIAŁ C. ŚWIAT .NET

6.9 Aktywna wymiana danych

Możliwości ADO.NET obejmują również wspomaganie typowych operacji bazodanowych, takich
jak tworzenie, modyfikowanie i usuwanie danych na serwerze. Tajemnica tkwi w obiekcie Sql-
DataAdapter, który działa nie tylko jako źródło danych do obiektu DataSet (metoda Fill),
ale potrafi również śledzić zmiany w danych i aktualizować je na serwerze (metoda Update).
Powstaje pytanie: skąd DataAdapter wie jakich poleceń SQL użyć do modyfikacji czy

usuwania danych? Odpowiedź jest prosta: to programista sam zadaje treści tych poleceń, przy-
pisując je pod propercje DeleteCommand, InsertCommand i UpdateCommand obiektu
DataAdapter.
W wyjątkowych przypadkach, kiedy operacje aktualizacji dotyczą jednej tylko tabeli, istnie-

je możliwość automatycznego wygenerowania odpowiednich poleceń przez zainicjowanie obiektu
typu SqlCommandBuilder. W poniższym przykładzie zmodyfikujemy imię jednego ze studen-
tów.

using System;
using System.Data;
using System.Data.SqlClient;

public class CMain
{
static void WypiszInfoODataSet(DataSet d)
{
...
}

public static string BuildConnectionString(string serverName,
string dbName,
string userName,
string passWd)

{
...
}

public static void Main()
{
try
{
SqlConnection sqlConn = new SqlConnection();

sqlConn.ConnectionString =
BuildConnectionString("(local)", "sqlTEST", "sa", String.Empty);

sqlConn.Open();

// inicjuj DataSet przy pomocy SqlDataAdapter
SqlDataAdapter adapter = new SqlDataAdapter(
"SELECT * FROM T_STUDENT", sqlConn);
// automatycznie twórz polecenia do wstawiania, modyfikacji i usuwania danych
new SqlCommandBuilder(adapter);

DataSet dataSet = new DataSet("Dane");
// napełnij DataSet przez IDataAdapter
adapter.Fill(dataSet);

WypiszInfoODataSet(dataSet);

// modyfikuj dane
DataRow row = dataSet.Tables[0].Rows[0];
row.BeginEdit();
row["Imie"] = "Jan";
row.EndEdit();
// aktualizuj na serwerze
int iModyf = adapter.Update(dataSet);
Console.WriteLine("Zmodyfikowano {0} wierszy", iModyf);

6. BAZY DANYCH I ADO.NET 245

WypiszInfoODataSet(dataSet);

// zamknij połączenie
sqlConn.Close();
}
catch (Exception ex)
{
Console.WriteLine(ex.Message);
}
}
}

C:\Example>example
DataSet Dane zawiera 1 tabele
Tabela Table zawiera 4 wiersze
-> ID_UCZEN=1, ID_UCZELNIA=1, Nazwisko=Kowalski, Imie=Janusz,
-> ID_UCZEN=2, ID_UCZELNIA=1, Nazwisko=Malinowski, Imie=Tomasz,
-> ID_UCZEN=3, ID_UCZELNIA=2, Nazwisko=Nowak, Imie=Adam,
-> ID_UCZEN=4, ID_UCZELNIA=2, Nazwisko=Kamińska, Imie=Barbara,
Zmodyfikowano 1 wierszy
DataSet Dane zawiera 1 tabele
Tabela Table zawiera 4 wiersze
-> ID_UCZEN=1, ID_UCZELNIA=1, Nazwisko=Kowalski, Imie=Jan,
-> ID_UCZEN=2, ID_UCZELNIA=1, Nazwisko=Malinowski, Imie=Tomasz,
-> ID_UCZEN=3, ID_UCZELNIA=2, Nazwisko=Nowak, Imie=Adam,
-> ID_UCZEN=4, ID_UCZELNIA=2, Nazwisko=Kamińska, Imie=Barbara,

6.10 ADO.NET i XML

Obiekt typu DataSet może być składowany w postaci XML i odczytywany z plików XML za
pomocą metodWriteXml,WriteXmlSchema, ReadXml i ReadXmlSchema.
Poprzedni przykład zmodyfikujmy tak, aby zawartość DataSet i schemat XSD pokazać w

oknie konsoli (oczywiście można zapisać je do dowolnego strumienia):

static void WypiszInfoODataSet(DataSet d)
{
d.WriteXml(Console.OpenStandardOutput());
d.WriteXmlSchema(Console.OpenStandardOutput());
}

Zarówno plik XML jak i plik XSD, które będą efektem działania tych metod mogą być
przetwarzane wszystkimi dostępnymi do tej pory metodami. Można na przykład zbiór rekor-
dów XML z serwera baz danych wysłać przez sieć jako strumień XML. Można plik z danymi
XML odczytać do obiektu DataSet, a następnie zapisać na serwerze. Można wreszcie walidować
poprawność danych za pomocą schematu XSD.

<Dane>
<Table>
<ID_UCZEN>1</ID_UCZEN>
<ID_UCZELNIA>1</ID_UCZELNIA>
<Nazwisko>Kowalski</Nazwisko>
<Imie>Jan</Imie>
</Table>
<Table>
<ID_UCZEN>2</ID_UCZEN>
<ID_UCZELNIA>1</ID_UCZELNIA>
<Nazwisko>Malinowski</Nazwisko>
<Imie>Tomasz</Imie>
</Table>
<Table>
<ID_UCZEN>3</ID_UCZEN>
<ID_UCZELNIA>2</ID_UCZELNIA>
<Nazwisko>Nowak</Nazwisko>
<Imie>Adam</Imie>
</Table>

246 ROZDZIAŁ C. ŚWIAT .NET

Rysunek C.14: DataGrid związany z DataSet

<Table>
<ID_UCZEN>4</ID_UCZEN>
<ID_UCZELNIA>2</ID_UCZELNIA>
<Nazwisko>Kamińska</Nazwisko>
<Imie>Barbara</Imie>
</Table>
</Dane><?xml version="1.0"?>
<xs:schema id="Dane" xmlns="" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
<xs:element name="Dane" msdata:IsDataSet="true" msdata:Locale="pl-PL">
<xs:complexType>
<xs:choice maxOccurs="unbounded">
<xs:element name="Table">
<xs:complexType>
<xs:sequence>
<xs:element name="ID_UCZEN" type="xs:int" minOccurs="0" />
<xs:element name="ID_UCZELNIA" type="xs:int" minOccurs="0" />
<xs:element name="Nazwisko" type="xs:string" minOccurs="0" />
<xs:element name="Imie" type="xs:string" minOccurs="0" />
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:choice>
</xs:complexType>
</xs:element>
</xs:schema>

6.11 Wiązanie danych z komponentami wizualnymi

Możliwości .NET w zakresie przetwarzania danych są, jak widzieliśmy na poprzednich przy-
kładach, duże. Niezwykle łatwo połączyć ze sobą świat serwerów baz danych i świat XML -
wystarczą do tego możliwości obiektów DataSet.
Okazuje się, że równie łatwo zintegrować dane z obiektami wizualnymi. Służą do tego obiekty

DataBinding, które opisują sposób wiązania kontrolek z danymi z DataSet.
Jednym z najciekawszych komponentow, do tej pory nieomawianym ponieważ jest on ściśle

związany z ADO.NET, jest DataGrid. DataGrid za pomocą metody SetDataBinding można
dynamicznie powiązać z zawartością obiektu DataSet.

using System;
using System.Data;
using System.Data.SqlClient;
using System.Windows.Forms;

6. BAZY DANYCH I ADO.NET 247

public class CMain : Form
{
DataGrid dataGrid;

public static string BuildConnectionString(string serverName,
string dbName,
string userName,
string passWd)

{
return String.Format(
@"Server={0};Database={1};User ID={2};Pwd={3};Connect Timeout=15",
serverName, dbName, userName, passWd);

}

public CMain()
{
// inicjuj DataGrid
dataGrid = new DataGrid();
dataGrid.Dock = DockStyle.Fill;
this.Controls.Add(dataGrid);

try
{
SqlConnection sqlConn = new SqlConnection();

sqlConn.ConnectionString =
BuildConnectionString("(local)", "sqlTEST", "sa", String.Empty);

sqlConn.Open();

// inicjuj DataSet przy pomocy SqlDataAdapter
SqlDataAdapter adapter = new SqlDataAdapter(
"SELECT * FROM T_STUDENT", sqlConn);
// automatycznie twórz polecenia do wstawiania, modyfikacji i usuwania danych
new SqlCommandBuilder(adapter);

DataSet dataSet = new DataSet("Dane");
// napełnij DataSet przez IDataAdapter
adapter.Fill(dataSet);

// powiąż DataGrid i DataSet
dataGrid.SetDataBinding(dataSet, "Table");

// zamknij połączenie
sqlConn.Close();
}
catch (Exception ex)
{
Console.WriteLine(ex.Message);
}
}

public static void Main()
{
Application.Run(new CMain());
}
}

Możliwości komponentu DataGrid są naprawdę duże i szczegółowy ich opis zdecydowanie
wykracza poza ramy tego skryptu. DataGrid może m.in. formatować komórki w zależności od
ich zawartości czy poprawnie obsługiwać relacje między danymi z wielu tabel. W przypadku
aktualizacji danych w jednej z tabel, DataGrid może reagować na to automatycznie odświeżając
swoją zawartość.

248 ROZDZIAŁ C. ŚWIAT .NET

7 Dynamiczne WWW i ASP.NET

7.1 Dlaczego potrzebujemy dynamicznego WWW

Gwałtowny rozwój sieci i coraz szerszy dostęp do niej sprawiają, że równie szybko rozwijają
się techologie sieciowe. Zwykły protokół HTML, choć w wielu przypadkach sprawdza się dosko-
nale, w wielu innych okazuje się niewystarczający. To czego potrzebują programiści, to moż-
liwość tworzenia dynamicznych stron Internetowych, przy czym przez dynamiczny nie oznacza
tu ”animowany, żywy”, tylko dostosowany do profilu konkretnego użytkownika i umożliwiający
komunikację w dwie strony.
Dynamicznie budowana zawartość stron WWW najczęściej związana jest jakoś z dużymi

zbiorami informacji. Wyobraźmy sobie sieciową encyklopedię, w której istnieją setki tysięcy moż-
liwych haseł, czy system ewidencji z milionami rekordów. Nietrudno zauważyć, że sam HTML
jest zbyt ubogi, aby wspomagać realizację takich przedsięwzięć (chyba, że ktoś wie jak przygo-
tować milion stron w HTML i zbudować dla nich sensowne indeksy).

7.2 Przegląd technologii dynamicznego WWW

Common Gateway Interface

CGI jest jedną z pierwszych technologii, umożliwiających tworzenie dynamicznych stron WWW.
Pomysł CGI polega na tym, że serwer Internetowy uruchamia zwykły program wykonywalny
(nazywany skryptem CGI) i wyniki działania tego programu przekazuje klientowi. Jedna z
zalet CGI polega na tym, że skrypty mogą być napisane w dowolnym języku, w którym da
się napisać konsolowy program, który zapisuje i odczytuje dane ze standardowych strumieni
wejścia/wyjścia.
Najprostszy skrypt CGI, napisany w języku C mógłby wyglądać tak:

#include <stdio.h>

int main(int argc, char** argv)
{
printf("HTTP/1.0 200 OK\r\nContent-type: text/html\r\n\r\n");
printf("<HTML>\r\n<HEAD>");
printf("<TITLE>Witam w CGI</TITLE></HEAD>\r\n");
printf("<BODY>Pierwszy skrypt w CGI</BODY>\r\n");
printf("</HTML>");

return 0;
}

Z racji prostej idei, CGI jest bardzo popularne. Z CGI związane są jednak duże problemy
z wydajnością. Po pierwsze, kiedy skrypt jest wykonywany na serwerze, jest traktowany jak
każdy inny proces w systemie, a co za tym idzie musi być inicjowany jak każdy inny proces.
Z punktu widzenia systemu operacyjnego, inicjowanie nowego procesu jest dość czasochłonne.
Po drugie, każdy nowy skrypt CGI zajmuje pamięć wprost proporcjonalną do swojej wielkości.
Przy stu użytkownikach korzystających jednocześnie z serwera jest to jeszcze możliwe. Przy kilku
tysiącach jednocześnie uruchomionych procesów zasoby nawet bardzo rozbudowanego serwera
najprawdopodobniej ulegną wyczerpaniu i cały system zawali się.

Internet Server Application Programming Interface

Aby pokonać problemy związane z wydajnością CGI, Microsoft zaprojektował alternatywną
technologię dynamicznego WWW, nazwaną Internet Server Application Programming Interfa-
ce (ISAPI). Główny pomysł polegał na tym, że skrypty ISAPI są bibliotekami (DLL) a nie
modułami wykonywalnymi, dzięki czemu kod skryptu ładowany jest do pamięci tylko raz.

7. DYNAMICZNE WWW I ASP.NET 249

Istnieją dwa rodzaje bibliotek ISAPI: rozszerzenia ISAPI, które spełniają identyczną funk-
cję jak skrypty CGI oraz filtry ISAPI, które reagują na pewne zdarzenia związane z obsługą
stron przez serwer.
Mimo, że technologia ISAPI jest zdecydowanie wydajniejsza od CGI, nie jest pozbawiona

wad. Po pierwsze, napisanie poprawnej biblioteki ISAPI wymaga zdecydowanie więcej wiedzy
niż napisanie skryptu CGI. Po drugie, jeśli biblioteka ISAPI trafi już na serwer Internetowy, to
nie ma łatwego sposobu na zastąpienie jej nowszą wersją, ponieważ system operacyjny zabroni
dostępu do biblioteki, która wedle jego rozeznania będzie cały czas używana. Wymiana biblioteki
wymaga więc zatrzymania usługi serwera Inernetowego na serwerze sieciowym.

ASP

Następcą ISAPI jest technologia Active Server Pages, która, o dziwo, jest zaimplementowana
jako rozszerzenie ISAPI. W przypadku ASP nie ma jednak konieczności pisania własnych biblio-
tek DLL. Zamiast tego tworzy się zwykłą stronę HTML, zaś wewnątrz jej kodu można umieszczać
dowolne instrukcje kodu języka skryptowego VBScript. ASP sam dba o interpretowanie kodu
VBScript i odsyła do klienta wyniki tej operacji.
Oto przykład bardzo prostej strony ASP:

<% Option Explicit %>
<HTML>
<HEAD><TITLE>Witam w ASP</TITLE></HEAD>
<BODY>
<%
Dim n
For n = 1 to 5
Response.Write("<FONT size=" & n)
Response.Write(">Witam w ASP
" & vbCrLf)
Next
%>
</BODY>
</HTML>

Projektując strony ASP można korzystać z całej siły VBScript. Ale to właśnie siła VBScript
ta okazuje się być największą słabością ASP - VBScript, jak przystało na język skryptowy,
jest bardzo słabo otypowany. Co więcej - strony są interpretowane dynamicznie. Oba te fakty
oznaczają, że bardzo łatwo popełniać błędy w skryptach, które jeśli się pojawią, to wykrywane
są dopiero wtedy, kiedy natrafi na nie pierwszy użytkownik.

7.3 Czym jest ASP.NET

ASP.NET jest naturalnym rozszerzeniem ASP, które integruje technologię ASP z platformą
.NET. Dzięki ASP.NET możliwe jest używanie praktycznie dowolnego języka platformy .NET do
tworzenia dynamicznej zawartości stron WWW. W chwili obecnej jednak ASP.NET (podobnie
jak ASP) działa jedynie na serwerze WWW wbudowanym w systemy Windows począwszy od
wersji 2000. Serwer ten to Microsoft Internet Information Services (IIS).

7.4 Pierwszy przykład w ASP.NET

Najprostszy przykład dynamicznej strony ASP.NET ukazuje jednocześnie, że ASP.NET umożli-
wia użycie C# jako języka skryptowego25. Przy próbie uruchomienia kod strony będzie prekom-
pilowany, a błędy będą statycznie raportowane użytkownikowi.
25Kod wewnątrz strony może być napisany w C# lub VB.NET. Tylko kod umieszczony w obiektowych biblio-
tekach DLL, będących dodatkowymi elementami dynamicznej strony, może zawierać skompilowany kod napisany
w dowolnym języku .NET

250 ROZDZIAŁ C. ŚWIAT .NET

Druga ważna różnica między ASP a ASP.NET to brak możliwości bezpośredniego odwoła-
nia się do zawartości tekstu strony HTML. W ASP bardzo często używa się metody Respon-
se.Write, aby umieścić tekst wewnątrz strony ASP. W ASP.NET można jedynie odwoływać
się do umieszczonych na stronie obiektów WWW lub kontrolek ASP.NET. W poniższym przy-
kładzie odwołujemy się do obiektu WWW typu SPAN. Dostęp do obiektu możliwy jest dzięki
odwołaniu się do jego nazwy (w przykładzie obiekt typu SPAN nazywa się Message).

<%@ Page Language="C#" %>
<HTML>
<HEAD><TITLE>Witam w ASP.NET</TITLE></HEAD>
<BODY>

<%
int i;
string s = string.Empty;

for (i=1; i<=5; i++)
{
s = s+String.Format(
"Witam w ASP.NET
", i);

}
Message.InnerHtml = s;
%>

</BODY>
</HTML>

7.5 Łączenie stron ASP.NET z dowolnym kodem

Jedną z najciekawszych możliwości ASP.NET jest łączenie kodu strony z dowolnym kodem,
kompilowanym przy pomocy dowolnego kompilatora platformy .NET.
Napiszmy najpierw kod prostej klasy:

using System;

namespace NExample
{
public class COsoba
{
public string Imie;
public string Nazwisko;

public COsoba(string Imie, string Nazwisko)
{
this.Imie = Imie;
this.Nazwisko = Nazwisko;
}

public override string ToString()
{
return String.Format("{0} {1}", Nazwisko, Imie);
}

}
}

i skompilujmy go do postaci biblioteki:

C:\Example>csc.exe /target:library CExample.cs

Aby tak utworzona biblioteka mogła być wykorzystana w kodzie strony, plik DLL musi być
umieszczony w podkatalogu bin katalogu wirtualnego IIS. Katalog taki może być utworzony
ręcznie i nie musi mieć ustawionych żadnych specjalnych praw dostępu. Aby moć korzystać z

7. DYNAMICZNE WWW I ASP.NET 251

Rysunek C.15: Efekt końcowy w przeglądarce

przygotowanej klasy, w kodzie strony należy tylko dodać odwołanie do odpowiedniej przestrzeni
nazw.

<%@ Page Language="C#" %>
<%@ import Namespace="NExample" %>
<HTML>
<HEAD><TITLE>Witam w ASP.NET</TITLE></HEAD>
<BODY>

<%
COsoba osoba = new COsoba("Jan", "Kowalski");
int i;
string s = string.Empty;

for (i=1; i<=5; i++)
{
s = s+String.Format(
"{1}
", i, osoba);

}
Message.InnerHtml = s;
%>

</BODY>
</HTML>

Użytkownik, który ogląda naszą stronę w przeglądarce i próbuje podglądnąć źródło strony,
widzi oczywiście tylko efekt końcowy:

<HTML>
<HEAD><TITLE>Witam w ASP.NET</TITLE></HEAD>
<BODY>

Kowalski Jan

Kowalski Jan

Kowalski Jan

Kowalski Jan

Kowalski Jan

</BODY>
</HTML>

252 ROZDZIAŁ C. ŚWIAT .NET

7.6 Kontrolki ASP.NET

Kod strony ASP.NET może oczywiście zawierać komponenty WWW, takie, jakie można umiesz-
czać na zwykłych stronach HTML. Oprócz tego można jednak korzystać z całej gamy kompo-
nentów właściwych dla ASP.NET. Komponenty te są obiektami pochodzącymi z biblioteki Sys-
tem.Web.UI.WebControls. Programista może oczywiście sam tworzyć własne komponenty
wizualne, dziedzicząc z klasy System.Web.UI.UserControl.
Zbiór zdarzeń, jakie udostępniają komponenty ASP.NET różni się od zdarzeń komponentów

Windows.Forms. Jest to dość oczywiste - zachowanie się komponentów w systemie operacyjnym
podlega innym regułom niż zachowanie się komponentów w przeglądarce Internetowej.
Przykładowy skrypt tworzy dwa komponenty ASP.NET, etykietę i przycisk. Zauważmy, że

definicje komponentów są częścią strony i wyróżniają się jedynie specjalnymi atrybutami. We-
wnątrz definicji przycisku określono funkcję reagującą na przyciśnięcie przycisku. Funkcję tę
umieszczono wewnątrz specjalnej sekcji strony, oznaczonej tagami script.

<%@ Page Language="C#" %>

<script runat="server">
void Przycisk_Click(Object sender, EventArgs e) {
Label1.Text = "Witam w ASP.NET";

}
</script>

<html>
<head>
</head>
<body>
<form runat="server">
<center>
<asp:Label id="Label1" runat="server"

Width="193px">Etykieta</asp:Label>

<asp:Button id="Przycisk" onclick="Przycisk_Click"

runat="server" Text="Twórz dane osobowe"
Width="192px"></asp:Button>
</center>
</form>
</body>
</html>

Wśród komponentów ASP.NET znajduje się m.in. kilka rodzajów siatek, przycisków, ka-
lendarze. Wśród nich jest na przykład DataGrid, który może być inicjowany w standardowy
sposób (patrz rozdział 6.11, strona 246).

7.7 Inne przykłady ASP.NET

Identyfikacja klienta

Wewnątrz kodu strony można odwoływać się do wszystkich składowych obiektu Page, identy-
fikującego bieżącą stronę. Wśród nich przydatne są propercje Request określająca parametry
strony inicjującej połączenie oraz Response określająca parametry odpowiedzi serwera.
Propercja Request może być wykorzystana na przykład do identyfikacji systemu operacyj-

nego i przeglądarki, której używa klient.

<%@ Page Language="C#" %>
<HTML>
<HEAD><TITLE>Witam w ASP.NET</TITLE></HEAD>
<BODY>

<%
Message.InnerHtml = String.Format("Browser: {0}, platform {1}",

7. DYNAMICZNE WWW I ASP.NET 253

Request.Browser.Browser,
Request.Browser.Platform);

%>

</BODY>
</HTML>

Licznik odwiedzin strony

Przygotowanie licznika odwiedzin strony jest jedym z podstawowych zadań dynamicznego WWW.
W ASP.NET sytuacja jest o tyle wygodna, że w kodzie skryptów używamy dobrze znanych bi-
bliotek .NET.
Wartość licznika odwiedzin będzie zapisywana w pliku counter.txtw folderze strony WWW.

Jak jednak zabiezpieczyć się przed zwiększaniem tego licznika przy częstym odświeżaniu strony
przez Internautę? Możemy skorzystać z ciasteczek, czyli informacji umieszczanych po stronie
klienta, które pozwalają identyfikować go przy kolejnych odwiedzinach naszej strony. W po-
niższym przykładzie ciasteczko zostanie unieważnione po 2 minutach od pierwszego wejścia na
stronę WWW.

<%@ Page Language="C#"%>
<%@ import Namespace="System.IO" %>
<%@ import Namespace="System.Drawing" %>
<%@ import Namespace="System.Drawing.Imaging" %>
<%@ import Namespace="System.Drawing.Drawing2D" %>

<script runat="server" language="C#">

string getCounter()
{
string CookieID = "OldVisitor";

// czytaj wartosc licznika
string FilePath = Server.MapPath("\\") + "counter.txt";
StreamReader sr = File.OpenText(FilePath);
string counter = sr.ReadLine().ToString();
sr.Close();

// ciasteczko - czy to stary gość?
HttpCookie Cookie;
Cookie = Request.Cookies[CookieID];

// tak, inkrementuj licznik
if(Cookie==null)
{
int counterInt = Convert.ToInt32(counter);
counterInt++;
counter = Convert.ToString(counterInt);

FileStream fs = new FileStream(FilePath, FileMode.Open, FileAccess.Write);
StreamWriter sw = new StreamWriter(fs);
sw.WriteLine(counter);
sw.Close();
fs.Close();

Cookie = new HttpCookie(CookieID, "true");
Cookie.Expires = DateTime.Now.AddSeconds(120);
Response.AppendCookie(Cookie);
}

return counter;
}

</script>

254 ROZDZIAŁ C. ŚWIAT .NET

<HTML>
<HEAD><TITLE>Przykładowy licznik w ASP.NET</TITLE></HEAD>
<BODY>

<% MyCounter.InnerHtml = getCounter(); %>

<center>
Gość numer:
<asp:Image id="MyCounterImage"/>
</center>

</BODY>
</HTML>

Spróbujmy rozwinąć trochę ten przykład, tak aby licznik odwiedzin był umieszczony na
stronie w postaci nie tekstu, ale dynamicznie budowanego obrazka.
W pierwszej chwili może wydać się to trudne, ale na szczęście w kodzie strony istnieje moż-

liwość zapisania wyglądu strony w postaci strumienia danych.

// Plik: c.aspx
<%@ Page Language="C#"%>
<%@ import Namespace="System.IO" %>
<%@ import Namespace="System.Drawing" %>
<%@ import Namespace="System.Drawing.Imaging" %>
<%@ import Namespace="System.Drawing.Drawing2D" %>

<script runat="server" language="C#">

string getCounter()
{
// ... to samo co poprzednio
}

void drawCounter()
{
int height = 40;
int width = 120;

Bitmap bmp = new Bitmap(width, height);
Graphics g = Graphics.FromImage(bmp);

string currentCounter = getCounter();
Font counterFont = new Font("Arial", 24, FontStyle.Bold);
SizeF sizeF = g.MeasureString(currentCounter, counterFont);

g.FillRectangle(Brushes.Black, 0, 0, width, height);
g.DrawString(currentCounter, counterFont,

Brushes.White, (bmp.Width-sizeF.Width)/2, 3);

bmp.Save(Response.OutputStream, ImageFormat.Jpeg);

g.Dispose();
bmp.Dispose();
}

private void Page_Load(object sender, System.EventArgs e)
{
drawCounter();
}
</script>

Tak przygotowana strona pokazuje wartość licznika w postaci obrazka. Problem polega tylko
na tym, że zapisanie strumienia danych do zawartości strony (bmp.Save(Response.OutputStream,...)
powoduje, że strona nie będzie zawierać żadnych innych obiektów. To nie szkodzi! Z licznika sko-
rzystamy w kodzie każdej kolejnej strony, dynamicznie dołączając go jako obrazek:

<%@ Page Language="C#" %>

7. DYNAMICZNE WWW I ASP.NET 255

Rysunek C.16: Dynamiczny licznik odwiedzin strony w ASP.NET

<HTML>
<HEAD><TITLE>Witam w ASP.NET</TITLE></HEAD>
<BODY>

<h2>To jest tekst strony</h2>

<center>

</center>

</BODY>
</HTML>

7.8 Narzędzia wspomagające projektowanie stron ASP.NET

Visual Studio .NET

Visual Studio .NET znakomicie radzi sobie ze wspomaganiem projektowania stron ASP.NET. Z
poziomu środowiska, tworząc nowy projekt, można nawet utworzyć katalog wirtulany na serwerze
IIS.
Podczas pracy nad projektem Visual Studio .NET stosuje nieco inną konwencję od przedsta-

wionej w dotychczasowych przykładach - warstwa prezentacyjna (układ komponentów) znajduje
się w osobnym pliku niż kod obsługi zdarzeń komponentów.

ASP.NET WebMatrix

Microsoft ASP.NET WebMatrix jest darmowym narzędziem, wspierającym projektowanie stron
ASP.NET. WebMatrix ma wizualny edytor stron, edytor kodu, palety narzędziowe. Edytor po-
zwala na przypisywanie zdarzeń komponentom.
WebMatrix można pobrać ze strony http://www.asp.net.

256 ROZDZIAŁ C. ŚWIAT .NET

Rysunek C.17: Microsoft ASP.NET WebMatrix w akcji

8 Inne języki platformy .NET

8.1 VB.NET

Visual Basic NET jest nową odsłoną znanego i popularnego języka Visual Basic. W nowej wersji
język został znacznie unowocześniony i dostosowany do możliwości platformy .NET. Kompilator
VB.NET jest częścią frameworka i uruchamiany jest poleceniem vbc.exe.
Program w VB.NET oprócz klas może również składać się z tzw. modułów, które są po

prostu zbiornikami kodu nie przywiązanego do żadnej klasy. Funkcje publiczne z modułów są
dostępne z każdego miejsca w kodzie, podobnie jak funkcje statyczne w klasach. Metoda Main
może znajdować się w jakimś module, zamiast w klasie.
VB.NET, w przeciwieństwie do C#, nie rozróżnia dużych i małych liter w kodzie. Ma również

znacznie liberalniejszy system typów. W VB.NET można na przykład:

� używać niezainicjowanych w kodzie zmiennych

� dokonywać niejawnych konwersji między wartościami różnych typów

Możliwości wyrazowe VB.NET odpowiadają możliwościom C#, jednak ”basicopodobna”
składnia jest miejscami trochę zbyt przegadana. Na przykład ograniczniki strukturalne zawsze
są parami wyrażeń:

Public Sub Metoda
...
End Sub

Public Function Funkcja(i As Integer, j As String) As String
...
End Function

Z powodów historycznych zachowano m.in.

8. INNE JĘZYKI PLATFORMY .NET 257

� klasyczną basicową pętlę For, która jest zdecydowanie słabsza od for z C#

� słowo kluczowe Me, będące odpowiednikiem this

� słowo kluczowe Nothing, będące odpowiednikiem null

� konieczność używania symbolu do oznaczenia przeniesienia długiej linii kodu do kolejnej
linii (bez tego znaku koniec linii oznacza koniec instrukcji)

W porównaniu z wersją 6.0 Visual Basica, w VB.NET znacznie poprawiono model obiektowy,
pozwalając na projektowanie interfejsów i dziedziczenie takie jak w C#. Zmienne mogą być
deklarowane w dowolnym miejscu kodu, podobnie jak w C#.

Przykładowa aplikacja w VB.NET

Pierwszy przykładowy program to basicowa wersja programu ze strony 216. Oprócz oczywi-
stych różnic w składni, warto zwrócić uwagę na zupełnie inny sposób dodawania funkcji obsługi
zdarzeń niż w C#.

Imports System
Imports System.Drawing
Imports System.Windows.Forms

Module MainModule

Sub Main
Dim f As New CMainForm
f.ShowDialog()
End Sub

Public Class CMainForm
Inherits System.Windows.Forms.Form

Dim timer As Timer

Public Sub New
MyBase.New()

timer = new Timer
timer.Interval = 50
AddHandler timer.Tick, AddressOf Timer_Tick

timer.Start

SetStyle(ControlStyles.UserPaint, True)
SetStyle(ControlStyles.AllPaintingInWmPaint, True)
SetStyle(ControlStyles.DoubleBuffer, True)
End Sub

Sub Timer_Tick(sender As Object, e As EventArgs)
Me.Invalidate
End Sub

Protected Overrides Sub OnPaint(e As PaintEventArgs)
Dim g as Graphics = e.Graphics
Dim f as Font = new Font("LED", 48)

Dim sf as StringFormat = new StringFormat()

sf.Alignment = StringAlignment.Center
sf.LineAlignment = StringAlignment.Center

g.Clear(SystemColors.Control)
g.DrawString(DateTime.Now.ToLongTimeString(), f, Brushes.Black, _
Me.Width / 2, Me.Height / 2, sf)

258 ROZDZIAŁ C. ŚWIAT .NET

End Sub

End Class

End Module

Dynamiczne wiązanie

Ogromna przepaść dzieli VB.NET od jego poprzednika, VB 6.0. Mimo to mało elegancka skład-
nia sprawia, że mając do wyboru VB.NET i C#, zdecydowanie bardziej warto wybrać C#.
Okazuje się jednak, że istnieją zastosowania, w których VB.NET sprawdza się o wiele lepiej

niż C#. Chodzi o współpracę z bibliotekami systemowymi w starym modelu COM. Program w
VB.NET może zażądać utworzenia obiektu COM i wołać jego metody, mimo że ich prototypy
nie są znane w trakcie kompilacji! Jest to możliwe, ponieważ VB.NET używa poźnego wiązania
wywoływanych metod z odpowiadającym im kodem. W C#, z powodu silnego otypowania kodu,
taka konstrukcja nie jest możliwa i dlatego korzystanie z obiektów COM jest trudniejsze.
Jeżeli więc aplikacja .NETowa powinna komunikować się z obiektami COM, to odpowiedni

kod najwygodniej jest napisać w VB.NET, zaś całą resztę - w jakimś innym języku.
Zobaczmy prosty przykład tzw. automatyzacji obiektów Microsoft Office. Przykładowa apli-

kacja utworzy instancję obiektu Microsoft Word i otworzy w niej nowy dokument.

Imports System
Imports System.Drawing
Imports System.Windows.Forms

Imports Microsoft.VisualBasic

Module MainModule

Sub Main
Dim f As New CMainForm
f.ShowDialog()
End Sub

Public Class CMainForm
Inherits System.Windows.Forms.Form

Dim b As Button

Public Sub New
MyBase.New()

b = new Button
b.Text = "Utwórz obiekt MS Word"
b.Size = new Size(150, 25)
AddHandler b.Click, AddressOf b_Click

Controls.Add(b)
End Sub

Sub b_Click(sender As Object, e As EventArgs)
Dim o as Object

’ twórz obiekt COM
o = CreateObject("Word.Application")
o.Visible = True
o.Documents.Add
o = Nothing

End Sub

End Class

End Module

8. INNE JĘZYKI PLATFORMY .NET 259

Analogiczna operacja w C# jest nieco bardziej skomplikowana i wymaga silnego wsparcia ze
strony mechanizmu refleksji.

...
try
{
Type t = Type.GetTypeFromProgID("Word.Application");
object w = Activator.CreateInstance(t);

// w.Visible = true
t.InvokeMember("Visible", BindingFlags.SetProperty,

null, w, new Object[] { true });

// w.Documents...
object docs = t.InvokeMember("Documents", BindingFlags.GetProperty,

null, w, null);
// ...Add
t.InvokeMember("Add", BindingFlags.InvokeMethod,

null, docs, null);

w = null;
}
catch(TypeLoadException ex)
{
...
}

Jak to się więc dzieje, że VB.NET potrafi wykonać kod, w którym występują odwołania do
nieznanych w czasie kompilacji metod i propercji? Dlaczego kompilator przyjmuje kod

o = CreateObject("Word.Application")
o.Visible = True
o.Documents.Add

skoro o jest typu object? Odpowiedź na to pytanie tkwi w kodzie ILowym powyższego mo-
dułu VB.NET. Proponuję samodzielnie zdekompilować ten moduł przy pomocy ildasm.exe i
przekonać się jakich mechanizmów używa VB.NET do obsługi dynamicznego wiązania konkret-
nych metod obiektu z odwołaniami do nich w kodzie aplikacji.

8.2 ILAsm

MSIL jest językiem pośrednim, do którego kompilowane są wszystkie języki platformy .NET.
Wśród nich szczególną pozycję ma ILAsm (Intermediate Language Assembler), czyli język ni-
skiego poziomu bezpośrednio tłumaczący się do kodu pośredniego MSIL.
Oczywiście znajomość języka ILAsm nie jest niezbędna aby pisać programy dla środowiska

.NET. Czasami jednak warto zdekompilować program (rozdział 2.19) C#owy i zobaczyć jak
wygląda kod jakiegoś interesującego fragmentu.
Znajomość języka pośredniego jest oczywiście niezbędna z punktu widzenia twórcy nowe-

go języka czy kompilatora dla platformy .NET. Kod ILAsmowy może korzystać z wyjątków i
wołać funkcje z bibliotek .NET. Mimo, że znacznie ułatwia tworzenie kodu wynikowego dla ję-
zyków obiektowych, nadaje się równie dobrze wszystkich typów języków. W kolejnym rozdziale
zobaczymy przykłady kodu produkowanego przez kompilator SML.NET.

Informacje ogólne

Z punktu widzenia kodu ILAsmowego, najistotniejszym elementem środowiska jest stos. Stos
służy do przekazywania parametrów do funkcji i zbierania wyników funkcji. Na stosie można
umieszczać obiekty typów prostych i referencyjnych (wtedy na stosie znajduje się referencja do
obiektu, zaś wartość obiektu znajduje się na stercie). Programista może przekazywać wartości

260 ROZDZIAŁ C. ŚWIAT .NET

obiektów między stosem a zmiennymi lokalnymi kodu. Do przekazania wartości na stos służą
instrukcje w postaci ld..., zaś do pobrania wartości ze stosu i umieszczenia ich w zmiennych
lokalnych instrukcje postaci st....
Wykonanie funkcji w IlAsm składa się z trzech kroków:

1. Położenie na stosie parametrów wejściowych funkcji

2. Wywołanie funkcji

3. Zdjęcie ze stosu wyników funkcji

Pierwszy i ostatni krok są opcjonalne i oczywiście zależą od postaci funkcji.
IL jako język niskopoziomowy ma dość duże możliwości. Ma m.in. instrukcje do obsługi tablic,

obiektów oraz wyjątków. Potrafi obsługiwać ogonowe wywołania funkcji, delegatów i zdarzenia.

Pierwszy program w ILAsm

Najprostszy program w ILAsm po prostu wypisze tekst powitalny na ekranie.

.assembly extern mscorlib {}

.assembly Example{}

.class public CExample extends [mscorlib]System.Object
{
.method public static void MyAppStart() il managed
{
.entrypoint
.maxstack 8

// umieść na stosie napis
ldstr "Pierwszy program w ILAsm..."

// wołaj funkcję Console.WriteLine(string)
call void [mscorlib] System.Console::WriteLine

(class System.String)

ret
}
}

Dyrektywa .assembly extern informuje kompilator o konieczności importu informacji o
funkcjach z zewnętrznej biblioteki. W tym przypadku chodzi o bibliotekę mscorlib, która jest
rdzeniem całego środowiska .NET i trudno wyobrazić sobie program niekorzystający z tej bi-
blioteki.
Dyrektywa .assembly definiuje nowy moduł do kompilacji, w tym przypadku chodzi o pro-

gram, który właśnie piszemy.
Dyrektywa .class definiuje nowy typ, jednak jest ona opcjonalna - IlAsm może z powo-

dzeniem tworzyć kod nieobiektowy. W naszym przykładzie nowym typem jest typ referencyjny
(klasa), dziedziczący z klasy System.Object.
W przeciwieństwie do C# czy VB.NET, część definicji typu w ILAsm może być umieszczona

w pewnym miejscu kodu, a inna część w innym miejscu kodu. Definicja jednego i tego samego
typu może nawet rozciągać się na kilka plików z kodem źródłowym.
Struktury, czyli typy proste, wyprowadza się z klasy System.ValueType zamiast z Sys-

tem.Object.
Dyrektywa .method rozpoczyna definicję kodu nowej metody. Specjalne oznaczenie il ma-

naged oznacza, że kod metody napisany jest w ILAsm i powinien podlegać wszelkim regułom
narzucanym przez platformę .NET. Kod natywny można specyfikować za pomocą oznaczenia
native unmanaged.

8. INNE JĘZYKI PLATFORMY .NET 261

Dyrektywa .entrypoint określa miejsce startu aplikacji. Co ciekawe, odpowiednia funkcja
może mieć dowolną nazwę, niekoniecznie Main.
Dyrektywa .maxstack określa maksymalną głębokość stosu metody.
Instrukcja ldstr powoduje umieszczenie na stosie napisu przekazanego jako parametr. In-

strukcja call powoduje wywołanie funkcji ze wskazanej biblioteki i wskazanej klasy. Funkcja ta
szuka na stosie odpowiednich parametrów, zdejmuje je, po czym wykonuje swój kod.
Powyższy przykładowy kod może być skompilowany i uruchomiony:

C:\Example)ilasm example.il

Microsoft (R) .NET Framework IL Assembler. Version 1.0.3705.0
Copyright (C) Microsoft Corporation 1998-2001. All rights reserved.
Assembling ’example.il’ , no listing file, to EXE --) ’example.EXE’
Source file is ANSI

Assembled method CExample::MyAppStart
Creating PE file

Emitting members:
Global
Class 1 Methods: 1;
Writing PE file
Operation completed successfully

C:\Example)example
Pierwszy program w ILAsm...

Stałe i zmienne

Stałe numeryczne mogą być ładowane bezpośrednio na stos za pomocą instrukcji:

� stałe całkowitoliczbowe - ldc.i4 (int32), ldc.l4.s (int8) (.s na końcu instrukcji zawsze
oznacza ”krótką” wersję instrukcji, czyli taką, która przyjmuje parametr o mniejszym
zakresie danych niż ”pełna” instrukcja) oraz ldc.i8 (int64)

� stałe całkowitoliczbowe między 0 a 8 - ldc.i4.(0-8)

� stałe zmiennoprzecinkowe - ldc.r4.(float32) oraz ldc.r8.(float64)

Zmienne są deklarowane za pomocą dyrektywy .locals. Opcjonalne słowo init oznacza, że
zmienne mają być zainicjowane domyślnymi wartościami. Jeśli progarmista zdecyduje inaczej,
kod będzie przez środowisko uruchomieniowe uważany za niebezpieczny.
Zmienne są numerowane kolejnymi liczbami całkowitymi i w jednej metodzie może ich być

maksymalnie 65536, czyli 216. Zmienne mogą być deklarowane w kilku miejscach w kodzie me-
tody, co więcej, jeśli pewna zmienna o numerze k przestaje być potrzebna, można w jej miejsce
zadeklarować nową zmienną o tym samym numerze i tym samym typie, ale o innej nazwie.
Numery zmiennych odgrywają główną rolę w kodzie ILAsmowym, bowiem przesyłanie da-

nych ze stosu do zmiennej i ze zmiennej na stos odbywa się za pomocą instrukcji ldloc (int32)
oraz stloc (int32), które jako parametr przyjmują właśnie nazwę zmiennej.

.assembly extern mscorlib {}

.assembly Example{}

.class public CExample extends [mscorlib]System.Object
{
.method public static void MyAppStart() il managed
{
.entrypoint
.maxstack 8

// int n;

262 ROZDZIAŁ C. ŚWIAT .NET

.locals init ([0] int32 n)

// n = 100;
ldc.i4 100
stloc 0

// Console.WriteLine(n);
ldloc 0
call void [mscorlib]System.Console::WriteLine(int32)

ret
}
}

Instrukcje arytmetyczne

Wśród instrukcji arytmetycznych szczególną rolę odgrywają instrukcje umożliwiające manipu-
lację danymi na stosie:

dup powoduje utworzenie na stosie dodatkowej kopii już istniejącego tam obiektu

pop powoduje usunięcie wartości z wierzchu stosu

”Zwykłe” instrukcje arytmetyczne wymagają odpowiedniej liczby wartości na stosie i zwra-
cają wartość na stos.

add suma dwóch argumentów

sub różnica

mul iloczyn

div iloraz

rem reszta z dzielenia

neg negacja parametru z wierzchołka stosu (zmiana znaku liczby)

Operacje bitowe:

and iloczyn bitowy

or suma bitowa

xor różnica symetryczna

not negacja bitowa

shl przesunięcie bitowe w lewo (wymaga dwóch wartości na stosie: pierwsza określa o ile bitów
przesunąć w lewo drugą)

shr przesunięcie bitowe w prawo

Operatory konwersji pobierają wartość ze stosu, konwertują do wskazanego typu i odkładają
wynik na stos

conv.i1 Konwertuj do int8

conv.u1 Konwertuj do unsigned int8

conv.i2 Konwertuj do int16

8. INNE JĘZYKI PLATFORMY .NET 263

conv.u2 Konwertuj do unsigned int16

conv.i4 Konwertuj do int32

conv.u4 Konwertuj do unsigned int32

conv.i8 Konwertuj do int64

conv.u8 Konwertuj do unsigned int64

conv.r4 Konwertuj do float32

conv.r8 Konwertuj do float64

Operacje warunkowe, skoki

Stosowe warunki logiczne sprawdzają czy zachodzi odpowiednia relacja między kolejnymi war-
tościami ze stosu i odkłada na stos wartość 1 jeśli warunek jest spełniony lub 0 jeśli warunek
nie jest spełniony:

ceq Sprawdza czy dwie kolejne wartości na stosie są równe

cgt Sprawdza czy pierwsza wartość na stosie jest większa od drugiej.

clt Sprawdza czy pierwsza wartość na stosie jest mniejsza od drugiej.

Instrukcje skoku mają zwykle postać (instrukcja) (numer), gdzie (numer) oznacza prze-
sunięcie (wyrażone w bajtach) instrukcji, do której należy wykonać skok. Na przykład br 5
oznacza bezwarunkowy skok do instrukcji leżącej bajtów dalej niż bieżąca instrukcja.
Można jednak w każdym miejscu, gdzie w kodzie wynikowym pojawia się przesunięcie, umie-

ścić etykietę, która oprócz tego powinna znajdować się gdzieś w kodzie i wyznaczać przez to po-
zycję jakiejś instrukcji. Podczas kompilacji odwołania do etykiet są przez kompilator zamieniane
na wartości odpowiednich przesunięć, na przykład:

Etykieta1:
...
...
br Etykieta1

Unarne instrukcje warunkowe (wymagają jednego parametru na stosie):

brfalse (int32) Skok jeśli wartość na stosie jest równa 0

brtrue (int32) Skok jeśli wartość na stosie jest różna od 0

Binarne instrukcje warunkowe (wymagają dwóch parametrów na stosie):

beq (int32) Skok jeśli równe

bne (int32) Skok jeśli nierówne

bge (int32) Skok jeśli większe lub równe

bgt (int32) Skok jeśli większe

ble (int32) Skok jeśli mniejsze lub równe

blt (int32) Skok jeśli mniejsze

264 ROZDZIAŁ C. ŚWIAT .NET

Metody i parametry

Parametry wewnątrz metod mogą być odczytywane i zapisywane za pomocą instrukcji ldarg i
starg. W przykładowej aplikacji umieścimy funkcję, która oblicza kwadrat liczby przekazanej
jako parametr.

.assembly extern mscorlib {}

.assembly Example{}

.class public CExample extends [mscorlib]System.Object
{
.method static int32 Kwadrat(int32 n) il managed
{
ldarg 0 // ładuj parametr na stos
dup // umieść kolejną kopię na stosie
mul // mnóż przez siebie
ret // zwróć wynik
}

.method public static void MyAppStart() il managed
{
.entrypoint
.maxstack 8

// int n;
.locals init ([0] int32 n)

// n = Kwadrat(5);
ldc.i4 5
call int32 CExample::Kwadrat(int32)
stloc 0

// Console.WriteLine(n)
ldloc 0
call void [mscorlib]System.Console::WriteLine(int32)

ret
}
}

Obiekty, pola, metody

IL udostępnia również mechanizmy do operacji na obiektach. Dyrektywy .class, .method i
field pozwalają na deklarowanei odpowiednich rodzajów elementów składowych klas.
Ważniejsze instrukcje do operacji na obiektach:

ldnull Ładuje na stos referencję null

newobj (token) Allokuje pamięć dla nowej instancji typu referencyjnego. Wymaga na stosie
odpowiedniej liczby parametrów dla konstruktora i odkłada na stos referencję do nowo
utworzonego obiektu.

ldfld (token) Zdejmuje ze stosu referencję do obiektu i umieszcza na stosie wartość wskazanego
pola.

ldsfld (token) Jak wyżej, tylko dotyczy pola statycznego.

stfld (token) Zdejmuje ze stosu wartość pola i referencję do obiektu i umieszcza wartość w
odpowiednim polu obiektu.

stsfld (token) Jak wyżej, tylko dotyczy pola statycznego.

castclass (token) Zdejmuje ze stosu referencję do obiektu i rzutuje do wskazanego typu.

8. INNE JĘZYKI PLATFORMY .NET 265

box (token) Zdejmuje ze stosu wartość typu prostego i opakowuje, zapisując na stos referencję
do nowo utworzonego obiektu.

unbox (token) Odpakowuje wartość obiektu z zadanej referencji.

Zobaczmy przykład opakowywania. Na stos załadujemy wartość 1, opakujemy ją do obiektu
i wywołamy wirtualną metodę ToString dla tak skonstruowanego obiektu. Wynik pokażemy w
oknie konsoli.

.assembly extern mscorlib {}

.assembly Example{}

.class public CExample extends [mscorlib]System.Object
{
.method public static void MyAppStart() il managed
{
.entrypoint
.maxstack 8

ldc.i4 1
box [mscorlib]System.Int32
callvirt instance string [mscorlib]System.Object::ToString()
call void [mscorlib]System.Console::WriteLine(string)

ret
}
}

Polimorfizm

Metody niestatyczne zdefiniowane w klasie mogą być zdefiniowane jako wirtualne lub nie za
pomocą dyrektywy virtual. W chwili wołania metody wirtualnej ze specjalnej struktury zwa-
nej tablicą metod wirtualnych pobierana jest informacja o łańcuchu poprzeciążanych funkcji, z
których wybierana jest odpowiednia. Oznacza to, że wiązanie nazwy metody z konkretną imple-
mentacją odbywa się tuż przed wykonaniem metody, a nie w czasie kompilacji.
Zobaczmy następujący przykład:

.assembly CExample{}

.class public A
{
.method public specialname void .ctor() { ret }
.method public void Foo()
{
ldstr "A::Foo"
call void [mscorlib]System.Console::WriteLine(string)
ret

}
.method public virtual void Bar()
{
ldstr "A::Bar"
call void [mscorlib]System.Console::WriteLine(string)
ret

}
.method public virtual void Baz()
{
ldstr "A::Baz"
call void [mscorlib]System.Console::WriteLine(string)
ret

}
}

.class public B extends A
{
.method public specialname void .ctor() { ret }
.method public void Foo()

266 ROZDZIAŁ C. ŚWIAT .NET

{
ldstr "B::Foo"
call void [mscorlib]System.Console::WriteLine(string)
ret

}
.method public virtual void Bar()
{
ldstr "B::Bar"
call void [mscorlib]System.Console::WriteLine(string)
ret

}
.method public virtual newslot void Baz()
{
ldstr "B::Baz"
call void [mscorlib]System.Console::WriteLine(string)
ret

}
}

.method public static void Exec()
{
.entrypoint
newobj instance void B::.ctor() // new B()
castclass class A // rzutuj na A

dup // 3 kopie na stosie
dup //

callvirt instance void A::Foo()
callvirt instance void A::Bar()
callvirt instance void A::Baz()
ret

}

W klasie A zdefiniowano trzy metody, z czego dwie są metodami wirtualnymi. W klasie B,
dziedziczącej z A, zdefiniowano trzy metody o takich samych sygnaturach jak metody z klasy
bazowej.

� metoda Foo jest w obu klasach zdefiniowana jako niewirtualna

� metoda Bar jest w obu klasach wirtualna

� metoda Baz jest w obu klasach wirtualna, przy czym w klasie B jest opatrzona dyrektywą
newslot (nowa pozycja w tablicy metod wirtualnych)

Efekt działania tego programu jest zgodny z oczekiwaniami: tylko kod metody Bar będzie
pochodził z klasy B. Zwróćmy przy okazji uwagę, że instrukcja callvirt w przypadku funkcji
Foo nie ma żadnego zastosowania, bowiem Foo nie jest metodą wirtualną. Podobnie, gdyby
wszystkie wywołania callvirt zamienić na call, to fakt, że wywoływane metody są metodami
wirtualnymi przestałby mieć znaczenie - call oznacza niepolimorficzne wywołanie funkcji.

C:\example>example.exe
A::Foo
B::Bar
A::Baz

Wyjątki

Obsługa wyjątków w ILAsm polega na użyciu dyrektyw .try i .catch. Na uwagę zasługuje fakt,
że kod w obu sekcjach musi być jawnie opuszczony za pomocą instrukcji leave.
Poniższy przykład spowoduje wyjątek, ponieważ obiekt FileStream nie jest zainicjowany

przed wywołaniem jego metody.

8. INNE JĘZYKI PLATFORMY .NET 267

/*
using System;
using System.IO;

namespace NSpace
{
class CMain
{
public static void Main()
{
try
{
FileStream fs = null;
fs.Close();
}
catch(Exception ex)
{
Console.WriteLine(ex.Message);
}
}
}
}
*/

.assembly extern mscorlib {}

.assembly Example{}

.class public CExample extends [mscorlib]System.Object
{
.method public static void MyAppStart() il managed
{
.entrypoint
.maxstack 2
.locals init (class [mscorlib]System.IO.FileStream V_0,

class [mscorlib]System.Exception V_1)
.try
{
ldnull
stloc.0 // V_0 = null
ldloc.0
callvirt instance void [mscorlib]System.IO.Stream::Close()
leave.s IL_0018
} // end .try
catch [mscorlib]System.Exception
{
stloc.1
ldloc.1
callvirt instance string [mscorlib]System.Exception::get_Message()
call void [mscorlib]System.Console::WriteLine(string)
leave.s IL_0018
} // end handler
IL_0018: ret
}
}

8.3 Łączenie kodu z różnych języków

Zasady łączenia kodu różnych języków

Platforma .NET pozwala z niespotykaną wcześniej łatwością łączyć kod napisany w różnych
językach. Dowolny kompilator może produkować biblioteki kodu, które następnie mogą być uży-
wane z poziomu innych języków. W poniższym przykładzie kod klasy napisanej w VB.NET jest
wykorzystywany w programie napisanym w C#.

// CMainForm.vb
Imports System
Imports System.Drawing
Imports System.Windows.Forms

268 ROZDZIAŁ C. ŚWIAT .NET

Namespace MainModule

Public Class CMainForm
Inherits System.Windows.Forms.Form

Public Sub New
MyBase.New()
End Sub

Protected Overrides Sub OnPaint(e As PaintEventArgs)
Dim g as Graphics = e.Graphics
Dim f as Font = new Font("Times New Roman", 48)

Dim sf as StringFormat = new StringFormat()

sf.Alignment = StringAlignment.Center
sf.LineAlignment = StringAlignment.Center

g.Clear(SystemColors.Control)
g.DrawString("VB.NET", f, Brushes.Black, _
Me.Width / 2, Me.Height / 2, sf)

End Sub

End Class

End Namespace

// CExample.cs
using System;
using System.Windows.Forms;

using MainModule;

class CExample
{
public static void Main()
{
Application.Run(new CMainForm());
}
}

C:\example>vbc.exe /target:library CMainForm.vb
Microsoft (R) Visual Basic .NET Compiler version 7.00.9466
for Microsoft (R) .NET Framework version 1.00.3705.288
Copyright (C) Microsoft Corporation 1987-2001. All rights reserved.

C:\example>csc.exe /r:CMainForm.dll CExample.cs
Microsoft (R) Visual C# .NET Compiler version 7.00.9466
for Microsoft (R) .NET Framework version 1.0.3705
Copyright (C) Microsoft Corporation 2001. All rights reserved.

Aby możliwa była współpraca kodu napisanego w różnych językach, oczywistym wydaje się
być wymaganie, aby języki te spełniały pewne warunki. W przypadku języków projektowanych
z myślą o platformie .NET sprawa jest prosta. Trudności pojawiają się w przypadku języków
dostosowywanych do wymogów platformy .NET, na przykład języków funkcjonalnych. Przykład
kompilatora SML.NET pokazuje, że takie trudności można z powodzeniem pokonywać.
Czy więc współistnienie wielu języków w obrębie jednej platformy oznacza, że z poziomu

kodu C# można wprost wołać kod z na przykład SML.NET?
Otóż nie do końca tak jest. Aby języki mogły współpracować ze sobą, konieczne jest aby

komunikacja odbywała się za pomocą dość rygorystycznych reguł określanych przez specyfikację
CTS (była już o tym mowa). Oznacza to, że moduł SMLowy może dowolnie korzystać z moż-
liwości SMLa, ale po to aby pobrać parametry i oddać wyniki do modułu C#owego, musi na

8. INNE JĘZYKI PLATFORMY .NET 269

przykład opakować je w klasy, o które rozszerzono składnię SMLa. Dzięki temu, że częścią CTS
jest definicja typów prostych, wymiana informacji między różnymi językami nie jest trudna: typy
proste przekazuje sie wprost, typy złożone opakowuje się w struktury lub klasy.
Poniższy prosty przykład pokazuje jak klasę napisaną w C# można wykorzystać w kodzie

SML.NET.

// pola.cs
namespace NExample
{
public class CExample
{
// pola statyczne
public static readonly string pole_statyczne_readonly =
System.String.Concat("SML.", "NET");
public static int pole_statyczne = 23;

// pola
public int pole;

public CExample(int n)
{
pole = n;
}
}
}

(* pola_demo.sml *)
structure pola_demo =
struct

fun main () =
let
val c = NExample.CExample(156)
in
print ("Pole statyczne readonly " ^ valOf(NExample.CExample.pole_statyczne_readonly) ^ "\n");
print ("Pole statyczne " ^ Int.toString(!NExample.CExample.pole_statyczne) ^ "\n");
NExample.CExample.pole_statyczne := 17;
print ("Pole statyczne " ^ Int.toString(!NExample.CExample.pole_statyczne) ^ "\n");
print ("Pole " ^ Int.toString(!(c.#pole)) ^ "\n");
c.#pole := 77;
print ("Pole " ^ Int.toString(!(c.#pole)) ^ "\n")

end

end

C:\Example>csc /nologo /t:library pola.cs
C:\Example>smlnet -reference:pola pola_demo
C:\Example>pola_demo.exe
Pole statyczne readonly SML.NET
Pole statyczne 23
Pole statyczne 17
Pole 156
Pole 77

Pułapki

Podczas łączenia kodu napisanego w różnych językach programista może natknąć się na prze-
różne problemy. Jednym z najsubtelniejszych z nich jest problem poelgający na zbudowaniu
różnych języków w oparciu o inne modele obiektowe.
Rozważmy następujący przykład kodu w C#.

using System;
using System.Windows.Forms;

namespace CPulapka

270 ROZDZIAŁ C. ŚWIAT .NET

{
public class A
{
public virtual void Q(int k)
{
Console.WriteLine("A::Q(int)");
}
}

public class B : A
{
public virtual void Q(double d)
{
Console.WriteLine("B::Q(double)");
}

public static void Main()
{
B b = new B();
b.Q(1.0); // tu jest OK!
b.Q(1); // a tu?
}
}
}

C:\example>CExample.exe
B::Q(double)
B::Q(double)

Taki a nie inny wynik działania programu może być w pierwszej chwili dość nieoczekiwany.
W klasie A zdefiniowano bowiem metodę Q(int), która wydaje się lepiej pasować do wywołania
b.Q(1) niż przeciążona w klasie B metoda Q(double).
Kompilator C# kieruje się jednak jednoznacznymi regułami dopasowania funkcji, określo-

nymi w specyfikacji języka. Reguły te mówią, że jeżeli możliwe jest dopasowanie parametrów
do funkcji zdefiniowanej w klasie bieżącej, to funkcja taka zostanie wywołana, mimo że w klasie
bazowej może istnieć funkcja, która w danym kontekście mogłaby być bardziej właściwa (zauważ-
my, że konwersja int→double, która jest konieczna aby wywołać funkcję B::Q(double) jest
gorsza niż konwersja int→int, która miałaby miejsce, gdyby w b.Q(1) wywołana była funkcja
A::Q(int)).
Najbardziej właściwe pytanie, które należałoby zadać w tym miejscu brzmi: a co się stanie,

jeśli w innym języku programowania reguły te wyglądają inaczej i spróbujemy połączyć kod
takich dwóch języków?
Cóż, przekonajmy się:

// CExample.cs -> CExample.dll
using System;
using System.Windows.Forms;

namespace CPulapka
{
public class A
{
public virtual void Q(int k)
{
Console.WriteLine("A::Q(int)");
}
}

public class B : A
{
public virtual void Q(double d)
{
Console.WriteLine("B::Q(double)");
}

8. INNE JĘZYKI PLATFORMY .NET 271

}
}

// CTest.vb kompilowany z referencją do CExample.dll
Imports System
Imports System.Drawing
Imports System.Windows.Forms

Imports CPulapka

Module MainModule

Sub Main
Dim b as B
b = new B()

b.Q(1.0)
b.Q(1)
End Sub

End Module

C:\example>CTest.exe
B::Q(double)
A::Q(int)

Wynik tekstu potwierdza, że wybierając funkcję do wywołania w danym kontekście, kompi-
lator danego języka kieruje się swoimi własnymi regułami. W tym przypadku kompilator języka
VB.NET do wywołania b.Q(1) dopasował funkcję A::Q(int) w przeciwieństwie do kompilatora
C#, który (jak widzieliśmy) w tym samym przypadku wybrałby funkcję B::Q(double).
Przykład ten jest bardzo pouczający. Świadczy on o tym, że mimo możliwości integracji w

obrębie jednej platformy uruchomieniowej, języki programowania mogą zachowywać dużą dozę
niezależności. W końcu gdyby każdy język trzeba było ”na siłę” dopasować do jakichś reguł,
zmieniając jednocześnie jego semantykę, to cała idea .NET byłaby niewiele warta - oznaczała-
by bowiem powstanie tak naprawdę jednego sposobu ”ewaluacji” programów, tyle że ubranego
w składnie innych języków. W chwili obecnej zaś, programista chcący skorzystać z możliwo-
ści łączenia kodu różnych języków musi być po prostu świadomy możliwych problemów z tym
związanych - problemów, podkreślmy, natury dość głębokiej i wynikającej z dużych różnic kon-
cepcyjnych pomiędzy językami i ich modelami obiektowymi. Od strony czysto ”technicznej”
platforma .NET daje wyjątkową możliwość bezproblemowego łączenia kodu dowolnych języków
programowania.

272 ROZDZIAŁ C. ŚWIAT .NET

Bibliografia

[1] http://msdn.microsoft.com

[2] http://www.c-sharpcorner.com

[3] Archer T., Whitechapel A. Inside C#, Microsoft Press

[4] Eckel B. Thinking in C#, http://www.bruceeckel.com

[5] Gunnerson E. A Programmer’s Introduction to C#

[6] Lidin S. Inside Microsoft .NET IL Assembler, Microsoft Press

[7] Morgan M. Poznaj język Java 1.2

[8] Petzold Ch. Programming Windows, Microsoft Press

[9] Reilly Douglas J. Designing Microsoft ASP.NET Applications

[10] Stroustrup B. Język C++

273

274 BIBLIOGRAFIA

Dodatek A

Przykładowe aplikacje

Zapraszam do przeglądu interesujących przykładowych programów, które z różnych względów
nie znalazły się wśród programów przedstawianych wcześniej. Każdy z tych programów demo-
struje różne przydatne techniki bądź programistyczne związane z platformą .NET. Programy
pozostawię bez komentarza, aby czytelnik mógł przeanalizować je samodzielnie.

1 Animowany fraktalny zbiór Julii
using System;
using System.Drawing;
using System.Drawing.Imaging;
using System.Windows.Forms;
using System.Runtime.InteropServices;

namespace vicMazeGen
{
public class CFrmJulia : System.Windows.Forms.Form
{
private const int PSiz = 128;

private double angle = 0.0, angle2 = 0.0;
private int cx, cy;

private Bitmap picFracSource;
private System.Windows.Forms.PictureBox picFrac;

public CFrmJulia()
{
this.SetStyle(ControlStyles.DoubleBuffer, true);
this.SetStyle(ControlStyles.AllPaintingInWmPaint, true);

picFracSource = new Bitmap(PSiz, PSiz, PixelFormat.Format24bppRgb);

this.picFrac = new System.Windows.Forms.PictureBox();
this.picFrac.Dock = DockStyle.Fill;
this.picFrac.SizeMode = System.Windows.Forms.PictureBoxSizeMode.StretchImage;

this.ClientSize = new System.Drawing.Size(256, 256);
this.StartPosition = System.Windows.Forms.FormStartPosition.CenterScreen;

this.Controls.Add(this.picFrac);
}

void JuliaPaint()
{
angle += 0.023; angle2+= 0.027;
cx = (int)(800.0 * Math.Sin(angle+1.0));
cy = (int)(800.0 * Math.Cos(angle2));

Rectangle bounds =

275

276 DODATEK A. PRZYKŁADOWE APLIKACJE

Rysunek A.1: Animowany fraktalny zbiór Julii

new Rectangle(new Point(0, 0),
new Size(picFracSource.Width, picFracSource.Height));
BitmapData bData =
picFracSource.LockBits(bounds, ImageLockMode.ReadWrite,

PixelFormat.Format24bppRgb);

byte[] picData = new byte[PSiz * PSiz * 3];
int iDex = 0;

int iterNo, i, j;
int x, y, xn, yn, x2, y2;
for (i=0; i<PSiz; i++)
for (j=0; j<PSiz; j++)
{
iterNo = 0;

x = (i<<5)-2048;
y = (j<<5)-2048;
x2 = x*x;
y2 = y*y;
while (

(iterNo++ < 32) &&
(Math.Abs(x2+y2) < 4000000)
)

{
x2 = x*x; y2 = y*y;
xn = ((x2-y2)>>10) + cx;
yn = ((x*y)>>9) + cy;
x = xn; y = yn;
}

picData[iDex++] = Convert.ToByte(255-iterNo);
picData[iDex++] = Convert.ToByte(5*iterNo);
picData[iDex++] = Convert.ToByte(5*iterNo);
}

Marshal.Copy (picData, 0, bData.Scan0, PSiz * PSiz * 3);
picFracSource.UnlockBits(bData);

2. BEZPOŚREDNI DOSTĘP DO NOŚNIKA DANYCH W WINDOWS NT 277

this.picFrac.Image = picFracSource;
this.picFrac.Invalidate();
}

public static void Main()
{
CFrmJulia frm = new CFrmJulia();
frm.Show();

DateTime start = DateTime.Now;
int frame = 0;
while (frm.Created)
{
frm.JuliaPaint();
Application.DoEvents();

frm.Text = String.Format("Fraktal Julii, FPS: {0:N}",
frame/((TimeSpan)(DateTime.Now-start)).TotalSeconds);

frame++;
}
}
}
}

2 Bezpośredni dostęp do nośnika danych w Windows NT
#include <windows.h>
#include <stdio.h>

void ShowErrorMessage()
{
char* lpMsgBuf;
FormatMessage(
FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM,
NULL,
GetLastError(),
MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
(LPTSTR) &lpMsgBuf,
0,
NULL
);

// Pokaż komunikat
MessageBox(NULL, lpMsgBuf, "GetLastError", MB_OK|MB_ICONINFORMATION);

// Zwolnij pamięć
LocalFree(lpMsgBuf);

exit(1);
}

int main(int argc, char **argv)
{
BOOL bResult;

const int nBytesToRead = 512;
unsigned long nBytesRead;
unsigned long nBytesWrote;
char inBuffer[nBytesToRead];

HANDLE hFloppy = CreateFile("\\\\.\\a:",
GENERIC_WRITE | GENERIC_READ,
FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL, OPEN_EXISTING, 0, NULL);

if (hFloppy == INVALID_HANDLE_VALUE) ShowErrorMessage();

HANDLE hData = CreateFile("read.bin",
GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE,

278 DODATEK A. PRZYKŁADOWE APLIKACJE

NULL, CREATE_ALWAYS, 0, NULL);
if (hData == INVALID_HANDLE_VALUE) ShowErrorMessage();

// kopiuj obraz dyskietki do pliku
do
{
bResult = ReadFile(hFloppy, &inBuffer, nBytesToRead, &nBytesRead, NULL) ;
if (bResult)
WriteFile(hData, inBuffer, nBytesRead, &nBytesWrote, NULL);

} while (bResult != 0 && nBytesRead > 0);

CloseHandle(hFloppy);
CloseHandle(hData);

return 0;
}

