Programowanie pod Windows

Wersja 0.99
Uwaga: notatki sa w fazie rozwoju. Brakujace elementy beda sukcesywnie uzupetniane. Dokument moze by¢
bez zgody autora rozpowszechniany, zabrania si¢ jedynie czerpania z tego korzysci materialnych.

Wiktor Zychla

Instytut Informatyki
Uniwersytetu Wroctawskiego

Wroctaw 2003

Spis tresci

A Wprowadzenie

1
2
3

Historia systemu operacyjnego Windows
Windows z punktu widzenia programisty Lo
Narzedzia programistyczne L L L Lo

B Programowanie Win32API

1
2

C Swiat .NET

1

Fundamentalne idee Win32API
OKkna e
2.1 Tworzenie okien e
2.2 Komunikaty
2.3 Okna potommne
24 Subclasowanie okien potomnych 0oL
2.5 Obstuga grafiki za pomoca GDI,
2.6 Tworzenie menu e e e e e e e e
Procesy, watki, synchronizacja. oL oL
3.1 Tworzenie watkéw i proceséwo
3.2 Synchronizacja watkéw oo
Komunikacja miedzy procesamio
4.1 Charakterystyka protokoltéw sieciowych
4.2 Podstawy biblioteki Winsock oo
Inne wazne elementy Win32API. o oL
5.1 Biblioteki tadowane dynamicznie oo
5.2 Rézne przydatne funkcje Win32APT
5.3 ZeGATY e
5.4 Okna dialogowe
Projektowanie zorientowane obiektowo
1.1 Dlaczego uzywamy jezykow obiektowych L.
1.2 Reguty modelowania obiektowego
1.3 Analiza i projektowanie oL
1.4 Narzedzia wspierajace modelowanie obiektowe
Podstawowe elementy jezyka C#
2.1 Pierwszy program w C# e
2.2 Struktura kodu, operatory L
2.3 System typéw, model obiektowy oL L
2.4 Typy proste a typy referencyjne, boxing i unboxing
2.5 Klasy e
2.6 Struktury

11
11
12
13

17
17
18
18
22
25
31
34
38
40
40
42
49
49
50
o7
o7
58
29
62

SPIS TRESCI

2.7 Dziedziczenie 91
2.8 Niszczenie obiektowo 93
2.9 Interfejsy o . 96
2.10 Konwersje miedzy typami L0 99
211 Wyjatki . . . oL 103
212 Klasa stringo e 104
2.13 Delegaci i zdarzenia L e 108
2.14 Moduly 120
215 Refleksje. o o 121
2.16 Atrybutyo 123
2.17 Kod niebezpiecznyo o 125
2.18 Dokumentowanie koduo oL Lo L 126
2.19 Dekompilacja kodu oo 129
2.20 Poréwnanie C# z innymi jezykami 133
Przeglad bibliotek platformy NET 135
3.1 Kolekcje wbudowane i System.Collections 135
3.2 Biblioteka funkcji matematycznycho 154
3.3 Biblioteki wejécia/wyjsciao 155
3.4 Dynamiczne tworzenie kodu L oL 159
3.5 Procesy, watki 164
3.6 XML . o e 166
3.7 Komunikacja miedzy procesami oo 173
3.8 Wyrazenia regularne 176
3.9 Serializacja L 178
3.10 Wotlanie kodu niezarzadzanego 181
311 Odémiecacz e 183
3.12 DirectX.NET 185
Aplikacje okienkowe L. 193
4.1 Tworzenie okien L 194
4.2 Okna potommne L 195
4.3 Zdarzeniao 196
4.4 Okna dialogowe Lo 200
4.5 Subclassowanie okieno oo 201
4.6 Komponenty wizualne Lo L 202
4.7 Rozmieszczanie okien potomnycho 208
4.8 GDI+ . . 212
4.9 ZeGaTY . . o o e e e e 216
410 Menu e 217
4.11 Schowek 220
412 Drag & drop 221
4.13 Tworzenie wlasnych komponentéw 221
4.14 Typowe okna dialogowe L oL 225
Ciekawostki NET 0 227
5.1 Btad od$miecania we wczesnych wersjach Frameworka 227
5.2 Dostep do prywatnych metod klasy 227
5.3 Informacje o systemie L Lo L 228
5.4 Wiasny ksztalt kursora myszyo 229
5.5 Wiasne ksztatty okieno oo 229
5.6 Podwéjne buforowanie grafikiw GDI+ 229

SPIS TRESCI 5

5.7 Sprawdzanie uprawnien uzytkownikao 230

5.8 Ikona skojarzona z plikiemo oL 230

5.9 WMI . . e 231

6 Bazy danych i ADO.NET 232
6.1 Interfejsy komunikacji z bazami danych 232

6.2 Manualne zakladanie bazy danych 233

6.3 Nawiazywanie polaczenia z bazg danych 235

6.4 Pasywna wymiana danycho 0oL 236

6.5 Lokalne struktury danych oL 237

6.6 Programowe zakladanie bazy danych 240

6.7 Transakcje L 241

6.8 Typ DataSet 241

6.9 Aktywna wymiana danycho oL 244

6.10 ADO.NET i XML 245

6.11 Wiazanie danych z komponentami wizualnymi 246

7 Dynamiczne WWW i ASPNET oo 248
7.1 Dlaczego potrzebujemy dynamicznego WWW 248

7.2 Przeglad technologii dynamicznego WWW 248

7.3 Czym jest ASPNET 249

7.4 Pierwszy przyktad w ASPNETo L. 249

7.5 Laczenie stron ASP.NET z dowolnym kodem 250

7.6 Kontrolki ASP.NET 252

7.7 Inne przyktady ASP.NET 252

7.8 Narzedzia wspomagajace projektowanie stron ASP.NET 255

8 Inne jezyki platformy NET o 256
8.1 VB.NET . .. e 256

8.2 ILAsm 259

8.3 Laczenie kodu z réznych jezykéwo oo 267

A Przykladowe aplikacje 275
1 Animowany fraktalny zbior Julii oL 275

2 Bezposredni dostep do noénika danych w Windows NT 277

SPIS TRESCI

Zamiast wstepu

Plan wyktadu

1. Wprowadzenie (20 luty)

e Historia systemu Windows
e Rozwdj metod programowania

e Przeglad jezykow i narzedzi programistycznych
2. Podstawy programowania systemu Windows (27 luty)
e Tworzenie okien

e Okna macierzyste i okna potomne

o Komunikaty
3. Przeglad bibliotek Win32API (6 marzec)

e Subclassowanie okien potomnych
e GDI

e Zegary

e Menu

e Powloka systemu

4. Zaawansowane metody programowania Win32API (13 marzec)

Biblioteki tadowane dynamicznie (DLL)
e Procesy, watki

Synchronizacja watkow

Podstawy biblioteki Winsock

5. Podstawowe elementy jezyka C# (20 marzec)

e Schemat dziatania platformy NET
e Common type system

e Model obiektowy, klasy
6. Podstawowe elementy jezyka C# (27 marzec)

e Struktury, iterfejsy

e Przeciazanie operatora

SPIS TRESCI

e Dokumentowanie kodu
7. Podstawowe elementy jezyka C# (3 kwiecien)

e Konwersje miedzy typami
o Wyjatki

e Delegaci, zdarzenia

e Modutly

e Refleksje

e Unsafe code

e Dekompilacja
8. Przeglad bibliotek platformy .NET (10 kwiecien)

e Modelowanie obiektowe
e Kolekcje wbudowane
e Wejscie / wyjscie
9. Przeglad bibliotek platformy NET (17 kwiecief)

e Watki, procesy

e Serializacja

e Wyrazenia regularne

e Wotanie kodu natywnego

o Kompilacja w czasie wykonania programu
e XML

e WMI

e DirectX.NET

10. Aplikacje okienkowe (24 kwiecien)

e Tworzenie okien
e Okna macierzyste i okna potomne

e Zdarzenia
11. Aplikacje okienkowe (8 maj)

e Subclassowanie okien potomnych
e Przeglad komponentéw
o GDI+

12. Aplikacje okienkowe (15 mayj)

e Zegary

e Menu
Schowek
Drag & drop

SPIS TRESCI 9

e Tworzenie wlasnych komponentéw

13. ADO.NET, ASP.NET (22 maj)
14. Inne jezyki platformy .NET (29 mayj)

o ILAsm
e VB.NET
e SML.NET

e laczenie kodu réznych jezykdw
15. Bezpieczenstwo (5 czerwiec)

e Bezpieczny jezyk posredni

e Bezpieczne aplikacje

Dla kogo jest ten skrypt

Skrypt skierowany jest do programistéw, ktérzy chea dowiedzie¢ sie jakich narzedzi i jezykow
uzywac aby pisa¢ programy pod Windows oraz jak wyglada sam system widziany oczami progra-
misty. Powstal jako material pomocniczny do wyktadu ”"Programowanie pod Windows”, uktad
materialu odpowiada wiec przebiegowi wyktadu.

Zakladam, ze czytelnik potrafi programowaé¢ w C, wie co to jest kompilator, kod Zréodlowy
i wynikowy, zna troche C++ lub Jave. Dos¢ dokladnie omawiam elementy jezyka C#, mozna
wiec rozdzial po$wiecony omoéwieniu tego jezyka potraktowaé jako mini-leksykon C#.

Poznawanie nowych jezykéw i metod programwania traktuje jako nie tylko prace ale i bar-
dzo uzalezniajace hobby. Uczac si¢ nowych rzeczy, czytam to co autor ma do powiedzenia na
ich temat, a potem staram sie dokladnie analizowaé listingi przyktadowych programéw. Nie-
stety, bardzo czesto zdarza sie, ze kody przykladowych programéw w ksiazkach sg koszmarnie
dlugie! Autorzy przykladéw byé moze kieruja sie przekonaniem, ze przykiadowy kod powinien
wyczerpywaé demonstrowane zagadnienie w sposéb pelny, a ponadto zapoznaé czytelnika przy
okazji z paroma dodatkowymi, czasami niezwiazanymi z tematem, elementami. Tylko jak, chcac
nauczy¢ sie czego$ szybko, znalezé czas na analize czasami kilkunastu stron kodu zrédtowego,
aby miedzy 430 a 435 wierszem znalez¢ interesujacy mnie fragment?

Nie potrafie odpowiedzie¢ na to pytanie. Dlatego kody przykitadowych programéw w tym
skrypcie sa bardzo krétkie, czasami wrecz symboliczne. Zakladam bowiem, ze programista ktory
chce na przykltad dowiedzie¢ si¢ jak dziata ArrayList nie potrzebuje jako przyktadu 10 stron kodu
zrodtowego prostej aplikacji bazodanowej, tylko 10-15 linijek demonstrujacych uzycie tego a nie
innego obiektu. Mimo to przewazajaca wiekszo$¢ przykladéw to kompletne programy, gotowe
do uruchomienia.

Zapraszam do lektury.

10

SPIS TRESCI

Rozdzial A

Wprowadzenie

1 Historia systemu operacyjnego Windows

Na poczatku lat 80-tych pierwsze komputery osobiste pracowaly pod kontrolag systemu ope-
racyjnego MS-DOS. Swoim uzytkownikom DOS oferowal prosty interfejs, w ktérym polecenia
systemowe 1 programy przywotywalo sie z linii polecen. Programisci mieli do dyspozycji zbiér
tzw.przerwan za pomoca ktérych mogli siegaé¢ do urzadzen wejscia/wyjscia. DOS byl systemem

jednozadaniowym, to znaczy, ze w kazdej chwili w systemie aktywny byl tylko jeden proces!.

Pierwsza wersja interfejsu graficznego zostata zapowiedziana w roku 1983, za$ na rynek trafita
w listopadzie 1985. Windows 1.0 byl odpowiedzia Microsoftu na graficzny interfejs jaki zapro-
jektowano w firmie Apple?. W 1987 roku pojawil sie Windows 2.0, ktérego gtéwna innowacja
byla mozliwosé nakladania sie okien na siebie (w przeciwienstwie do okien utozonych obok siebie
w Windows 1.0). Oba systemy pracowaly w trybie rzeczywistym procesoréw 8086 majac dostep
do 1 MB pamieci. 22 maja 1990 roku pojawit sie Windows 3.0, ktory potrafit juz korzystaé¢ z
trybu chronionego procesora 80386, majac dzigki temu dostep az do 16MB pamieci operacyjnej.
Dwa lata pézniej, w 1992, pojawit sie Windows 3.1, ktéry wprowadzit nowe technologie: czcionki
TrueType, OLE oraz obstuge multimediow. W czerwcu 1993 pojawita sie pierwsza wersja sys-
temu Windows NT, ktérego jadro pracowalo w trybie chronionym procesoréw 80386, liniowym
trybie adresowania i 32-bitowym trybie adresowania. Windows NT napisano niemal catkowi-
cie od poczatku w C, dzieki czemu system ten byl przenosny i pracowal m.in. na platformach
RISC-owych.

Wprowadzony na rynek w roku 1995 Windows 95, cho¢ nieprzenosny i ubozszy od NT o
mechanizmy zabezpieczen, zdobyl duza popularnosé jako system do uzytku domowego. Poja-
wienie sie tych dwéch systeméw oznacza do dzi§ zasadnicza linie podzialu Windows na dwie
rodziny: rodzine systemoéw opartych na jadrze NT (Windows NT, Windows 2000, Windows XP)
oraz rodzine oparta na uproszczonym jadrze, rozwijanym od czaséw Windows 95 (Windows 95,
Windows 98, Windows ME). Zapowiadana kolejna wersja systemu ma ostatecznie polaczyé obie
linie.

Pewnym sposobem na pokonywanie tego ograniczenia bylo wykorzystanie przerwania zegara, dzieki czemu
byto mozliwe wykonanie jakiegos matego fragmentu kodu w regularnych odstepach czasu. Nie zmienia to jednak
faktu, ze DOS nie wspieral wielozadaniowo$ci

2Miedzy Microsoftem a Apple regularnie toczyly sie spory dotyczace praw do korzystania z réznych elementéw
interfejsu graficznego

11

12 ROZDZIAL. A. WPROWADZENIE

2 Windows z punktu widzenia programisty

System operacyjny Windows zbudowany jest ze wspolpracujacych ze sobg czesci zarzadzajacych
m.in. pamiecia, interakcja z uzytkownikiem, urzadzeniami wejscia-wyjscia. Z punktu widzenia
programisty istotne jest w jaki sposéb aplikacja moze funkcjonowaé¢ w systemie wchodzac w
interakcje z réznymi jego sktadnikami. To czego potrzebuje programista, to informacje o tym w
jaki spos6b aplikacja ma komunikowa¢ sie z systemem plikow, jak obchodzi¢ sie z pamiecia, jak
komunikowa¢ sie z siecig itd.

Windows jest systemem operacyjnym zbudowanym warstwowo. Tylko najnizsze warstwy
systemu moga operowaé¢ na poziomie sprzetu - programista takiej mozliwosci nie ma (poza
wezesnymi implementacjami Windows, w ktérych taki dostep jest mozliwy). Oznacza to, ze
nie ma mozliwosci bezposredniego odwotania si¢ do pamieci ekranu, czy odczytania wartosci
z dowolnie wybranej komorki pamieci. Nie mozna bezposrednio operowa¢ na strukturze dysku
twardego, ani sterowaé¢ glowica drukarki. Zamiast tego programista ma do dyspozycji pewien
Scidle okreslony zbior funkcji i typow danych, za pomoca ktorych program moze komunikowaé
sie z systemem. O takim zbiorze funkcji i typéw méwimy, ze jest to interfejs programowania
(ang. Application Programming Interface, API) jaki dany system udostepnia®.

Dzieki takiej konstrukeji systemu operacyjnego programista nie musi martwic sie na przyktad
o model karty graficznej jaki posiada uzytkownik, bowiem z jego punktu widzenia oprogramowa-
nie kazdego mozliwego typu karty graficznej wyglada doktadnie tak samo. To system operacyjny
zajmuje sie (tu: za pomoca sterownika) komunikacja z odpowiednimi cze$ciami komputera i z
punktu widzenia programisty robi to w sposob jednorodny. Co wiecej, z punktu widzenia progra-
misty wszelkie mozliwe odmiany systemu operacyjnego Windows, cho¢ bardzo rézne ”w srodku”,
za zewnatrz wygladaja tak samo. Jesli jakas funkcja wystepuje we wszystkich odmianach sys-
temu, to jej dzialanie jest identyczne, cho¢ mechanizmy jakie pociaga za sobg wywolanie takiej
funkeji w systemie operacyjnym mogg by¢ zupelnie rézne?.

Od pierwszej wersji systemu Windows, jego interfejs pozostaje w miare jednolity, mimo ze
w miedzyczasie przeszedl ewolucje i z systemu 16-bitowego stal sie systemem 32-bitowym. Za-
sadniczo zmienil si¢ sposéb adresowania pamieci (w modelu 16-bitowym odwotania do pamieci
mialy postaé segment:offset i byly nastepnie thumaczone na adersy fizyczne, model 32-bitowy
zaktada 32-bitowe liniowe adresowanie pamieci, wykorzystujace odpowiednie mozliwosci proce-
soréw 80386 i wyzszych). Mimo tej zmiany interfejs programowania pozostal w duzej czesci
nienaruszony. Wszystkie, nawet najnowsze, wersje systemu, pozwalaja na korzystanie zaréwno z
nowego (Win32) jak i starego (Win16) interfejsu. Warto wiedzieé, ze w systemach opartych na
jadrze NT wywolania funkcji z Winl16API przechodza przez posrednia warstwe tlumaczaca je
na funkcje Win32API obstugiwane nastepnie przez system, za$ w systemach opartych na jadrze
16-bitowym (Windows 95, Windows 98) jest dokladnie odwrotnie - to funkcje z Win32API prze-
chodza przez warstwe ttumaczaca je na Winl6API, ktére to z kolei funkcje sg obstugiwane przez
system operacyjny. Przyjmuje sie ze obie linie systeméw wspieraja Win32API, jednak sytuacja
nie jest az tak rézowa - kazdy z systeméw obstuguje swéj wlasny podzbiér Win32API. Czesé
wspoélna jest jednak na tyle pojemna, ze jak juz wcze$niej wspomniano, mozliwe jest pisanie
programéw, ktére dzialaja na kazdej odmianie systemu Windows.

W pierwszej wersji systemu do dyspozycji programistéw oddano okoto 450 funkcji. W ostat-
nich wersjach ich liczba znaczaco wzrosta (méwi sie o tysiacach funkcji), gléwnie dlatego, ze

3Taka konstrukcja oprogramowania, w ktérej wewnetrzne mechanizmy funkcjonowania jakiego§ fragmentu
oprogramowania sg ukryte, zas dostep do jego funkcji jest mozliwy za pomoca jakiegos interfejsu, jest powszechnie
stosowany w nowoczesnym oprogramowaniu. Istnieja setki specjalizowanych interfejséw programowania przerdz-
nych bibliotek (DirectX, OpenGL), protokoléw (sieé, ODBC, OLEDB), czy programéw (MySQL).

4Na przyktad funkcje do operacji na systemie plikéw czy rejestrze systemu w systemach opartych na jadrze
NT musza dodatkowo wykonaé prace zwigzang ze sprawdzaniem przywilejéw uzytkownika.

3. NARZEDZIA PROGRAMISTYCZNE 13

.2 Dev-Cer 4.01 - Project - [p.cop] 1Bl 2

U Fle Edit Seach Yiew Proscl Execulz Opfions Tooks Window Help =l8lx
avcox|dlranveselsalas o
o7 8w a7 0 o [[0]S

=@ Project
€ plopp

Mew e

gument, int nFun

\ I o
% Compier |) Linker| &5 Resoucs| 5 Conple ko
Line [Unit [Message I

Rysunek A.1: DevC++4 pozwala pisa¢ programy w C i wspiera Win32API.

znaczaco wzrosta liczba mozliwosci jakimi nowe odmiany systemu dysponuja. Kazda kolejna
warstwa, zbudowana nad Win32API, musi z koniecznosci by¢ w jakis§ sposéb ograniczona. MFC,
VCL, QT, GTK czy srodowisko uruchomieniowe .NET Framework nie sa tu wyjatkami: zdarza-
ja sie sytuacje, kiedy zachodzi koniecznosé siegniecia ”glebiej” niz pozwalajg na to wymienione
interfejsy, az do poziomu Win32API. Zrozumienie zasad Win32API pozwala wiec przezwyciezaé
ograniczenia interfejséw wyzszego poziomu®. Pelna dokumentacja wszystkich funkcji systemo-
wych dostepnych we wszystkich interfejsach zaprojektowanych przez Microsoft oraz mnoéstwo
artykuléw z poradami na temat programowania pod Windows dostepna jest on-line pod adre-
sem http://msdn.microsoft.com.

3 Narzedzia programistyczne

Repertuar jezykéw programowania, ktore pozwalaja na pisanie programéw pod Windows jest
bogaty i kazdy znajdzie tu co$ dla siebie. Win32API przygotowano jednak z mysla o jezyku
C i to wladnie piszac programy w jezyku C mozna od systemu Windows otrzymaé najwiece;j.
Programisci maja do wyboru nie tylko Microsoft Visual C++, ktory jest czescia Visual Studio,
ale takze kilka nieztych darmowych kompilatoréw rozpowszechnianych na licencji GNU (wsr6d
nich wyréznia sie¢ DevC++, do pobrania ze strony http://www.bloodshed.net).

Duza popularnosé zdobyt sobie jezyk Delphi zaprojektowany przez firme Borland jako rozsze-
rzenie Pascala. Wydaje sie jednak, ze znaczenie tego jezyka bedzie coraz mniejsze. Marginalizuje
sie rowniez znaczenie wielu innych interfejséw takich jak MFC czy VCL.

Pojawienie si¢ jezyka Java, zaprojektowanego przez firme Sun, oznaczalo dla spotecznodci
programistow nowg epoke. Projektantom Javy przyswiecata idea Jeden jezyk - wiele platform,
zgodnie z ktora programy napisane w Javie mialy by¢ przeno$ne miedzy réznymi systemami ope-
racyjnymi. W praktyce okazalo sie, ze Java nie nadaje sie do pisania duzych aplikacji, osadzonych

5Tak bedziemy méwié o interfejsach zbudowanych na Win32API

14 ROZDZIAL. A. WPROWADZENIE

w konkretnych systemach operacyjnych. Na przyktad oprogramowanie interfejsu uzytkownika w
Javie polega na skorzystaniu z komponentéw specyficznych dla Javy, nie za$ dla konkretnego
systemu operacyjnego. Odpowiadajac na zarzuty programistow o ignorowanie istnienia w syste-
mach operacyjnych specjalizowanych komponentéw, Microsoft przygotowal swoja wersje Javy,
ktéra wyposazyl w biblioteke WFC (Windows Foundation Classes), zwiazujaca Visual J++ z
platforma Windows. W 1997 Sun wytoczyl Microsoftowi proces, ktory ostatecznie doprowadzit
do zaniechania przez Microsoft rozwijania J++ i podjecia pracy nad nowym jezykiem, pozba-
wionym wad Javy, ktory osadzony bylby na nowej platformie, pozbawionej wad srodowiska
uruchomieniowego Javy. Prace te zaowocowaly pojawieniem sie w okoliach roku 2000 pierw-
szych testowych wersji érodowiska uruchomieniowego, nazwanego .NET Framework, dla ktoérego
zaprojektowano nowy jezyk nazwany C#. Dla wielu programistéw uzywajacych Javy jedna z
kropel w kielichu goryczy jest niezgodnosé¢ semantyczna zachowania sie maszyn wirtualnych
pochodzacych z réznych zrédetb.

.NET Framework opiera sie na idei odwrotnej niz Java. Ta idea to Jedna platforma - wiele je-
zykow. Specyfikacja jezyka posredniego, nazwanego IL (Intermediate Language) jest otwarta dla
wszystkich tworcéw kompilatoréw. Co otrzymujg w zamian? Wspodlny system typéw, pozwalaja-
cy na komunikacje programéw pochodzacych z réznych jezykéw, rozbudowang biblioteke funkc;ji,
wspolny mechanizm obstugi wyjatkéw oraz odSmiecacz. Ze swojej strony Microsoft przygotowal
5 jezykéw programowania platformy .NET. Sg to:

e C#, w pelni obiektowy jezyk programowania o sktadni C-podobne;j

J++, Java dla platformy .NET

C++, ktory w nowej wersji potrafi korzystaé z dobrodziejstw platformy .NET

VB.NET, nowa wersja Visual Basica o znacznie wiekszych mozliwosciach niz poprzednia
wersja

e IL Assembler, niskopoziomowy jezyk programowania w kodzie posrednim platformy .NET

Poza Microsoftem pojawiaja sie kompilatory innych jezykéw dla platformy .NET. W tej
chwili dostepne sg m.in.:

e Ada
e COBOL

o Perl

Python

SmallTalk

e SML.NET

Trwaja prace nad . NETowsg wersja Prologa, Delphi oraz wielu innych jezykdéw.

Kompilatory dla trzech jezykéw (C#, VB.NET, IL Assembler) wchodza w sklad $rodowiska
uruchomieniowego .NET Framework, czyli sa darmowe. Réwniez bez wnoszenia oplat mozna
pobraé ze stron Microsoftu pakiet dla J++. Sam .NET Framework mozna pobra¢ réwniez bez-
platnie ze strony hitp://msdn.microsoft.com/netframework/downloads/howtoget.asp. Pakiet in-
stalacyjny zajmuje okoto 20MB. Programisci mogg pobra¢ .NET Framework SDK, ktéry oprocz

6Zdarza sie réwniez, ze maszyny wirtualne tego samego producenta zachowuja sie inaczej na réznych systemach
operacyjnych

3. NARZEDZIA PROGRAMISTYCZNE 15

& Trima - SharpDevelop - [C:\Moje dokumenty\TrilmasTrilmaMove. cs]

Pk Edveis widok Projekt Lruthom Szika) Narsda Olna Pomac SR
EEHE BB AN T e T BB

B stert P s | Trimoferd.cs [TeilmaMove.cs] f Trieseiup.cs | P TrimaForm.ss | Trlnabont.os | 4 b x| hastiwedel ol
estaw Trimal(l wpis) 11 public Point srcPoint: 12 | B ‘]
rilma 128 public Point destPoint:
Plki zasobéw 1@ e
S 14 private Trilmatove(] } BLadtetc: Cormplle
e is public TrilmaMove| Poinc SonrceFoint, Point DestimationFoint) Dats
3] nssemblylnfo.cs 1EiE J Bepenact
Sl 17 srcPoint = SourcePoint: Hame Ci\Moje doku
18 destPoint = DestinationPoint; Subtype Code
158)
20
21 public override string ToString()
9 TrimaFlayer.cs zzm {
] Trimatiessages.cs 25 return String.Format("[{3j-(1}]1", srePoint, descPoint):
B9 Trimaliove, cs 24 3
“ B9 F_Trimabout.cs 25 H
26
27 public class TriluaMoveSequence
mE ¢
B public hrraylist Moves = new ArrayList():
a0
31 public int MoveValue({ TrilwaBoard Board |
338 {
3z if (Hoves.Count > 0)
348 ¢
as 4/ compute new board layout
36 Trilmaliove fMove = [TrilmaMove)Moves(0]:
37 Trilmaliove lMove = [TrilmaMove]Moves[Hoves.Count-1]:
a8
EELS) Board.theBoard| fHove.srcPoint.X, fMove.srePoine.Y | .Pieci‘;l
Ll 2
[Wyniki x|
Name
|1 [—]] 4| i
rre| P e [P [B ws || B 2adenis 0 WM
[Giotawy 1z w6 cha |[mg

Rysunek A.2: SharpDevelop oferuje m.in. autouzupelnianie kodu i wizualny edytor form.

srodowiska uruchomieniowego zawiera setki przyktadéw i tysiace stron dokumentacji techniczne;j.
.NET Framework SDK to okoto 120MB. Samo srodowisko uruchomieniowe mozna zainstalowaé
na systemach Windows poczawszy od Windows 98. .NET Framework SDK, podobnie jak Visu-
al Studio .NET wymagaja juz co najmniej Windows 2000, jednak rozwijane w Windows 2000
programy dadza si¢ oczywiscie uruchomi¢ w Windows 98 z zainstalowanym $érodowiskiem uru-
chomieniowym .NET (pod warunkiem nie wykorzystywania klas specyficznych dla Windows
2000, np. FileSystemWatcher).

Do dyspozycji programistéw oddano oczywiscie nowa wersje srodowiska developerskiego Vi-
sual Studio .NET (oczywiScie ono nie jest juz darmowe). Dostepne sa za to $rodowiska darmo-
we, rozwijane poza Microsoftem. Najlepiej zapowiada sie SharpDevelop (do pobrania ze strony
http:/ /www.icsharpcode.net).

Specyfikacja platformy .NET jest publiczna, ogloszona poprzez ECMA-International (FEu-
ropean Computer Manufacturer Association International, hitp://www.ecma-international.org),
nic wiec dziwnego, ze powstaja wersje pod inne niz Windows systemy operacyjne. Najbardziej
zaawansowany jest w tej chwili projekt Mono (http://www.go-mono.com), dostepny na kilka
systeméw operacyjnych (w tym Linux i Windows).

Platforma . NET jest dobrze udokumentowana, powstaja coraz to nowe strony, gdzie develo-
perzy dziela sie przykladowymi kodami i wskazéwkami. Warto zagladaé na http: //msdn.microsoft.com,
http:/ /www.c-sharpcorner.com, hitp://www.gotdotnet.com czy hitp://www.codeproject.com.

16

ROZDZIAL. A. WPROWADZENIE

Rozdziat B

Programowanie Win32API

1 Fundamentalne idee Win32API

Interfejs programowania Win32API mozna podzieli¢ na spdjne podzbiory funkcji przeznaczonych
do podobnych celéw. Dokumentacja systemu méwi o 6 kategoriach:

Ustlugi podstawowe Ta grupa funkcji pozwala aplikacjom na korzystanie z takich mozliwo-
$ci systemu operacyjnego jak zarzadzanie pamiecia, obstuga systemu plikéw i urzadzen
zewnetrznych, zarzadzanie procesami i watkami.

Biblioteka Common Controls Ta cze$¢ Win32API pozwala obstugiwaé zachowanie typo-
wych okien potomnych, takich jak proste pola edycji i comboboxy czy skomplikowane
ListView i TreeView.

GDI GDI (Graphics Device Interface) dostarcza funkcji i struktur danych, ktére moga byé
wykorzystane do tworzenia efektéw graficznych na urzadzeniach wyjsciowych takich jak
monitory czy drukarki. GDI pozwala rysowac¢ ksztalty takie jak linie, krzywe oraz figury
zamkniete, pozwala takze na rysowanie tekstu.

Ustlugi sieciowe Za pomoca tej grupy funkcji mozna obstugiwaé warstwe komunikacji siecio-
wej, na przyktad tworzy¢ wspotdzielone zasoby sieciowe czy diagnozowaé stan konfiguracji
sieciowej.

Interfejs uzytkownika Ta grupa funkcji dostarcza $rodkéw do tworzenia i zarzadzania inter-
fejsem uzytkownika: tworzenia okien i interakcji z uzytkownikiem. Zachowanie i wyglad
tworzonych okien jest uzaleznione od wlasciwoéci tzw.klas okien.

Powloka systemu To funkcje pozwalajace aplikacjom integrowaé sie z powloka systemu, na
przyktad uruchomié¢ dany dokument ze skojarzona z nim aplikacja, dowiadywac sie o ikony
skojarzone z plikami i folderami czy odczytywaé potozenie waznych folderéw systemowych.

Programowanie systemu Windows wymaga przyswojenia sobie trzech istotnych elementéw.
Po pierwsze - wszystkie elementy interfejsu uzytkownika, pola tekstowe, przyciski, combobo-
xy, radiobuttony', wszystkie one z punktu widzenia systemu sa oknami. Jak zobaczymy, Win-
dows traktuje wszystkie te elementy w sposob jednorodny, przy czym niektére okna moga byé
tzw. oknami potomnymi innych okien. Windows traktuje okna potomne w sposéb szczegdlny,

b Angielskawe’ brzmienie tych terminéw moze byé troche niezreczne, jednak ich polskie odpowiedniki bywaja
przerazajace. Pozostaniemy wiec przy terminach powszechnych wsréd programistow.

17

18 ROZDZIAY. B. PROGRAMOWANIE WIN32API

zawsze umieszczajac je w obszarze okna macierzystego oraz automatycznie przesuwajac je, gdy
uzytkownik przesuwa okno macierzyste?.

Po drugie - z perspektywy programisty wszystkie okna zachowuja sie prawie dokladnie tak
samo jak z perspektywy uzytkownika. Uzytkownik, za pomocg myszy, klawiatury lub innego
wskaznika, wykonuje rézne operacje na widocznych na pulpicie oknach. Kazde zdarzenie w sys-
temie, bez wzgledu na zZrédlo jego pochodzenia, powoduje powstanie tzw. komunikatu, czyli
pewnej informacji majacej swéj cel i niosacej jakas okreslong informacje. Programista w kodzie
swojego programu tak naprawde zajmuje sie obstugiwaniem komunikatéw, ktére powstaja w
systemie przez interakcje uzytkownika?.

Po trzecie - do identyfikacji obiektéw w systemie, takich jak okna, obiekty GDI, pliki, bibliote-
ki, watki itd., Windows korzysta z tzw. uchwytéw (czyli 32-bitowych identyfikatoréw). Mndstwo
funkcji Win32API przyjmuje jako jeden z parametréw uchwyt (czyli identyfikator) obiektu sys-
temowego, przez co wykonanie takiej funkcji odnosi sie do wskazanego przez ten uchwyt obiektu.
W jezyku C rézne uchwyty zostaly réznie nazwane (HWND, HDC, HPEN, HBRUSH, HICON,
HANDLE itd.) choé¢ tak naprawde sa one najczesciej wskaznikami na miejsce w pamieci gdzie
znajduje sie pelny opis danego obiektu. Z perspektywy programisty, sa one, jak juz powiedziano,
unikatowymi identyfikatorami obiektéw systemowych.

Doktadne poznanie i zrozumienie trzech wymienionych wyzej elementéw stanowi istote po-
znania i zrozumienia Win32API. Idee ktére leza u podstaw wyzej wymienionych elementéw sg
jednakowe we wszystkich wersjach systemu Windows i z duza doza prawdopodobienstwa mozna
powiedzieé¢, ze nie ulegna zasadnicznym zmianom w kolejnych wersjach systemu. Programista
moze oczywidcie zna¢ mniej lub wiecej funkcji Win32API, umieé postugiwaé sie mniejszg lub
wieksza iloscig komunikatéw, znaé¢ mniej lub wiecej typéw uchwytéw, jednak bez zrozumienia
zasad, wedle jakich wszystkie te elementy sktadaja sie na funkcjonowanie systemu operacyjnego
Windows, programista piszac program bedzie czesto bezradny.

2 Okna

2.1 Tworzenie okien

Zarzadzanie oknami i tworzenie grafiki to jedne z najwazniejszych zadan przy programowaniu
pod Windows, wymagajace bardzo dokladnego poznania. Interfejs uzytkownika jest pierwszym
elementem programu, z jakim styka sie uzytkownik, co wiecej - interfejs jest tym elementem,
ktoremu uzytkownik zwykle poswieca najwiecej czasu i uwagi. Programista musi wiec bardzo
dokltadnie poznaé¢ mozliwosci jakimi dysponuje w tym zakresie system operacyjny.
Przeanalizujmy bardzo prosty programi Windowsowy, ktory na pulpicie pokaze okno.

/*
*
* Tworzenie okna aplikacji
*
*/

#include <windows.h>

/* Deklaracja wyprzedzajaca: funkcja obstugi okna */

LRESULT CALLBACK WindowProcedure (HWND, UINT, WPARAM, LPARAM);
/* Nazwa klasy okna */

char szClassName[] = "PRZYKLAD";

int WINAPI WinMain(HINSTANCE hInstance,

2To doséé¢ wazne. Gdyby programista musial dbaé¢ o przesuwanie sie okien potomnych za przesuwajacym sie
oknem macierzystym, byloby to niestychanie niewygodne.

31 nie tylko - komunikaty moga mieé swoje zrédto w samym systemie. Komunikaty wysylaja do siebie na
przyklad okna i okna potomne, zrédtem komunikatoéw moga byé zegary itd.

2. OKNA 19

HINSTANCE hPrevInstance,
LPSTR 1pCmdLine,
int nShowCmd)

HWND hwnd; /* Uchwyt okna */
MSG messages; /* Komunikaty okna */
WNDCLASSEX wincl; /* Struktura klasy okna */

/* Klasa okna */

wincl.hInstance = hlnstance;

wincl.lpszClassName = szClassName;

wincl.lpfnWndProc = WindowProcedure; // wskaznik na funkcje obstugi okna
wincl.style = CS_DBLCLKS;

wincl.cbSize = sizeof (WNDCLASSEX) ;

/* Domyslna ikona i wskaznik myszy */

wincl.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wincl.hIconSm = LoadIcon(NULL, IDI_APPLICATION);
wincl.hCursor = LoadCursor (NULL, IDC_ARROW);
wincl.lpszMenuName = NULL;

wincl.cbClsExtra = 0;

wincl.cbWndExtra 0;

/* Jasnoszare tlo */

wincl.hbrBackground = (HBRUSH)GetStockObject(LTGRAY_BRUSH) ;

/* Rejestruj klase okna */
if ('RegisterClassEx(&wincl)) return O;

/* Twérz okno */

hwnd = CreateWindowEx(
0, szClassName,
"Przykiad",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT, CW_USEDEFAULT,
512, 512,
HWND_DESKTOP, NULL,
hlnstance, NULL);

ShowWindow (hwnd, nShowCmd) ;
/* Petla obslugi komunikatéw */
while(GetMessage (&messages, NULL, O, 0))
{
/* Ttumacz kody rozszerzone */
TranslateMessage (&messages) ;
/* Obstuz komunikat */
DispatchMessage (&messages) ;

}

/* Zuréé parametr podany w PostQuitMessage() */
return messages.wParam;

}

/* Te funkcje wola DispatchMessage() */
LRESULT CALLBACK WindowProcedure(HWND hwnd, UINT message,
WPARAM wParam, LPARAM 1lParam)

{
switch (message)
{
case WM_DESTROY:
PostQuitMessage (0) ;
break;
default:
return DefWindowProc(hwnd, message, wParam, 1lParam);
}
return 0;
}

Z punktu widzenia syntaktyki - jest to zwykly program w jezyku C. By¢ moze rozczarowujace
jest to, ze program ten jest az tak dlugi. Okazuje sie jednak, ze proéciej sie po prostu nie da.

20 ROZDZIAY. B. PROGRAMOWANIE WIN32API

Rysunek B.1: Efekt dzialania pierwszego przyktadowego programu

Jezeli w jakimkolwiek innym jezyku programowania lub przy uzyciu jakich$ bibliotek da sie
napisaé prostszy program tworzacy okno (a jak zobaczmy w rozdziale 4.1 analogiczny program
w C+# zajmuje mniej wiecej 10 linii kodu), bedzie to zawsze oznaczalo, ze cze$é¢ kodu jest po
prostu ukryta przed programista.

Z tego wlasnie powodu méwimy, ze interfejs Win32APT jest "najblizej” systemu operacyjnego
jak tylko jest to mozliwe (czasem moéwi sie tez, ze jest on "najnizszym” interfejsem programowa-
nia). Kazda inna biblioteka umozliwiajaca tworzenie okien musi korzysta¢ z funkcji Win32API,
opakowujac je ewentualnie w jakis wlasny interfejs programowania.

Wielu programistéw znajacych bardzo dobrze Win32API uwaza to za jego najwiesza zalete.
To wlaénie bowiem Win32API daje najwieksza kontrole nad tym jak wyglada okno i jak sie
zachowuje.

Ale wr6¢my do naszego programu. Pierwsza wazna réznica miedzy programem Windowso-
wym a zwyklym programem w jezyku C, to brak funkcji main, zastapionej przez WinMain.
Tradycyjnie funkcja ta ma nastepujacy prototyp:
int
WINAPI
WinMain(

HINSTANCE hlInstance,
HINSTANCE hPrevInstance,
LPSTR 1lpCmdLine,

int nShowCmd

);

W tej deklaracji

e WINAPI oznacza konwencje przekazywania parametréow do funkcji. Zwykle w ktéryms z
plikéw nagtéwkowych znajdziemy po prostu #define WINAPI __stdcall?

40 innych konwencjach przekazywania parametréw do fukcji (_stdcall, _cdecl, _pascal) warto poczytad,
poniewaz niezgodno$é konwencji bywa zréodtem probleméw przy taczeniu bibliotek napisanych w réznych jezykach,
np. Delphi i Visual Basicu.

2. OKNA 21

¢ hlnstance, jak sugeruje typ, jest uchwytem. W tym przypadku jest to uchwyt do biezacej
instancji aplikacji.

e hPrevInstance to uchwyt do poprzedniej instancji tej aplikacji. W Winl6API za pomo-
ca tego uchwytu mozna byto zidentyfikowaé istniejaca juz w systemie instancje aplikacji i
uaktywnié ja w razie potrzeby. W Win32API ten parametr jest zawsze réwny NULL i za-
chowano go tylko ze wzgledéw historycznych. Do identyfikowania innych instancji aplikacji
w Win32API nalezy uzyé jakiché trwatych obiektéw, na przyktad Mutexéw®.

e IpCmdLine to lista parametréw programu. W programie Windowsowym, w przeciwien-
stwie do zwyktego programu w jezyku C, wszystkie parametry przekazywane sa w tej jednej
tablicy. Oznacza to, ze programista musi sam zatroszczy¢ sie o wylowienie kolejnych pa-
rametrow z listy. Inaczej tez niz w zwyklym programie w C mozna uzyskaé¢ informacje o
lokalizacji biezacej aplikacji w systemie plikow: zamiast odczytaé zerowy parametr na liscie
parametréw, programista wota funkcje API GetModuleFileName.

e Windows moze aktywowaé okno na rézne sposoby, m.in.:

SW_HIDE, ukrywa okno
— SW_MINIMIZE, okno jest zminimalizowane

SW_RESTORE, SW_SHOWNORMAL, aktywuje okno w jego oryginalnych rozmia-
rach

SW_SHOW, aktywuje okno w jego biezacych rozmiarach
— SW_SHOWMAXIMIZED, okno jest zmaksymalizowane

nShowCmd sugeruje aplikacji sposéb pokazania gléwnego okna. Programista moze oczy-
wiscie te informacje zlekcewazy¢, jednak nie jest to dobrg praktyka.

Druga wazna réznica réznica miedzy programem Windowsowym a zwyklym programem w
jezyku C, to mnéstwo nowych funkeji i struktur od jakich roi sie w programie Windowsowym.
Zauwazmy, ze samo utworzenie okna jest procesem o tyle skomplikowanym, ze wymaga wcze$niej
utworzenia tzw.klasy okna. Chodzi o to, by wszystkie okna o podobnych wtasciwodciach mogty
mie¢ te sama funkcje obstugi komunikatéw (o komunikatach za chwile). Na przyklad wszystkie
przyciski sg okami utworzonymi na bazie klasy BUTTON, wskazujacej na odpowiednia funkcje
obstugi zachowan przycisku. Aplikacja moze tworzy¢ dowolng iloéé okien bazujacych na tej samej
klasie, za kazdym razem konkretyzujac pewne dodatkowe cechy kazdego nowego okna.

Aby zarejestrowaé¢ w systemie nowa klase okna nalezy skorzystaé z funkcji

ATOM RegisterClassEx(

CONST WNDCLASSEX *lpwcx
)

Klasa okna utworzona przez aplikacje jest automatycznie wyrejestrowywania przy zakoncze-
niu aplikacji. Okna tworzy sie za pomoca funkcji

HWND CreateWindowEx (

DWORD dwExStyle,// rozszerzony styl okna
LPCTSTR 1pClassName,// nazwa klasy okna
LPCTSTR lpWindowName,// nazwa okna

DWORD dwStyle,// styl okna

SWiecej o Mutexach na stronie 44

22 ROZDZIAY. B. PROGRAMOWANIE WIN32API

int x,// pozycja okna

int y,

int nWidth,// szeroko§é

int nHeight,// wysokosé

HWND hWndParent,// uchwyt okna macierzystego

HMENU hMenu,// uchwyt menu lub identyfikator okna potomnego
HINSTANCE hInstance,// instancja aplikacji

LPVOID lpParam

Zapamietajmy przy okazji prawidlowosé: wiele funkcji API istnieje w dwéch wariantach,
podstawowym i rozszerzonym. Bardzo czesto funkcje podstawowe oczekuja pewnej $cisle okre-
Slonej ilosci parametréw, natomiast funkcje rozszerzone oczekuja jednego parametru, ktérym
jest struktura z odpowiednio wypetnionymi polami®.

2.2 Komunikaty

W przyktadzie z poprzedniego rozdziatu widzielisémy, ze funkcja obstugi okna zajmuje sie obstuga
komunikatéw docierajacych do okna. Komunikaty petlnia w systemie Windows gltéwng role jako
srodek komunikacji miedzy réznymi obiektami. Jezeli gdziekolwiek w systemie dzieje sie cos, co
wymaga poinformowania jakiego$ innego obiektu, najprawdopodobniej ta informacja przeptynie
w postaci komunikatu.

Obstuga komunikatéw, ich rozdzielaniem do odpowiednich obiektéow zajmuje sie jadro syste-
mu. W praktyce kazde okno ma swojg wlasna kolejke komunikatow, w ktérej system umieszcza
kolejne komunikaty, ktore maja swoje zrodlo gdzies w systemie, a ich przeznaczeniem jest dane
okno.

Programista moze kaza¢ oknu przechwytywaé¢ odpowiednie komunikaty, moze réwniez inicjo-
waé komunikaty i kierowaé je do wybranych okien. W funkcji obstugi komunikatéw programista
sam decyduje o tym, na ktére komunikaty okno powinno reagowaé. Najczesciej sg to komunikaty
typowe. Programista nie ma obowigzku reagowaé¢ na wszystkie mozliwe komunikaty.

Komunikat X
Komunikat Y
Komunikat Z

!
‘ Okno ‘

Tabela B.1: Z kazdym oknem system kojarzy kolejke komunikatéw dla niego przeznaczonych

Oto lista wazniejszych komunikatéw, jakie moga docieraé¢ do okna.

WM _CHAR . Dociera do aktywnego okna po tym, jak komunikat WM _KEYDOWN zostanie
przettumaczony w funkcji TranslateMessage().

chCharCode = (TCHAR) wParam; Znakowy kod wcidnietego klawisza.

IKeyData = 1Param; Ilos¢ powtérzen, kody rozszerzone.

WM_CLOSE Dociera do aktywnego okna przed jego zamknieciem. Jest to chwila kiedy mozna
jeszcze anulowa¢ zamkniecie okna.

5Nie jest to jednak reguta

2. OKNA 23

WM_COMMAND Dociera do aktywnego okna przy wyborze pozycji z menu lub jako powia-
domienie od okna potomnego.

wNotifyCode = HIWORD (wParam); Kod powiadomienia.

wID = LOWORD (wParam); Identyfikator pozycja menu lub okna potomnego.
hwndCtl = (HWND) IParam; Uchwyt okna potomnego.

WM_CREATE Dociera do okna po jego utworzeniu za pomocg CreateWindow () ale przed jego
pierwszym pojawieniem sie. Jest zwykle wykorzystywany na tworzenie okien potomnych,
inicjowanie menu czy inicjowanie podsysteméw OpenGL, DirectX itp.

Ipcs = (LPCREATESTRUCT) 1Param; Informacje o utworzonym oknie.

typedef struct tagCREATESTRUCT { // cs
LPVOID lpCreateParams;
HINSTANCE hInstance;

HMENU hMenu;

HWND hwndParent;
int cy;

int CX;

int y;

int X;

LONG style;

LPCTSTR lpszName;

LPCTSTR 1pszClass;

DWORD dwExStyle;
} CREATESTRUCT;

WM_KEYDOWN Dociera do aktywnego okna gdy zostanie naciéniety klawisz niesystemowy
(czyli dowolny klawisz bez wcidnietego klawisza ALT).

nVirtKey = (int) wParam; Kod klawisza.

IKeyData = 1Param; Ilos¢ powtérzen, kody rozszerzone.

WM_KEYUP Dociera do aktywnego okna gdy zostanie zwolniony klawisz niesystemowy (czyli
dowolny klawisz bez wcisnietego klawisza ALT).

nVirtKey = (int) wParam; Kod klawisza.

IKeyData = 1Param; Ilos¢ powtérzen, kody rozszerzone.
WM_KILLFOCUS Dociera do aktywnego okna przed przekazaniem aktywnosci innemu oknu.

hwndGetFocus = (HWND) wParam; Uchwyt okna, ktrére stanie sie aktywne.

IKeyData = 1Param; Ilo¢ powtoérzen, kody rozszerzone.

WM_LBUTTONDBLCLK Dociera do aktywnego okna gdy jego obszar zostanie dwuklik-
niety.

fwKeys = wParam; Informuje o tym, czy jednoczesnie sa wcisniete klawisze systemowe:
SHIFT, CTRL.

xPos = LOWORD (IParam); Wspdlrzedna X dwukliknietego punktu wzgledem punk-
tu w lewym gérnym rogu obszaru klienckiego okna.

24 ROZDZIAY. B. PROGRAMOWANIE WIN32API

yPos = HIWORD (IParam); Wspélrzedna Y dwukliknietego punktu wzgledem punk-
tu w lewym gérnym rogu obszaru klienckiego okna.

WM_LBUTTONDOWN Dociera do aktywnego okna gdy jego obszar zostanie klikniety za
pomocy lewego przycisku.

fwKeys = wParam; Informuje o tym, czy jednoczesnie sa wcisniete klawisze systemowe:
SHIFT, CTRL.

xPos = LOWORD (IParam); Wspdlrzedna X dwukliknietego punktu wzgledem punk-
tu w lewym gérnym rogu obszaru klienckiego okna.

yPos = HIWORD (IParam); Wspélrzedna Y dwukliknietego punktu wzgledem punk-
tu w lewym gérnym rogu obszaru klienckiego okna.

WM_LBUTTONUP Dociera do aktywnego okna gdy uzytkownik zwalna lewy przycisk my-
szy, a wskaznik znajduje si¢ nad obszarem klienckim okna.

fwKeys = wParam; Informuje o tym, czy jednoczesnie sg wcisniete klawisze systemowe:
SHIFT, CTRL.

xPos = LOWORD (IParam); Wspdlrzedna X dwukliknietego punktu wzgledem punk-
tu w lewym gérnym rogu obszaru klienckiego okna.

yPos = HIWORD (IParam); Wspélrzedna Y dwukliknietego punktu wzgledem punk-
tu w lewym gérnym rogu obszaru klienckiego okna.

WM_MOVE Dociera do okna po tym jak zmienito sie jego potozenie.

xPos = LOWORD (IParam); Nowa wspdélrzedna X okna.
yPos = HIWORD (IParam); Nowa wspdélrzedna Y okna.

WM _PAINT Dociera do okna gdy jego obszar kliencki wymaga odrysowania. Wiecej o tym
komunikacie na stronie 34.

WM_SIZE Dociera do okna, gdy zmienit sie jego rozmiar.

nWidth = LOWORD (IParam); Nowa szeroko$¢ okna.
nHeight = HIWORD (IParam); Nowa wysokosé¢ okna.

WM_QUIT Powoduje zakonczenie petli komunikatéw i tym samym zakonczenie aplikacji.
nExitCode = (int) wParam; Kod zakonczenia.

WM_SYSCOLORCHANGE Dociera do wszystkich okien po tym, gdy zmienig sie ustawie-
nia koloréw pulpitu.

WM_TIMER Dociera do aktywnego okna od ustawionego przez aplikacje zegara. Wiecej o
zegarach na stronie 59.

wTimerID = wParam; Identyfikator zegara.
tmprc = (TIMERPROC *) 1Param; Adres funkcji obstugi zdarzenia.

WM _USER Pozwala uzytkownikowy definiowa¢ wtasne komunikaty. Uzytkownik tworzy ko-
munikat za pomoca funkcji

2. OKNA 25

UINT RegisterWindowMessage (
LPCTSTR 1lpString
);
Zaproponowana w przykladzie konstrukcja petli obstugi komunikatéow jest bardzo charakte-

rystyczna.

/* Petla obstugi komunikatéw */
while(GetMessage (&messages, NULL, O, 0))

{
/* Tiumacz kody rozszerzone */
TranslateMessage (&4messages) ;
/* Obstuz komunikat */
DispatchMessage (&messages) ;

}

Funkcja GetMessage czeka na pojawienie sie komunikatu w kolejce komunikatow, zas Di-
spatchMessage wysyta komunikat do funkcji obstugi komunikatéw.

Funkcja GetMessage jest jednak funkcja blokujgcg, to znaczy ze wykonanie programu zostanie
wstrzymane na tak dtugo, az jakas wiadomosé pojawi sie w kolejce komunikatéw okna aplikacji.
Najczesciej aplikacja wstrzymywana jest na kilka czy kilkanascie milisekund, bowiem komunikaty
naplywaja do okna do$é¢ czesto, oznacza to jednak, ze czes¢ cennego czasu aplikacja marnuje na
biernym oczekiwaniu na komunikaty.

Takie zachowanie nie bytoby wskazane dla aplikacji, ktéra miataby dziataé¢ w sposéb ciagly, na
przyktad tworzac grafike czy inne efekty w czasie rzeczywistym. Rozwiazaniem jest zastosowanie
innej postaci petli obstugi komunikatéow, alternatywnej dla pokazanej powyzej, wykorzystujacej
nieblokujaca funkcje PeekMessage, ktéra po prostu sprawdza czy w kolejce komunikatéw jest
jakis komunikat, a jesli nie - oddaje sterowanie do petli obstugi komunikatéow. Wyboér pomiedzy
oboma funkcjami (a co za tym idzie - miedzy dwoma mozliwosciami konstrukcji petli obstugi
komunikatéw) nalezy do programisty.

/* Petla obsiugi komunikatéw */

while (TRUE)

{
/* Sprawdz czy sa jakie§ komunikaty do obstuzenia */
if (PeekMessage (&msg, NULL, O, O, PM_REMOVE))

{

if (msg.message == WM_QUIT)
break ;

TranslateMessage (&msg) ;
DispatchMessage (&msg) ;

}

else

{

// "czas wolny" aplikacji do wykorzystania do innych celéw
// niz obstuga komunikatéw -

}

2.3 Okna potomne
Tworzenie okien potomnych

Gltéwne okno aplikacji, jak rowniez kazde kolejne okno z ktorym styka sie uzytkownik, zwy-
kle posiada jakie§ okna potomne (zwane inaczej kontrolkami), za pomoca ktérych uzytkownik
mogtby komunikowaé sie z aplikacja.

Dwa najprostsze rodzaje okien potomnych to pole tekstowe i przycisk. Okazuje si¢ jednak,
ze klasa okna (na przyktad klasa BUTTON definiujaca przyciski), tak naprawde definiuje nie

26 ROZDZIAY. B. PROGRAMOWANIE WIN32API

jeden typ okna potommnego, ale cala rodzine okien potomnych, rézniacych sie wtasciwosciami.
Odpowiedni styl okna podaje si¢ jako jeden z parametréw do funkcji CreateWindow.
Zobaczmy prosty przyklad tworzenia okien potomnych o réznych stylach:

/*

*

* Tworzenie okien potomnych
*

*/
#include <windows.h>
#include <string.h>

/* Deklaracja wyprzedzajaca: funkcja obslugi okna */

LRESULT CALLBACK WindowProcedure(HWND, UINT, WPARAM, LPARAM);
/* Nazwa klasy okna */

char szClassName[] = "PRZYKLAD";

struct

{
TCHAR * szClass;
int iStyle ;
TCHAR * szText ;

} button[] =

{
"BUTTON" , BS_PUSHBUTTON , "PUSHBUTTON",
"BUTTON" , BS_AUTOCHECKBOX , "CHECKBOX",
"BUTTON" , BS_RADIOBUTTON , "RADIOBUTTON",
"BUTTON" , BS_GROUPBOX , "GROUPBOX",
"EDIT" , WS_BORDER , "TEXTBOX",
"STATIC" , WS_BORDER , "STATIC",

}

#define NUM (sizeof button / sizeof button[0])

int WINAPI WinMain(HINSTANCE hThisInstance, HINSTANCE hPrevInstance,
LPSTR lpszArgument, int nFunsterStil)

{
HWND hwnd; /* Uchwyt okna */
MSG messages; /* Komunikaty okna */
WNDCLASSEX wincl; /* Struktura klasy okna */

/* Klasa okna */

wincl.hInstance = hThisInstance;

wincl.lpszClassName = szClassName;

wincl.lpfnWndProc = WindowProcedure; // wskaznik na funkcje obstugi okna
wincl.style = CS_DBLCLKS;

wincl.cbSize = sizeof (WNDCLASSEX) ;

/* Domy$lna ikona i wskaznik myszy */

wincl.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wincl.hIconSm = LoadIcon(NULL, IDI_APPLICATION);
wincl.hCursor = LoadCursor (NULL, IDC_ARROW);
wincl.lpszMenuName = NULL;

wincl.cbClsExtra = 0O;

wincl.cbWndExtra 0;

/* Jasnoszare tto */

wincl.hbrBackground = (HBRUSH)GetStockObject(LTGRAY_BRUSH) ;

/* Rejestruj klase okna */
if ('RegisterClassEx(&wincl)) return O;

/* Twérz okno */

hwnd = CreateWindowEx(
0,
szClassName,
"PRZYKLAD",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,

2. OKNA

CW_USEDEFAULT,
HWND_DESKTOP,
NULL,
hThisInstance,
NULL

)

ShowWindow (hwnd, nFunsterStil);
/* Petla obstugi komunikatéw */
while (GetMessage (&messages, NULL, 0, 0))

{
/* Tiumacz kody rozszerzone */
TranslateMessage (&messages) ;
/* Obstuz komunikat */
DispatchMessage (&messages) ;

}

/* Zwr6é parametr podany w PostQuitMessage() */
return messages.wParam;

}
int xSize, ySize;

/* Te funkcje wola DispatchMessage() */
LRESULT CALLBACK WindowProcedure(HWND hwnd, UINT message,
WPARAM wParam, LPARAM 1lParam)
{
static HWND hwndButton[NUM];
static int cxChar, cyChar;

static RECT r;
HDC hdc;
int i;

PAINTSTRUCT ps;

TCHAR szFormat[] = TEXT ("%-16s Akcja: %04X, ID:%04X, hWnd:%08X");
TCHAR szBuffer[80];

switch (message)
{
case WM_CREATE :
cxChar = LOWORD (GetDialogBaseUnits ()) ;
cyChar = HIWORD (GetDialogBaseUnits ()) ;

for (i = 0 ; i < NUM ; i++)
hwndButton[i] = CreateWindow (button[i].szClass,

button[i] .szText,
WS_CHILD | WS_VISIBLE | button[i].iStyle,
cxChar, cyChar * (1 + 2 * i),
20 * cxChar, 7 * cyChar / 4,
hwnd, (HMENU) i,
((LPCREATESTRUCT) 1Param)->hInstance, NULL)

break;

case WM_DESTROY:
PostQuitMessage (0) ;
break;

case WM_SIZE:
xSize = LOWORD(1Param);
ySize = HIWORD(1Param) ;

r.left = 24 * cxChar ;
r.top = 2 * cyChar ;
r.right = LOWORD (lParam) ;
r.bottom = HIWORD (1Param) ;

break;
case WM_COMMAND:
hdc = GetDC (hwnd);

ScrollWindow (hwnd, O, -cyChar, &r, &r) ;

H

27

28 ROZDZIAL B. PROGRAMOWANIE WIN32API

Rysunek B.2: Okna potomne komunikuja sie¢ z oknem macierzystym za pomoca powiadomien

SelectObject (hdc, GetStockObject (SYSTEM_FIXED_FONT)) ;

SetBkMode (hdc, TRANSPARENT) ;
TextOut (hdc, 24 * cxChar, cyChar * (r.bottom / cyChar - 1),
szBuffer,
wsprintf (szBuffer, szFormat,
"WM_COMMAND",
HIWORD (wParam), LOWORD (wParam), lParam));

ReleaseDC(hwnd, hdc);

return DefWindowProc(hwnd, message, wParam, 1lParam);
case WM_PAINT:

hdc = BeginPaint (hwnd, &ps);

EndPaint(hwnd, &ps);

break;
default:
return DefWindowProc(hwnd, message, wParam, 1lParam);
}
return 0;

Aktywowanie i deaktywowanie okien potomnych

Programista moze w kazdej chwili uaktywnié¢ badz deaktywowaé okno’ za pomoca funkcji

BOOL EnableWindow(

HWND hWnd, // uchwyt okna
BOOL bEnable // aktywacja badz deaktywacja
)5

"Okno potomne, ktére jest nieaktywne zwykle ma szary kolor i nie przyjmuje fokusa.

2. OKNA 29

Komunikacja miedzy oknem potomnym a macierzystym

Komunikacja miedzy oknem potomnym a oknem macierzystym odbywa sie za pomocg komu-

nikatow przesytanych miedzy nimi. Komunikaty te pojawiaja sie w oknie macierzystym jako

WM_COMMAND z dodatkowymi informacjami na temat powiadomienia od okna potomnego.
Spoéjrzmy przyktadowo na powiadomienia, jakie oknu macierzystemu przysyta przycisk:

BN_CLICKED : 0, przycisk zostal nacisniety
BN_PAINT : 1, przycisk powinien zosta¢ narysowany
BN_PUSHED : 2, przycisk zostal wcisniety
BN_UNPUSHED : 3, przycisk zostal wycisniety
BN_DISABLE : 4, przycisk zostal deaktywowany
BN_DBLCLK : 5, przycisk zostal podwdjnie nacisniety
BN_SETFOCUS : 6, przycisk otrzymal fokusa

BN_KILLFOCUS : 7, przycisk stracit fokusa

Pole tekstowe przysyla oknu macierzystemu nastepujace powiadomienia:

EN_SETFOCUS : 0x100, Pole tekstowe otrzymato fokusa

EN_KILLFOCUS : 0x200, Pole tekstowe stracitofokusa

EN_CHANGE : 0x300, Pole tekstowe zmieni zawarto$é

EN_UPDATE : 0x400, Pole tekstowe zmienito zawartosé

EN_ERRSPACE : 0x500, Pole tekstowe nie moze zaallokowa¢ pamieci
EN_MAXTEXT : 0x501, Pole tekstowe przekroczyto rozmiar przy wskawianiu tekstu
EN_HSCROLL : 0x601, Pole tekstowe jest skrolowane w poziomie

EN_VSCROLL : 0x602, Pole tekstowe jest skrolowane w pionie

Okno gtéwne moze zadaé od okien potomnych wykonania wlasciwych im operacji. Kazda

klasa
okien

okna potomnego charakteryzuje sie specyficznymi mozliwosciami. Okno gtéwne wysyta do
potomnych takie zadania za pomoca funkcji:

LRESULT SendMessage(

HWND hWnd,// uchwyt okna
UINT Msg,// komunikat
WPARAM wParam,// parametr
LPARAM 1lParam // parametr

)

Mozliwosci okien potomnych sa naprawde duze. Wspomnijmy tylko o kilku, natomiast pelna
ich lista dostepna jest w dokumentacji. Na przyktad do pola tekstowego mozna wysta¢ komuni-

kat:

EM_FINDTEXT

wParam
1Param

(WPARAM) (UINT) fuFlags;
(LPARAM) (FINDTEXT FAR *) 1pFindText;

30 ROZDZIAY. B. PROGRAMOWANIE WIN32API

gdzie:
e fuFlags : zero, FT_MATCHCASE lub FT_-WHOLEWORD

e IpFindText : wskaznik do struktury FINDTEXT zawierajacej informacje o szukanym tek-
Scie

e wynik : -1 jesli nie znaleziono tekstu, w przeciwnym razie indeks pozycji szukanego tekstu

oraz okoto 30 innych, odpowiadajacych m.in. za kolor, ograniczenie dlugosci, przesuwanie
zawarto$ci, undo itd.
Do comboboxa mozna wysyta¢ komunikaty (tacznie okoto 20):

e CB_.GETCOUNT : zwraca liczbe elementéw
e CB_FINDSTRING : szuka tekstu wsrdd elementow listy

e CB_.GETITEMDATA, CB.SETITEMDATA : zwraca lub ustawia warto$¢ zwigzang z ele-
mentem listy

e CB_.GETTOPINDEX, CB_SETTOPINDEX : zwraca lub ustawia indeks pierwszego wi-
docznego elementu listy

o ...
Do ListView mozna wysyla¢ komunikaty (lacznie okoto 30):
e LVM_DELETECOLUMN

LVM_ENSUREVISIBLE

LVM_GETCOLUMNWIDTH, LVM_SETCOLUMNWIDTH

LVM_GETITEM, LVM_SETITEM

LVM_SORTITEMS

Zmnajac indentyfikator okna potomnego mozna tatwo uzyskac¢ jego uchwyt i odwrotnie - znajac
uchwyt mozna tatwo uzyskaé¢ identyfikator.

id = GetDlgCtrlID (hwndChild) ;
hwndChild = GetDlgItem (hwndParent, id) ;

Przyktad uzycia comboboxa:

// Przygotuj kombo
hwndChild = CreateWindow ("COMBOBOX",

WS_CHILD | WS_VISIBLE | CBS_DROPDOWNLIST,

posX, posxY,

width, height,

hwnd, (HMENU) (1),

((LPCREATESTRUCT) 1Param)->hInstance, NULL) ;
SendMessage (hwndChild, CB_ADDSTRING, 0, "Iteml");
SendMessage(hwndChild, CB_ADDSTRING, 0, "Item2");

2. OKNA 31

||—_ PRZYKLAD

Rysunek B.3: Rozwijalny combobox z dwoma elementami

2.4 Subclasowanie okien potomnych

W poprzednich przyktadach widzeliSmy, ze okna potomne informuja o zdarzeniach, ktore zaszty
w ich obszarze roboczym za pomocg powiadomien. Niestety, iloS¢ mozliwych powiadomien przy-
sylanych przez okna potomne jest $miesznie mata w poréwnaniu z mozliwosciami jakie dawaloby
samodzielne oprogramowanie petli komunikatéw okna potomnego.

Problem w tym, ze okna potomne sg egzemplarzami klas juz opisanych, w zwiazku z czym
maja juz swoje funkcje obstugi. Czy jest mozliwe samodzielne obstugiwanie komunikatéw okna
potomnego, dzieki czemu moznaby na przyktad dowiedzie¢ sie o dwukliku w jego obszar roboczy?

Okazuje sie, ze taka mozliwo$é istnieje i nosi nazwe subclasowania® okna. Programista moze
okresli¢ wtasng funkcje obstugi okna za pomoca funkcji:

LONG GetWindowLong(

HWND hWnd,
int nIndex

)3
LONG SetWindowLong(

HWND hWnd,

int nIndex,
LONG dwNewLong
);

odczytujac 1 zapamietujac najpierw wskaznik na juz istniejaca funkcje obstugi komunikatéw,
a nastepnie podajac wskaznik na nowa. Nalezy pamieta¢ o tym, aby nowa funkcja obstugi ko-
munikatéw, po obstuzeniu przekazywala wszystkie komunikaty do starej funkcji (chyba ze taka
sytuacja jest niepozadana). Chodzi o to, aby okno nie stracito dotychczasowej funkcjonalnoscei,

8Nie znam sensownego polskiego odpowiednia. Styszalem juz rézne propozycje, na przyktad mylnie kojarzace
sie¢ z obiektowoscig ”przeciazanie”, czy przegadane ”przecigzanie funkcji obstugi okna”. Termin subclassowanie
jest zwiezly i precyzyjny, z pewnoscig bedzie jednak razil purystéw jezykowych.

32 ROZDZIAY. B. PROGRAMOWANIE WIN32API

a nowa funkcja obstugi komunikatow tylko ja rozszerzala. Dysponujac wskaznikiem na starg
funkcje obstugi komunikatéw, nalezy skorzystaé z funkcji CallWindowProc aby wywotaé ja z
odpowiednimi parametrami.

/*

*

* Subclassing

*

*/
#include <windows.h>
#include <string.h>

/* Deklaracja wyprzedzajaca: funkcja obslugi okna */

WNDPROC 1pEdit0ldWndProc = NULL;

LRESULT CALLBACK WindowProcedure(HWND, UINT, WPARAM, LPARAM);

LRESULT CALLBACK EditWindowProcedure(HWND hwnd, UINT message,
WPARAM wParam, LPARAM 1Param);

/* Nazwa klasy okna */
char szClassName[] = "PRZYKLAD";

int WINAPI WinMain(HINSTANCE hThisInstance, HINSTANCE hPrevInstance,
LPSTR lpszArgument, int nFunsterStil)

{
HWND hwnd; /* Uchwyt okna */
MSG messages; /* Komunikaty okna */
WNDCLASSEX wincl; /* Struktura klasy okna */

/* Klasa okna */

wincl.hInstance = hThisInstance;

wincl.lpszClassName = szClassName;

wincl.lpfnWndProc = WindowProcedure; // wskaznik na funkcje obstugi okna
wincl.style = CS_DBLCLKS;

wincl.cbSize = sizeof (WNDCLASSEX) ;

/* DomysSlna ikona i wskaznik myszy */

wincl.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wincl.hIconSm = LoadIcon(NULL, IDI_APPLICATION);
wincl.hCursor = LoadCursor (NULL, IDC_ARROW);
wincl.lpszMenuName = NULL;

wincl.cbClsExtra = 0;

wincl.cbWndExtra 0;

/* Jasnoszare tlo */

wincl.hbrBackground = (HBRUSH)GetStockObject(LTGRAY_BRUSH) ;

/* Rejestruj klase okna */
if ('RegisterClassEx(&wincl)) return O;

/* Twérz okno */

hwnd = CreateWindowEx(
0,
szClassName,
"PRZYKLAD",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
HWND_DESKTOP,
NULL,
hThisInstance,
NULL
);

ShowWindow (hwnd, nFunsterStil);
/* Petla obslugi komunikatéw */
while(GetMessage (&messages, NULL, O, 0))
{
/* Ttumacz kody rozszerzone */
TranslateMessage (&messages) ;

2. OKNA

/* Obstuz komunikat */
DispatchMessage (&messages) ;

}

/* Zwréé parametr podany w PostQuitMessage() */
return messages.wParam;

}
int xSize, ySize;

/* Te funkcje wola DispatchMessage() */
LRESULT CALLBACK WindowProcedure (HWND hwnd, UINT message,
WPARAM wParam, LPARAM 1Param)
{
static HWND hwndEdit;
static int cxChar, cyChar;

static RECT r;
HDC hdc;
int i;

PAINTSTRUCT ps;

TCHAR szFormat[] = TEXT ("%-16s Akcja: %04X, ID:%04X, hWnd:%08X");
TCHAR szBuffer[80];

switch (message)
{
case WM_CREATE :
cxChar = LOWORD (GetDialogBaseUnits ()) ;
cyChar = HIWORD (GetDialogBaseUnits ()) ;

hwndEdit = CreateWindow ("EDIT",
"TEXTBOX",
WS_CHILD | WS_VISIBLE | WS_BORDER | ES_MULTILINE,
cxChar, cyChar,
20 * cxChar, 7 * cyChar,
hwnd, (HMENU)1,
((LPCREATESTRUCT) 1Param)->hInstance, NULL) ;

// zapamietaj stara i ustal nowg funkcje

// obstugi komunikatéw
1pEdit01dWndProc = GetWindowLong(hwndEdit, GWL_WNDPROC);
SetWindowLong(hwndEdit, GWL_WNDPROC, EditWindowProcedure);

break;

case WM_DESTROY:
PostQuitMessage (0) ;
break;

case WM_SIZE:
xSize = LOWORD(1Param);
ySize = HIWORD(1Param) ;

r.left = 24 * cxChar ;
r.top = 2 * cyChar ;
r.right = LOWORD (1Param) ;
r.bottom = HIWORD (1Param) ;
break;

case WM_COMMAND:
hdc = GetDC (hwnd);

ScrollWindow (hwnd, O, -cyChar, &r, &r) ;
SelectObject (hdc, GetStockObject (SYSTEM_FIXED_FONT)) ;

SetBkMode (hdc, TRANSPARENT) ;
TextOut (hdc, 24 * cxChar, cyChar * (r.bottom / cyChar - 1),
szBuffer,
wsprintf (szBuffer, szFormat,
"WM_COMMAND",
HIWORD (wParam), LOWORD (wParam), 1lParam));

34 ROZDZIAY. B. PROGRAMOWANIE WIN32API

ReleaseDC(hwnd, hdc);

return DefWindowProc(hwnd, message, wParam, lParam);
case WM_PAINT:

hdc = BeginPaint (hwnd, &ps);

EndPaint(hwnd, &ps);

break;
default:
return DefWindowProc(hwnd, message, wParam, lParam);
}
return 0O;

}

LRESULT CALLBACK EditWindowProcedure(HWND hwnd, UINT message,
WPARAM wParam, LPARAM 1Param)

{
switch (message)
{
case WM_RBUTTONDOWN
SetWindowText (hwnd, "NOWYTEXT");
break;
case WM_LBUTTONDBLCLK :
MessageBox(0, "DoubleClick", "", 0);
break;
}
return CallWindowProc(1lpEdit0ldWndProc, hwnd, message, wParam, lParam);
}

2.5 Obstuga grafiki za pomocg GDI
Podstawy GDI

Podsystem GDI odpowiada za rysowanie elementéw graficznych w specjalnie utworzonych kon-
tekstach urzadzen (DC, Device Contexts). Kontekst urzadzenia moze by¢ skojarzony nie tylko z
okiem, ale takze na przyktad z wirtualnym obrazem strony tworzonej na drukarce. Dzigki takie-
mu podejéciu programista moze uzy¢ doktadnie tych samych mechanizméw do tworzenia obrazu
na w oknie i na drukarce.

GDI jest jednym z najlepszych przykladéw na to, ze z perspektywy programisty nie tyl-
ko kazda odmiana systemu Windows zachowuje sie tak samo, ale rowniez kazdy model PCta,
choé przeciez zbudowany z innych podzespotéw, identycznie reaguje na polecenia programisty.
Nie wazne, czy w komputerze mam najnowszy model karty graficznej, czy zwykla karte VGA,
Windows na polecenie narysowania linii na ekranie zareaguje tak samo.

Drzieje sie tak dlatego, ze miedzy wywolaniem funkcji przez programiste, a pojawieniem sie jej
efektéw, system operacyjny wykonuje mnostwo pracy, o ktérej nawet programista nie ma pojecia.
W przypadku GDI, Windows wysyta odpowiednie polecenia do sterownika ekranu, ktory, co
nie powinno dziwié¢, rowniez ma swdéj interfejs programowania, stuzacy do porozumiewania sie
sterownika z systemem, tyle ze ukryty przed programistg pracujacym z Win32APIL.

Zobaczmy przyktad uzycia GDI:

/*
*
* Tworzenie grafiki za pomoca GDI
*

*/
#include <windows.h>
#include <string.h>

/* Deklaracja wyprzedzajaca: funkcja obsiugi okna */

LRESULT CALLBACK WindowProcedure(HWND, UINT, WPARAM, LPARAM);
/* Nazwa klasy okna */

char szClassName[] = "PRZYKLAD";

2. OKNA

int WINAPI WinMain(HINSTANCE hThisInstance, HINSTANCE hPrevInstance,
LPSTR lpszArgument, int nFunsterStil)

{
HWND hwnd; /* Uchwyt okna */
MSG messages; /* Komunikaty okna */
WNDCLASSEX wincl; /* Struktura klasy okna */
/* Klasa okna */
wincl.hInstance = hThisInstance;
wincl.lpszClassName = szClassName;
wincl.lpfnWndProc = WindowProcedure; // wskaznik na funkcje obstugi
wincl.style = CS_DBLCLKS;
wincl.cbSize = sizeof (WNDCLASSEX) ;
/* Domy$lna ikona i wskaznik myszy */
wincl.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wincl.hIconSm = LoadIcon(NULL, IDI_APPLICATION);
wincl.hCursor = LoadCursor (NULL, IDC_ARROW);
wincl.lpszMenuName = NULL;
wincl.cbClsExtra = 0;
wincl.cbWndExtra = 0;
/* Jasnoszare tio */
wincl.hbrBackground = (HBRUSH)GetStockObject(LTGRAY_BRUSH) ;
/* Rejestruj klase okna */
if ('RegisterClassEx(&wincl)) return O;
/* Twérz okno */
hwnd = CreateWindowEx(
0,
szClassName,
"PRZYKLAD",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
512,
512,
HWND_DESKTOP,
NULL,
hThisInstance,
NULL
)3
ShowWindow(hwnd, nFunsterStil);
/* Petla obstugi komunikatéw */
while(GetMessage (&messages, NULL, 0, 0))
{
/* Ttumacz kody rozszerzone */
TranslateMessage (&messages) ;
/* Obstuz komunikat */
DispatchMessage (&messages) ;
}
/* Zwr6¢ parametr podany w PostQuitMessage() */
return messages.wParam;
}

int xSize, ySize;

/* Te funkcje wola DispatchMessage() */
LRESULT CALLBACK WindowProcedure(HWND hwnd, UINT message,
WPARAM wParam, LPARAM 1lParam)

{
char sText[] = "Przyktad 1, witam";
HDC hdc ; // kontekst urzadzenia
int i
PAINTSTRUCT ps ;
RECT r;

HPEN hPen;

okna

35

36 ROZDZIAY. B. PROGRAMOWANIE WIN32API

HBRUSH hBrush;

switch (message)
{
case WM_DESTROY:
PostQuitMessage(0) ;
break;
case WM_SIZE:
xSize = LOWORD(1Param);
ySize = HIWORD(1Param);

GetClientRect(hwnd, &r);
InvalidateRect(hwnd, &r, 1);

break;
case WM_PAINT:
hdc = BeginPaint (hwnd, &ps) ;

// linie
hPen = CreatePen (PS_SOLID, 3, RGB (255, 0, 0)) ;
SelectObject(hdc, hPen);
for (i=0; i<xSize; i+=xSize/40)
{
MoveToEx(hdc, xSize/2, 0, NULL);
LineTo(hdc, i, ySize);
}
DeleteObject(hPen);

// ksztatty

SetBkColor(hdc, RGB(0, 255, 0));

hBrush = CreateHatchBrush (HS_CR0OSS, RGB (0, 0, 255)) ;
SelectObject(hdc, hBrush);

r.left = 10;

r.top = 10;

r.right = 50;

r.bottom = 50;

FillRect(hdc, &r, hBrush);

DeleteObject(hBrush);

// tekst
if (xSize > 0 && ySize > 0)
{

SetTextAlign(hdc, TA_CENTER | VTA_CENTER);

SetBkMode (hdc, TRANSPARENT);

TextOut(hdc, xSize / 2, 20, sText, strlen(sText));
}

EndPaint (hwnd, &ps);
break;

default:
return DefWindowProc(hwnd, message, wParam, lParam);

}

return O;

Jak widaé¢ obiektow GDI uzywa sie w sposéb dos¢ prosty. Obiekt jest najpierw tworzony za
pomoca odpowiedniej funkcji (na przyklad CreatePen), nastepnie jest ustawiany jako biezacy
(za pomoca funkcji SelectObject), za$ po uzyciu jest niszczony (DeleteObject).

Uchwyty do kontekstéw urzadzen

Wszystkie funkcje GDI, ktore odpowiadaja za tworzenie obrazu, przyjmuja jako pierwszy pa-
rametr uchwyt do kontekstu urzadzenia. Dzigki temu system wie do jakiego obiektu (okna,
drukarki) odnosi sie aktualna funkcja.

W przypadku rysowania w oknach, kontekst urzadzenia mozna uzyskaé¢ na dwa sposoby.

2. OKNA 37

Rysunek B.4: Obstuga grafiki okna za pomoca GDI

Wewnatrz WM _PAINT W kodzie obstugujacym komunikat WM_PAINT uchwyt kontekstu
mozna pobraé i zwolnié¢ za pomoca funkcji
HDC BeginPaint (

HWND hwnd,
LPPAINTSTRUCT lpPaint
);

BOOL EndPaint(
HWND hWnd,

CONST PAINTSTRUCT *lpPaint
);

Poza WM _PAINT Poza kodem obstugujacym komunikat WM_PAINT uchwyt kontekstu moz-
na pobraé i zwolnié¢ za pomoca funkcji
HDC GetDC(

HWND hWnd
);

HDC GetWindowDC (

HWND hWnd
);

int ReleaseDC(

HWND hWnd,
HDC hDC
);

Skad system Windows wie, kiedy do okna przesta¢ komunikat WM _PAINT oznaczajacy
koniecznosé odswiezenia zawartosci okna? Otéz z kazdym oknem system kojarzy informacje o
tym, czy jego zawarto$¢ jest wazna, czy nie.

38 ROZDZIAY. B. PROGRAMOWANIE WIN32API

Po zakonczeniu rysowania i wywotaniu funkcji EndPaint, zawarto$¢ okna jest wazna. Kiedy
okno zostanie na przykiad przykryte innym oknem, a nastepnie odstoniete z powrotem lub na
przyktad zminimalizowane a nastepnie przywotane z powrotem, Windows automatycznie wysyta
do okna komunikat WM _PAINT, uznajac powierzchni¢ okna za niewazng.

Bardzo czesto okazuje sie, ze programista chce powierzchnie okna uniewazniaé czeSciej niz
gdyby miato dziaé¢ sie to automatycznie. Na przykiad wtedy, kiedy zawarto$¢ okna musi byé
odswiezana regularnie, poniewaz zawiera jakies chwilowe, ulotne informacje. W takim przypadku
obszar okna moze by¢ uniewazniany badz zatwierdzany za pomocg funkcji:

BOOL InvalidateRect (

HWND hWnd,

CONST RECT *1lpRect,
BOOL bErase

)

BOOL ValidateRect(

HWND hWnd,
CONST RECT *1lpRect
)

Pierwsza z tych funkcji powoduje natychmiastowe wystanie do okna komunikatu WM _PAINT,
druga za$ powoduje zatwierdzenie obszaru okna. System traktuje komunikat WM PAINT w spo-
sOb troche szczegdlny, bowiem wysytanie tego komunikatu czesciej niz jest on obstugiwany nie
ma zadnego efektu - w kolejce komunikatéw do okna moze znajdowaé si¢ w danej chwili tylko
jeden komunikat WM _PAINT.

Wtasne kroje pisma
Wrtasne kroje pisma mozna tworzy¢ za pomoca funkcji
HFONT CreateFont (

int nHeight,

int nWidth,

int nEscapement,

int nOrientation,

int fnWeight,

DWORD fdwItalic,

DWORD fdwUnderline,
DWORD fdwStrikeOut,
DWORD fdwCharSet,

DWORD fdwOutputPrecision,
DWORD fdwClipPrecision,
DWORD fdwQuality,

DWORD fdwPitchAndFamily,
LPCTSTR lpszFace

);

Aby utworzona czcionka stala sie aktywna nalezy oczywiscie wybraé ja w jakim$ kontekscie
graficznym za pomoca funkcji SelectObject.

2.6 Tworzenie menu

Do tworzenia menu przeznaczone sa funkcje CreateMenu, AppendMenu i SetMenu.
#include <windows.h>

/* Deklaracja wyprzedzajgca: funkcja obstugi okna */

LRESULT CALLBACK WindowProcedure(HWND, UINT, WPARAM, LPARAM);
void CreateMyMenu(HWND hwnd);

2. OKNA

/* Nazwa klasy okna */
char szClassName[] = "PRZYKLAD";

int WINAPI WinMain(HINSTANCE hThisInstance, HINSTANCE hPrevInstance,
LPSTR lpszArgument, int nFunsterStil)

{
HWND hwnd; /* Uchwyt okna */
MSG messages; /* Komunikaty okna */
WNDCLASSEX wincl; /* Struktura klasy okna */
/* Klasa okna */
wincl.hInstance = hThisInstance;
wincl.lpszClassName = szClassName;
wincl.lpfnWndProc = WindowProcedure; // wskaznik na funkcje obstugi
wincl.style = CS_DBLCLKS;
wincl.cbSize = sizeof (WNDCLASSEX) ;
/* Domy$lna ikona i wskaznik myszy */
wincl.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wincl.hIconSm = LoadIcon(NULL, IDI_APPLICATION);
wincl.hCursor = LoadCursor (NULL, IDC_ARROW);
wincl.lpszMenuName = NULL;
wincl.cbClsExtra = 0;
wincl.cbWndExtra = 0;
/* Jasnoszare tto */
wincl.hbrBackground = (HBRUSH)GetStockObject(LTGRAY_BRUSH) ;
/* Rejestruj klase okna */
if ('RegisterClassEx(&wincl)) return O;
/* Twérz okno */
hwnd = CreateWindowEx(
0,
szClassName,
"Przykiad",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
512,
512,
HWND_DESKTOP,
NULL,
hThisInstance,
NULL
);
CreateMyMenu(hwnd) ;
ShowWindow(hwnd, nFunsterStil);
/* Petla obstugi komunikatéw */
while(GetMessage (&messages, NULL, O, 0))
{
/* Ttumacz kody rozszerzone */
TranslateMessage (&messages) ;
/* Obstuz komunikat */
DispatchMessage (&messages) ;
}
/* Zwréé parametr podany w PostQuitMessage() */
return messages.wParam;
}

/* Te funkcje wola DispatchMessage() */
LRESULT CALLBACK WindowProcedure(HWND hwnd, UINT message,
WPARAM wParam, LPARAM 1Param)

{

switch (message)

{

case WM_DESTROY:
PostQuitMessage (0);
break;

okna

39

40 ROZDZIAY. B. PROGRAMOWANIE WIN32API

case WM_COMMAND:

switch (LOWORD (wParam))
{
case 101 : SendMessage(hwnd, WM_CLOSE, O, O);break;
}
default:
return DefWindowProc(hwnd, message, wParam, 1Param);

}
return 0O;

}

void CreateMyMenu(HWND hwnd)
{

HMENU hMenu;

HMENU hSubMenu;

hMenu = CreateMenu () ;

hSubMenu = CreateMenu () ;

AppendMenu (hSubMenu, MF_STRING , 100, "&Nowy") ;
AppendMenu (hSubMenu, MF_SEPARATOR, O , NULL) ;
AppendMenu (hSubMenu, MF_STRING , 101, "&Koniec")

AppendMenu (hMenu, MF_POPUP, hSubMenu, "&Plik") ;

hSubMenu = CreateMenu () ;

AppendMenu (hSubMenu, MF_STRING, 102, "&Undo") ;
AppendMenu (hSubMenu, MF_SEPARATOR, O, NULL) ;
AppendMenu (hSubMenu, MF_STRING, 103, "Re&do") ;

AppendMenu (hMenu, MF_POPUP, hSubMenu, "&Edycja")

SetMenu(hwnd, hMenu);
}

Menu utworzone w taki sposéb moze by¢ réwniez wykorzystywane jak menu kontekstowe:

case WM_RBUTTONUP:
point.x = LOWORD (1Param) ;
point.y = HIWORD (1Param) ;
ClientToScreen (hwnd, &point) ;

TrackPopupMenu (hMenu, TPM_RIGHTBUTTON, point.x, point.y,
0, hwnd, NULL) ;
return O ;

3 Procesy, watki, synchronizacja

3.1 Tworzenie watkéw i proceséow

Zadaniem systemu operacyjnego jest wykonywanie programéw, przechowywanych najczesciej
na réznego rodzaju nosnikach. Z punktu widzenia systemu operacyjnego, program to wiec nic
wiecej niz plik, w ktérym przechowywany jest obraz kodu wynikowego programu.

Program uaktywnia sie w wyniku jawnego utworzenia przez system operacyjny procesu,
ktéry odpowiada obrazowi programu. W systemie Windows do tworzenia procesu stuzy funkcja:

BOOL CreateProcess(

LPCTSTR lpApplicationName,// nazwa modulu wykonywalnego

LPTSTR lpCommandLine,// linia polecei

LPSECURITY_ATTRIBUTES 1lpProcessAttributes,// atrybuty bezpieczenstwa procesu
LPSECURITY_ATTRIBUTES 1lpThreadAttributes,// atrybuty bezpieczerstwa watku
BOOL bInheritHandles,// dziedziczenie uchwytéw

DWORD dwCreationFlags,// dodatkowe flagi, np. priorytet

LPVOID lpEnvironment,// Srodowisko

LPCTSTR 1pCurrentDirectory,

LPSTARTUPINFO lpStartupInfo,// wtasciwosSci startowe okna
LPPROCESS_INFORMATION 1lpProcessInformation // zwraca informacje o procesie i watku
)5

3. PROCESY, WATKI, SYNCHRONIZACJA 41

Proces po zatadowaniu do systemu nie wykonuje kodu, dostarcza jedynie przestrzeni adreso-
wej wgtkom. To watki sa jednostkami, ktorym system przydziela czas procesora. Kazdy proces
w systemie ma niejawnie utworzony jeden watek wykonujacy kod programu. Kazdy nastepny
watek w obrebie jednego procesu musi by¢ utworzony explicite.

Tworzenie wielu watkéw w obrebie jednego procesu jest czasami bardzo przydatne. Watki
moga na przykiad przejmowac¢ na siebie dlugotrwale obliczenia nie powodujac ”zamierania”
calego procesu. Poniewaz watki wspotdziela zmienne globalne procesu, mozliwa jest niednoczesna
praca wielu watkow na jakims zbiorze danych procesu.

Podsumujmy zwiazek pomiedzy procesami a watkami:

e Proces nie wykonuje kodu, proces jest obiektem dostarczajacym watkowi przestrzeni ad-
resowej,

e Kod zawarty w przestrzeni adresowej procesu jest wykonywany przez watek,

e Pierwszy watek procesu tworzony jest implicite przez system operacyjny, kazdy nastepny
musi by¢ utworzony explicite,

o Wszystkie watki tego samego procesu dzielg wirtualng przestrzen adresowa i maja dostep
do tych samych zmiennych globalnych i zasobéw systemowych.

Do tworzenia dodatkowych watkéw w obrebie jednego procesu shuzy funkcja:
HANDLE CreateThread(

LPSECURITY_ATTRIBUTES 1lpThreadAttributes,// atrybuty bezpieczernstwa watku
DWORD dwStackSize,// rozmiar stosu (0 - domyslny)

LPTHREAD_START_ROUTINE lpStartAddress,// wskaznik na funkcje watku

LPVOID lpParameter,// wskaznik na argument

DWORD dwCreationFlags,// dodatkowe flagi

LPDWORD 1pThreadld // zwraca identyfikator watku

)5

Po utworzeniu nowy watek jest wykonywany réwnolegle z pozostalymi watkami w systemie.

/*

* Tworzenie watkéw
*/

#include <windows.h>
#include <stdio.h>
#include <stdlib.h>

DWORD WINAPI ThreadProc(LPVOID* theArg);

int main(int argc, char *argv[])
{

DWORD threadID;

DWORD thread_arg = 4;

HANDLE hThread = CreateThread(NULL, O,
(LPTHREAD_START_ROUTINE) ThreadProc,
&thread_arg, 0, &threadID);

WaitForSingleObject(hThread, INFINITE);

return 0;

}

DWORD ThreadProc(LPVOID* theArg)
{
DWORD timestoprint = (DWORD)*theArg;
for (int i = 0; i<timestoprint; i++)
printf ("Witam %d \n", i);
return TRUE;

42 ROZDZIAY. B. PROGRAMOWANIE WIN32API

Programista ma do dyspozycji kilka dodatkowych funkcji do manipulacji tworzonymi wat-
kami i procesami, m.in.:

e Ustalanie priorytetu watku.

BOOL SetThreadPriority(

HANDLE hThread,// handle to the thread
int nPriority // thread priority level
)3

e Ustalanie procesora na ktérym wykonuje sie watek w systemach wieloprocesorowych.

DWORD SetThreadAffinityMask (

HANDLE hThread,// handle to the thread of interest
DWORD dwThreadAffinityMask // a thread affinity mask
)5

3.2 Synchronizacja watkow

Sytuacja w ktorej wiele watkow jednocze$nie operuje na danych globalnych procesu moze rodzié
problemy. Wyobrazmy sobie bowiem dwa watki majace dostep do zmiennej globalnej. Niech
pierwszy z watkéw wykonuje nastepujacy kod :

i=0;

/7!
if (i==0)

Jesli ktorys z watkéw zostanie przez system operacyjny wywlaszczony w miejscu oznaczonym
w kodzie znakiem ”*”, drugi watek stanie si¢ aktywnym i wykona swojq instrukcje przypisania,
po czym ponownie pierwszy watek stanie sie aktywny, to operacja poréwnania zakonczy sie
niepowodzeniem, najprawdopodobniej wbhrew intencjom programisty. To czego potrzeba, aby
unikaé tego typu probleméw, to jakas forma kontroli nad przetaczaniem watkéw przez system.
Win32API udostepnia 5 sposoby synchronizacji watkéw. Sa to:

e zdarzenia,

e mutexy,

e semafory,

e sekcje krytyczne,
e zegary oczekujace

Mechanizm sekcji krytycznej mozliwy jest do wykorzystania tylko w obrebie jednego proce-
su (do synchronizacji watkow), jednak jest to metoda najszybsza i najwydajniejsza. Pozostale
metody moga by¢ stosowane réwniez dla wielu proceséw.

3. PROCESY, WATKI, SYNCHRONIZACJA 43

Zdarzenia
Win32API umozliwia definiowanie wtasnych zdarzen za pomoca funkcji

HANDLE CreateEvent (

LPSECURITY_ATTRIBUTES lpEventAttributes,// atrybuty bezpieczenstwa
BOOL bManualReset,// flaga recznego resetowania

BOOL bInitialState,// flaga poczatkowego stanu

LPCTSTR lpName // nazwa

)5

Kazdy oczekujacy watek widzi zdarzenie jako pewna dwustanowsg flage: zdarzenie jest zgto-
szone albo odwotane. Za pomoca funkcji

BOOL SetEvent (

HANDLE hEvent // uchwyt zdarzenia
)5

informujemy system o zaistnieniu zdarzenia. Od tej pory zdarzenie jest zgloszone i wszystkie
watki oczekujace do tej pory na jego zgloszenie moga wznowié dzialanie. Zdarzenie zostaje
odwotane, kiedy zostanie wywotana funkcja

BOOL ResetEvent (

HANDLE hEvent // uchwyt zdarzenia
);

Na zaistnienie wydarzenia w systemie watki oczekuja za pomocg funkcji

DWORD WaitForSingleObject(

HANDLE hHandle, // uchwyt obiektu synchronizacji
DWORD dwMilliseconds // czas oczekiwania (INFINITE czeka az do
// zajsScia zdarzenia)

)

Zdarzenie utworzone z ustawiona flaga recznego odwolywania (CreateEvent(...,TRUE,...,...))
wymaga odwolania explicite (przez ResetEvent()), natomiast zdarzenie utworzone z flaga au-
tomatycznego odwolywania (CreateEvent(...,FALSE....,...)) zostaje odwolane automatycznie po
przepuszczeniu jednego watku przez funkcje oczekujaca.

Warto réwniez oméwié¢ dziatanie funkeji

BOOL PulseEvent (

HANDLE hEvent // uchwyt zdarzenia
);

Ot6z powoduje ona zgloszenie zdarzenia, po czym natychmiastowe jego odwotanie. Dziatanie
oczekujacych watkéw zalezy od tego, czy zdarzenie jest odwolywane automatycznie czy recznie
(patrz paragraf wyzej): jesli zdarzenie odwolywane jest recznie, to funkcja PulseEvent() prze-
puszcza wszystkie watki oczekujace w danej chwili na zdarzenie, po czym odwoluje zdarzenie,
jesli za$ zdarzenie odwolywane jest automatycznie, to funkcja PulseEvent() przepuszcza tylko
jeden watek z puli oczekujacych w danej chwili watkéw, po czym odwoluje zdarzenie.

/%

* Wykorzystanie zdarzen do synchronizacji watkéw
*/

void main(void)

{

44

DWORD

DWORD

ROZDZIAY. B. PROGRAMOWANIE WIN32API

HANDLE hThread[2];
DWORD threadID1, threadID2;
char szFileName="c:\\myfolder\\myfile.txt";

hEvent=CreateEvent (NULL, TRUE, FALSE, "FILE_EXISTS");

// tworzymy dwa watki ktére czekaja na utworzenie pliku
hThread [0]=CreateThread (NULL, O, ThreadProcl, szFileName, O, &threadID1);
hThread[1]=CreateThread (NULL, O, ThreadProc2, szFileName, 0O, &threadID1);

HANDLE hFile=CreateFile(szFileName, GENERIC_WRITE, O, &security, . . .);
// kod wypeiniajacy plik danymi np. WriteFile(...)

// sygnalizacja watkom tego, ze dane sg gotowe

// watki od ich utworzenia tylko na to czekaly

SetEvent (hEvent) ;

WaitForMultipleObjects(2, hThread, TRUE, _czas_czekania_);

CloseHandle (hEvent) ;
CloseHandle(hFile);
CloseHandle (hThread[0]);
CloseHandle (hThread[1]);

ThreadProc1 (LPVOID* arg)

char szFileName = (char*)arg;

// tutaj watek otwiera zdarzenie okreslone w module gtéwnym

HANDLE hEvent = OpenEvent (SYNCHRONIZE, FALSE, "FILE_EXISTS");

// czeka na jego pojawienie sie

WaitForSingleObject (hEvent, INFINITE);

// i czyta dane zapisane do pliku

HANDLE hAnswerFile = ::CreateFile(szFileName, GENERIC_READ, O, NULL,
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

// przetwarzaj dane
// ...
return TRUE;

ThreadProc2(LPVOID* arg)

char szFileName = (char*)arg;

// tutaj watek otwiera zdarzenie okreslone w module gtéwnym

HANDLE hEvent = OpenEvent (SYNCHRONIZE, FALSE, "FILE_EXISTS");

// czeka na jego pojawienie sie

WaitForSingleObject (hEvent, INFINITE);

// i czyta dane zapisane do pliku

HANDLE hAnswerFile = ::CreateFile(szFileName, GENERIC_READ, O, NULL,
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

// przetwarzaj dane
/] ...
return TRUE;

Mutexy

Nazwa mutex pochodzi od angielskiego terminu mutually exclusive (wzajemnie wykluczajacy
sie). Mutex jest obiektem stuzacym do synchronizacji. Jego stan jest ustawiony jako ”sygna-
lizowany”, kiedy zaden watek nie sprawuje nad nim kontroli oraz ”niesygnalizowany” kiedy
jakis watek sprawuje nad nim kontrole. Synchronizacje za pomoca mutexéw realizuje sie tak, ze
kazdy watek czeka na objecie mutexa w posiadanie, zaé po zakonczeniu operacji wymagajacej
wylacznosci, watek uwalnia mutexa.

W celu stworzenia mutexa, watek wota funkcje

3. PROCESY, WATKI, SYNCHRONIZACJA 45

HANDLE CreateMutex(

LPSECURITY_ATTRIBUTES lpMutexAttributes,// atrybuty bezpieczehnstwa
BOOL bInitialOwner,// flaga wlasnoSci przy tworzeniu

LPCTSTR 1lpName // nazwa

)3

W chwili tworzenia watek moze zazadaé¢ natychmiastowego prawa wlasnoéci do mutexa. Inne
watki (nawet innych proceséw) uzyskuja uchwyt mutexa za pomoca funkeji

HANDLE OpenMutex (

DWORD dwDesiredAccess,// flaga dostepu

BOOL bInheritHandle,// uchwyt dziedziczony na procesy tworzone
// przez CreateProcess

LPCTSTR lpName // nazwa

);

Nastepnie czekaja na objecie mutexa w posiadanie (za pomoca WaitForSingleObject()). Do
uwalniania mutexéw stuzy funkcja

BOOL ReleaseMutex(

HANDLE hMutex // handle of mutex object
)5

Jedli watek konczy sie bez uwalniania mutexéw, ktére posiadal, takie mutexy uwaza sie za
porzucone. Kazdy czekajacy watek moze obja¢ takie mutexy w posiadanie, za$ funkcja czekaja-
ca na przydzial mutexa (WaitForSingleObject(), jak wida¢ bardzo uniwersalna funkcja) zwraca
warto$¢ WAIT _ABANDONED. W takiej sytuacji warto zastanowié¢ sie, czy gdzie$ nie wystapit
jakis blad (skoro watek, ktory byl w posiadaniu mutexa nie oddal go explicite przez ReleaseMu-
tex(), to najprawdopodobniej zostal zakonczony w jaki$ nieprzewidziany sposéb). Mutexy sa w
dziataniu bardzo podobne do semaforéw.

/*

* Wykorzystanie mutexéw do synchronizacji watkéw
*

void main(void)

{

HANDLE hThread[2];
DWORD threadID1, threadID2;

char szFileName="c:\\myfolder\\myfile.txt";
hMutex=CreateMutex(NULL, TRUE, "FILE_EXISTS");
// tworzymy dwa watki ktére czekaja na utworzenie pliku

hThread[0]=CreateThread (NULL, 0, ThreadProcl, &hMutex, O, &threadID1);
hThread[1]=CreateThread (NULL, O, ThreadProc2, &hMutex, O, &threadID1);

HANDLE hFile=CreateFile(szFileName, GENERIC_WRITE, O, &security, . . .);
// kod wypelniajacy plik danymi np. WriteFile(...)

// sygnalizacja watkom tego, ze dane sg gotowe

// watki od ich utworzenia tylko na to czekaly

ReleaseMutex (hMutex) ;
WaitForMultipleObjects(2, hThread, TRUE, _czas_czekania_);

CloseHandle (hMutex) ;
CloseHandle (hFile);
CloseHandle (hThread[0]);

46 ROZDZIAL. B. PROGRAMOWANIE WIN32API
CloseHandle (hThread[1]);
}
DWORD ThreadProc1(LPVOID* arg)
{
HANDLE hMutex = (HANDLE) (*arg) ;
WaitForSingleObject (hMutex, INFINITE);
// i czyta dane zapisane do pliku
HANDLE hAnswerFile = ::CreateFile(szFileName, GENERIC_READ, O, NULL, ...);
// przetwarzaj dane
ReleaseMutex (hMutex) ;
return TRUE;
}
DWORD ThreadProc2(LPVOID* arg)
{
HANDLE hMutex = (HANDLE) (*arg) ;
WaitForSingleObject (hMutex, INFINITE);
// i czyta dane zapisane do pliku
HANDLE hAnswerFile = ::CreateFile(szFileName, GENERIC_READ, 0O, NULL, ...);
// przetwarzaj dane
ReleaseMutex (hMutex) ;
return TRUE;
}
Semafory

Semafory moga by¢ wykorzystywane tam, gdzie zaséb dzielony jest na ograniczong ilo$é¢ uzyt-

kownikéw. Semafor dziala jak furtka kontrolujaca ilosé watkéw wykonujacych jaki§ fragment

kodu. Za pomoca semaforéw aplikacja moze kontrolowa¢ na przyklad maksymalng ilos¢ otwar-

tych plikéw, czy utworzonych okien. Semafory sa w dzialaniu bardzo podobne do mutexéw.
Nowy semafor tworzony jest w funkcji

HANDLE CreateSemaphore (

LPSECURITY_ATTRIBUTES lpSemaphoreAttributes,
LONG 1lInitialCount,// poczatkowa warto$é licznika
LONG 1MaximumCount,// maksymalna warto$é licznika

);

LPCTSTR 1lpName // nazwa

Watek tworzacy semafor specyfikuje wartos¢ wstepna i maksymalng licznika. Inne watki
uzyskuja dostep do semafora za pomoca funkcji

HANDLE OpenSemaphore (

DWORD dwDesiredAccess,// dostep
BOOL bInheritHandle,// dziedziczenie

);

LPCTSTR 1lpName // nazwa

i czekaja na wejscie za pomoca funkcji ... (to juz powinno by¢ jasne jakiej).
Po zakonczeniu pracy w sekcji krytycznej watek uwalnia semafor za pomoca funkcji

BOOL ReleaseSemaphore (

HANDLE hSemaphore,// uchwyt
LONG 1lReleaseCount,// wartosé dodawana do licznika

);

LPLONG lpPreviousCount // otrzymuje poprzednig warto$¢ licznika

3. PROCESY, WATKI, SYNCHRONIZACJA 47

Watki nie wchodza w posiadanie semaforow! W przypadku mutexéw, jesli watek zazada
po raz kolejny dostepu do tego mutexu, ktorego jest juz witadcicielem, dostep taki zostaje mu
przyznany natychmiast.

Jedli watek nagle rozpocznie czekanie na ten sam semafor, to semafor zachowuje sie tak,
jakby wejscia zazadal kazdy inny watek. Inaczej wyglada takze sprawa uwalniania semaforéow
i mutexéw: mutex moze by¢ uwolniony tylko przez watek, ktéry jest jego wlascicielem, licznik
semafora moze by¢ zwiekszony przez dowolny watek, ktéry z tego semafora korzysta.

/*

* Wykorzystanie semaforéw do synchronizacji watkéw

*/

void main(void)

{
HANDLE hThread[2];
DWORD threadID1, threadID2;
char szFileName="c:\\myfolder\\myfile.txt";
hSemaphore=CreateSemaphore (NULL, 0, 1, "FILE_EXISTS");
// tworzymy dwa watki ktére czekaja na utworzenie pliku
hThread [0]=CreateThread (NULL, O, ThreadProcl, &hSemaphore, O, &threadID1);
hThread[1]=CreateThread (NULL, O, ThreadProc2, &hSemaphore, O, &threadID1);
HANDLE hFile=CreateFile(szFileName, GENERIC_WRITE, O, &security, . . .);
// kod wypeiniajacy plik danymi np. WriteFile(...)
// sygnalizacja watkom tego, ze dane sg gotowe
// watki od ich utworzenia tylko na to czekaly
ReleaseSemaphore (hSemaphore, 1, NULL);
WaitForMultipleObjects(2, hThread, TRUE, _czas_czekania_);
CloseHandle (hSemaphore) ;
CloseHandle(hFile);
CloseHandle (hThread[0]);
CloseHandle (hThread[1]);

}

DWORD ThreadProcl(LPVOID* arg)

{
HANDLE hSem = OpenSemaphore(SEMAPHORE_ALL_ACCESS, "FILE_EXISTS");
WaitForSingleObject (hSem, INFINITE);
// i czyta dane zapisane do pliku
HANDLE hAnswerFile = ::CreateFile(szFileName, GENERIC_READ, O, NULL, ...);
// przetwarzaj dane
ReleaseSemaphore (hSem, 1, NULL);
return TRUE;

}

DWORD ThreadProc2(LPVOID* arg)

HANDLE hSem = OpenSemaphore(SEMAPHORE_ALL_ACCESS, "FILE_EXISTS");
WaitForSingleObject (hSem, INFINITE);

// i czyta dane zapisane do pliku
HANDLE hAnswerFile = ::CreateFile(szFileName, GENERIC_READ, O, NULL, ...);
// przetwarzaj dane

ReleaseSemaphore(hSem, 1, NULL);
return TRUE;

48 ROZDZIAY. B. PROGRAMOWANIE WIN32API

Sekcja krytyczna

Interfejs programowania Win32API udostepnia typ danych CRITICAL _SECTION, ktory wraz
z odpowiednim zestawem funkcji moze byé¢ wykorzystany do implementacji sekcji krytycznej.

/%

* Wykorzystanie sekcji krytycznej do synchronizacji watkéw
*/

#include <windows.h>

#include <stdio.h>

#include <stdlib.h>

#include <assert.h>

#define MAXTRY 3
CRITICAL_SECTION cs; // dzielona na wszystkie watki

// gtéuwny watek programu
void ThreadMain(char *name)
{

int i;

for (i=0; i<MAXTRY; i++)
{

EnterCriticalSection(&cs);

/* prosze sprébowaé tez zamiast
powyzszej linii napisac

while (TryEnterCriticalSection(&cs)==FALSE)
{
printf (\%s, czekam na wejscie\n", name);
Sleep(5);
}

uwaga! - tylko na WinNT
*/

printf(\%s, jestem w sekcji krytycznej!\n", name);
Sleep(5);
LeaveCritcalSection(&cs);

printf (\%s, wyszedlem z sekcji krytycznej!\n", name);

}

// tworzy watek potomny

HANDLE CreateChild(char* name)
{
HANDLE hThread; DWORD dwld;
hThread = CreateThread (NULL, O,
(LPTHREAD_START_ROUTINE) ThreadMain,
(LPVOID)name, 0, &dwId);

assert (hThread!=NULL); return hThread;
}

int main(void)
{
HANDLE hT[4];

InitializeCriticalSection(&cs);

hT[0]=CreateChild (\Jurek") ;
hT[1]=CreateChild (\Ogérek") ;
hT[2]=CreateChild(\Kielbasa");
hT[3]=CreateChild (\Sznurek") ;

4. KOMUNIKACJA MIEDZY PROCESAMI 49

WaitForMultipleObjects(4, hT, TRUE, INFINITE);

CloseHandle (hT[0]) ;CloseHandle (hT[1]);
CloseHandle (hT[2]) ;CloseHandle (hT[3]);

DeleteCriticalSection(&cs);

return 0O;

4 Komunikacja miedzy procesami

Zajmiemy si¢ dokladniej komunikacja za pomoca tzw. gniazd. Sama idea gniazd zostala opra-
cowana na Uniwersytecie Kalifornijskim w Berkley w celu zapewnienia mozliwosci komunika-
cyjnych w systemie Unix. Opracowany tam interfejs programowania nosi nazwe ” Berkley socket
interface” i jest stopniowo z mniejszymi lub wigkszymi zmianami przejmowany przez kolejne
systemy operacyjne.

Najwieksza zaleta jaka daje korzystanie z gniazd to w miare prosty i przejrzysty interfejs
niezalezny od warstwy komunikacyjnej (oczywiscie stosunkowo najmniej wygodnie korzysta sie
z interfejsu gniazd w czystym C, w Javie czy C# jest jeszcze prosciej).

4.1 Charakterystyka protokoléw sieciowych

Skoro gniazda sa tylko interfejsem programowania stuzacym do oprogramowania transmisji sie-
ciowych, to zajmijmy sie przez chwile samymi protokolami? i ich charakterystykami.
Bez wchodzenia w szczegdly, mozemy podzieli¢ protokoty na

e oparte o wiadomosci (ang. message-oriented). Takim mianem okreslamy protokoly, ktére
przesytaja dane w paczkach o skonczonej pojemnosci. Nadawca wielokrotnie wysyta mate
paczki informacji, odbiorca za$§ musi wielokrotnie te paczki odczytywaé. Wyobrazmy so-
bie, ze nadawca wysyla 10 paczek po 64 znaki. Mimo ze w warstwie transmisji protokot
moze zdecydowaé o polaczeniu tych wiadomosci w jedng paczke, po dotarciu do odbiorcy
wiadomo$ci moga by¢ rozdzielone i przekazane w takich samych paczkach, w jakich byty
nadawane (cho¢ niekoniecznie).

e strumieniowe (ang. stream-based). Tutaj proces nadawania trwa nieustannie, za$ odbiorca
w danej chwili dostaje tylko informacji, ile w danej chwili do niego dotarto.

Inna wazna linia dzieli protokoty na

e wykorzystujace bezposrednie polaczenie (ang. connection-oriented). Te protokoly przed
wystaniem czy odebraniem jakichkolwiek informacji nawiazuja bezposrednie polaczenie
miedzy nadawca i odbiorca. Chodzi o zagwarantowanie tego, ze oba zainteresowane pod-
mioty istnieja i sa potaczone $ciezka gotows do transmisji danych.

e bezpolaczeniowe (ang. connectionless). Nadawca nie ma tutaj nawet gwarancji, ze odbiorca
istnieje. Troche przypomina to ustugi poczty - nadawca adresuje wiadomosé i wysyla ja,
nie wie jednak czy odbiorca na te wiadomosé czeka ani czy wiadomo$é do odbiorcy dotrze.

Kazdy protokét moze charakteryzowacé sie posiadaniem lub brakiem nastepujacych cech:

e wiarygodno$é (ang. reliability). Wiarygodny protok6l musi zapewniaé¢ dotarcie kazdego
bajtu informacji od nadawcy do odbiorcy,

9Mowa na razie o protokotach fizycznych, czyli sposobach transmisji danych miedzy réznymi maszynami w
sieci. Jedli przesytane dane sg w jaki$ sposéb interpretowane, to mamy do czynienia z protokotem logicznym.

50 ROZDZIAY. B. PROGRAMOWANIE WIN32API

e zachowywanie porzadku (ang. ordering). Protokdl ktéry zachowuje porzadek, dba o to by
informacje docieraly do odbiorcy w takiej samej kolejnoéci w jakiej byly nadawane,

e lagodne zakonczenie (ang. graceful close). Kiedy ktéras ze stron zamierza zamknaé pota-
czenie, protokol moze daé¢ obu stronom szanse na doczytanie informacji, ktére sa jeszcze
w drodze.

e otwarta transmisja (ang. broadcast data). Protokél moze transmitowaé dane tak, aby do-
cieraty do wszystkich maszyn w sieci. Wada takich protokoléw polega na tym, ze wszystkie
maszyny w sieci muszg traci¢ czas na analize przesylanych informacji, mimo ze niekoniecz-
nie musza by¢ nimi zainteresowane.

e niezalezno$¢ od warstwy komunikacyjnej (ang. routability). Transmisja w takich protoko-
tach nie zalezy od tego ile i jakie maszyny stoja pomiedzy nadawcg i odbiorca. Mozliwe
jest nawet, by kolejne informacje docieraty do odbiorcy inng droga.

4.2 Podstawy biblioteki Winsock

Gniazda zaadaptowano do systemu Windows pod nazwa Winsock. Za pomoca tej biblioteki moz-
na tworzy¢ aplikacje korzystajace z wielu protokoléw sieciowych. Dzieki prostemu interfejsowi,
z perspektywy programisty korzystanie z réznych protokotéw wyglada niemal identycznie.

Przy nawigzywaniu polaczen jedna strona jest ”serwerem”, ktéry oczekuje potaczenia, druga
strona jest "klientem”, ktéry nawiazuje potaczenie z ”serwerem”. Protokot fizyczny okresla spo-
s6b transmisji danych miedzy klientem a serwerem (sposéb w jaki dane sa przesylane). Protokot
fizyczny to jednak nie wszystko - gwarancja, ze dane zostaly przestane nie oznacza, ze przekaz
zostal zrozumiany. WyobraZzmy sobie na przyktad, ze klient i serwer komunikuja sie za pomoca
protokotu fizycznego TCP/IP i ze klient wyslal do serwera strumien danych "QWERTY”. Co
serwer ma zrobi¢ z takim przekazem? Otéz za interpretacje przesytanych danych odpowiadaja
co$ co moglibySmy nazwaé protokotem logicznym, czyli pewien umoéwiony zestaw komunikatéw
rozumianych przez obie strony transmisji. Kilka powszechnie znanych przykladéw protokoléw
logicznych to HT'TP, FTP, TELNET.

Jeden fizyczny komputer moze pelnié¢ role serwera sieciowego dla wielu réznych protokotow
logicznych. W przypadku protokotu TCP /IP istnieje mozliwo$¢ zdefiniowania az 65535 rozlacz-
nych serweréw wirtualnych, oczekujacych na potaczenia z klientami. Numer takiego wirtualnego
serwera zwykle nazywa sie portem!C.

Aby uporzadkowaé mozliwy baltagan jaki daje dowolnosé wyboru portu dla serwera nastu-
chujacego polaczen, ustugi typowe maja Scisle przyporzadkowane numery portéw. Na przykitad
taczac sie z jakas maszyna na port o numerze 80 mozemy by¢ niemal pewni, ze skomunikujemy
sie z serwerem HTTP, zaé na porcie 21 oczekuje TELNET, a na porcie 25 FTP!!'. Zobaczmy
wiec najpierw jak przegladnaé porty lokalnej maszyny w poszukiwaniu serwerdéw oczekujacych
na polaczenia.

#include <stdio.h>
#include <winsock2.h>

int ssocket,new_socket;
WSADATA wsd;
struct sockaddr_in addr;

0Stowo port okredla tu wiec tylko numer za pomoca ktérego klienci mogg rozrézniaé wirtualne serwery ocze-
kujace na polaczenia na tej samej maszynie. Nie ma to nic wspdlnego z zadnymi fizycznymi portami komputera.

" Jest to jednak tylko umowa. Nie ma przeszkéd w uruchomieniu serwera HTTP na porcie powiedzmy 3333.
Przegladarki Internetowe domyé$lnie tacza sie wlasnie do portu 80 maszyny docelowej, jednak istnieje mozliwosé
wymuszenia innego numeru portu, na przyktad http://www.que.com:3333.

4. KOMUNIKACJA MIEDZY PROCESAMI

i

i

{

}

/
/
/

#
#
#

#
#

/
#

/

D
{

/

nt sourceport;
nt main()
printf("TCP/IP port status:\n");

if (WSAStartup(MAKEWORD(2,2), &wsd) != 0)
{
printf("Biad tadowania Winsock 2.2!'\n");
return 1;

}

for (sourceport=0; sourceport<65535; sourceport++)
{

ssocket=socket (AF_INET, SOCK_STREAM, IPPROTO_TCP) ;
addr.sin_family=AF_INET;

addr.sin_addr.s_addr=htonl (INADDR_ANY) ;
addr.sin_port=htons((unsigned short)sourceport);

if (bind(ssocket, (struct sockaddr*)&addr,sizeof (addr)))

{

printf ("Otwarty port %d\n", sourceport);
}

shutdown (ssocket, SD_BOTH);

closesocket (ssocket) ;

}

return 0;

51

Jedli préba potaczenia gniazda z adresem o ustalonym porcie konczy sie niepowodzeniem,
to przyjmujemy, ze port jest zajety'?, jednak nie ma mozliwoéci okredlenia jakiego protokotu
logicznego spodziewa sie serwer nastuchujacy na okreslonym porcie. Jak zobaczymy bowiem w
ponizszym przykladzie, serwer moze w ogole nie postugiwaé sie zadnym protokotem logicznym.

Kod programu serwera:

/ prosty modul serwera
/ komunikacji za pomocg Winsock
/ uzycie: server.exe

include <winsock2.h>
include <stdio.h>
include <stdlib.h>

define DEFAULT_PORT 5000
define DEFAULT_BUFFER 4096

/ tylko Visual C++
pragma comment(lib, "ws2_32.1ib")

/ funkcja: watek do komunikacji z klientem
WORD WINAPI ClientThread(LPVOID lpParam)

SOCKET sock = (SOCKET)lpParam;
char szBuf [DEFAULT_BUFFER];
int ret,

nlLeft,

idx;

/ serwer bedzie oczekiwal na informacje od klienta

while(1)

{

// najpierw odbierz dane
ret = recv(sock, szBuf, DEFAULT_BUFFER, 0);
if (ret == 0)

break;

12Tak naprawde moga by¢ inne przyczyny bledu funkcji bind(), jednak mozemy je pomingé.

52 ROZDZIAY. B. PROGRAMOWANIE WIN32API

else if (ret == SOCKET_ERROR)

{
printf("blad funkcji recv(): %d\n", WSAGetLastError());
break;

}

szBuf [ret] = ’\0’;

printf ("RECV: ’%s’\n", szBuf);

// nastepnie odeslij te dane, poporcjuj jesli trzeba
// (niestety send() moze nie wystaé wszystkiego)
nlLeft = ret;

idx = 0;
while(nLeft > 0)
{

ret = send(sock, &szBuf[idx], nLeft, 0);
if (ret == 0)

break;

else if (ret == SOCKET_ERROR)

{
printf("btad funkcji send(): %d\n", WSAGetLastError());
break;

}

nlLeft -= ret;
idx += ret;

}
}
return 0;
}

int main(int argc, char *argv[])
{
WSADATA wsd;
SOCKET sListen,
sClient;
int iAddrSize;
HANDLE hThread;
DWORD dwThreadlID;
struct sockaddr_in local, client;
struct hostent *host = NULL;

// inicjuj Winsock 2.2

if (WSAStartup(MAKEWORD(2,2), &wsd) != 0)

{
printf("Btad tadowania Winsock 2.2!\n");
return 1;

}

// twérz gniazdo do nastuchu potaczen klientéw

sListen = socket(AF_INET, SOCK_STREAM, IPPROTO_IP);

if (sListen == SOCKET_ERROR)

{
printf("Btad funkcji socket(): %d\n", WSAGetLastError());
return 1;

}

// wybierz interfejs (warstwe komunikacyjng)

local.sin_addr.s_addr = htonl (INADDR_ANY);

local.sin_family = AF_INET;

local.sin_port = htons(DEFAULT_PORT) ;

if (bind(sListen, (struct sockaddr *)&local, sizeof(local)) == SOCKET_ERROR)

{
printf("Btad funkcji bind(): %d\n", WSAGetLastError());
return 1;

}

// nastuch

host = gethostbyname("localhost");
if (host == NULL)
{

4. KOMUNIKACJA MIEDZY PROCESAMI

printf("Nie udato si¢ wydobyé nazwy serwera\n");
return 1;

}

listen(sListen, 8);
printf ("Serwer nastuchuje.\n");
printf ("Adres: %s, port: %d\n", host->h_name, DEFAULT_PORT);

// akceptuj nadchodzace potaczenia
while (1)
{
iAddrSize = sizeof(client);
sClient = accept(sListen, (struct sockaddr *)&client, &iAddrSize);
if (sClient == INVALID_SOCKET)
{
printf("Btad funkcji accept(): %d\n", WSAGetLastError());
return 1;
}
printf ("Zaakceptowano potaczenie: serwer %s, port %d\n",
inet_ntoa(client.sin_addr), ntohs(client.sin_port));
hThread = CreateThread(NULL, O, ClientThread,
(LPVOID)sClient, O, &dwThreadID);
if (hThread == NULL)
{
printf("Btad funkcji CreateThread(): %d\n", WSAGetLastError());
return 1;
}
CloseHandle (hThread) ;
}

closesocket (sListen) ;

WSACleanup() ;
return 0;

}

Kod programu klienta:

// prosty modut klienta
// komunikacji za pomocag Winsock
// uzycie: klient.exe -s:IP

#include <winsock2.h>
#include <stdio.h>
#include <stdlib.h>

#define DEFAULT_COUNT 5

#define DEFAULT_PORT 5000

#define DEFAULT_BUFFER 4096

#define DEFAULT_MESSAGE "Wiadomo$Sé testowa"

// tylko Visual C++
#pragma comment(lib, "ws2_32.1ib")

char szServer[128], szMessage[1024];

// funkcja sposob_uzycia

void sposob_uzycia()

{
printf("Klient.exe -s:IP\n");
ExitProcess(1);

}

void WalidacjaLiniiPolecen(int argc, char **argv)
{

int i;

if (argc < 2)
{
sposob_uzycia();

}

53

54 ROZDZIAY. B. PROGRAMOWANIE WIN32API

for (i=1; i<argc; i++)

{
if (argv[i][0] == ’-’)
{
switch (tolower(argv[i][1]))
{
case ’s’:
if (strlen(argv[il) > 3)
strcpy(szServer, &argv[i][31);
break;
default:
sposob_uzycia() ;
break;
}
}
}

}

int main(int argc, char *argv[])
{
WSADATA wsd;
SOCKET sClient;
char szBuffer [DEFAULT_BUFFER];
int ret, 1i;
struct sockaddr_in server;
struct hostent *host = NULL;

// linia polecen
WalidacjaLiniiPolecen(argc, argv);

// inicjuj Winsock 2.2

if (WSAStartup(MAKEWORD(2,2), &wsd) != 0)

{
printf("Btad tadowania Winsock 2.2!\n");
return 1;

}
strcpy (szMessage, DEFAULT_MESSAGE) ;

// twérz gniazdo do nastuchu potaczen klientéw

sClient = socket(AF_INET, SOCK_STREAM, IPPROTO_IP);

if (sClient == INVALID_SOCKET)

{
printf("Btad funkcji socket(): %d\n", WSAGetLastError());
return 1;

}

// wybierz interfejs

server.sin_addr.s_addr = inet_addr(szServer);
server.sin_family = AF_INET;

server.sin_port = htons(DEFAULT_PORT) ;

// jesli adres nie byl w postaci xxx.yyy.zzz.ttt
// to sprébuj go wydobyé z postaci slownej

if (server.sin_addr.s_addr == INADDR_NONE)

{
host = gethostbyname (szServer);
if (host == NULL)
{
printf("Nie udato sie¢ wydobyé nazwy serwera: %s\n", szServer);
return 1;
}
CopyMemory (&server.sin_addr, host->h_addr_list[0], host->h_length);
}
if (connect(sClient, (struct sockaddr *)&server, sizeof(server)) == SOCKET_ERROR)

{

4. KOMUNIKACJA MIEDZY PROCESAMI 55

printf("Btad funkcji connect(): %d\n", WSAGetLastError());
return 1;

}
// wysytaj i odbieraj dane

for (i=0; i<DEFAULT_COUNT; i++)

{
ret = send(sClient, szMessage, strlen(szMessage), 0);
if (ret == 0)
break;
else if (ret == SOCKET_ERROR)
{
printf ("Btad funkcji send(): J%d\n", WSAGetLastError());
return 1;
}
printf ("Wystano %d bajtéw\n", ret);
ret = recv(sClient, szBuffer, DEFAULT_BUFFER, 0);
if (ret == 0)
break;
else if (ret == SOCKET_ERROR)
{
printf("Btad funkcji recv(): %d\n", WSAGetLastError());
return 1;
}
szBuffer[ret] = ’\0’;
printf ("RECV [%d bajtéwl: ’%s’\n", ret, szBuffer);
}
closesocket (sClient) ;
WSACleanup() ;
return O;
}

Serwer w petli oczekuje na klientéw i po nawiazaniu potlaczenia tworzy nowy watek, ktéry
zajmuje sie¢ odbieraniem komunikatéw i odsylaniem ich z powrotem (to tylko przyklad!). Klient
wymaga oczywiscie parametru, ktérym jest nazwa serwera. Klient nawiazuje potaczenie i wysylta
do serwera komunikat, po czym czeka na jego echo.

Struktura obu programéw jest dos¢ podobna. Oba tworza odpowiednie gniazda, przy czym:

e serwer najpierw przypisuje gniazdu adres (za pomoca funkcji bind()), a nastepnie wchodzi
w tryb nastuchu (listen()), gdzie zatrzymuje sie czekajac na polaczenia klientéw (accept()).

e klient nawiazuje polaczenie z serwerem za pomoca funkcji connect().

Oba programy wymieniaja sie krétkimi informacjami za pomoca funkcji send() i recv(). Ser-
wer nastuchuje na zadanym porcie, za$ po nawigzaniu potaczenia z klientem tworzy nowe gniazdo
i nowy watek, po czym komunikuje sie przez nowo utworzone gniazdo w nowym watku. Dzieki
temu serwer moze obstugiwaé¢ wielu klientéw jednocze$nie, bez wzgledu na to jak diugo trwa-
toby obstugiwanie pojedyniczego klienta. Podsumowanie schematéw dziatania serwera i klienta
znajduja sie¢ w tabelach B.2 i B.3.

Jak w zwiazku z tym napisa¢ wlasna przeglararke Internetowa? Ot6z kod programu klienta
musialby taczy¢ sie do wybranego serwera do portu 80, a nastepnie wysytaé¢ polecenia protokotu
HTTP, na przyktad GET index.html, po ktérym serwer odpowiedziatby przesylajac strumien
danych, bedacy kodem strony index.html. Kod tej strony nalezaloby nastepnie sparsowaé i
udostepnic¢ uzytkownikowi, wylawiajac przy okazji hyperlinki, dzieki ktorym uzytkownik moégltby
wydawaé programowi kolejne polecenia.

A jak napisaé¢ wlasny serwer WWW? Ot6z kod programu serwera musiatby oczekiwaé na
potaczenia klientéw i reagowaé na dobrze sformutowane polecenia protokotu HTTP. Na przyktad,

o6 ROZDZIAY. B. PROGRAMOWANIE WIN32API

socket()
!

‘ Tworzenie gniazda ‘

!
bind|()
!
‘ Przypisywanie adresu ‘

!
listen()

!

‘ Nastuch potaczen od klientéw ‘

!
accept()

!
‘ Akceptacja potaczenia klienta ‘

!

send(), recv()

Tabela B.2: Schemat serwera TCP korzystajacego z gniazd

socket()
!

‘ Tworzenie gniazda ‘

!

connect|()

!

‘ Potaczenie z serwerem ‘

!

send(), recv()

Tabela B.3: Schemat klienta TCP korzystajacego z gniazd

gdyby polecenie od klienta brzmialo GET index.html, serwer musialby z dysku odczytaé
zawarto$é¢ pliku index.html i wystaé¢ go do polaczonego klienta.

W praktyce napisanie dobrej przegladarki Internetowej czy dobrego serwera WWW mogtoby
by¢ dosé zmudne, jednak bardzo ograniczone mozliwosci mozna uzyskaé¢ niewielkim nakladem

pracy.

Gniazda asynchroniczne

Wywotania funkcji operujacych na gniazdach sa najczesciej blokujgce, to znaczy ze wykonanie
kodu zatrzymuje sie na wywotaniu funkcji na tak dtugo, az dziatanie takiej funkcji zakonczy sie.
Moze to powodowaé¢ mnéstwo klopotéw przy tworzeniu programéw okienkowych - okno prze-
stanie reagowa¢ na komunikaty, poniewaz kod zatrzyma sie na wykonaniu funkcji obstugujacej
gniazda.

Aby poradzi¢ sobie z tym problemem mozna zazada¢ od WinSock asynchronicznej obstugi
gniazd, to znaczy informowania o zdarzeniach zwiazanych z gniazdami za pomocg komunikatow.
Asynchroniczny tryb pracy WinSock ustala sie za pomoca funkcji

5. INNE WAZNE ELEMENTY WIN32API o7

int WSAAsyncSelect (

SOCKET s,

HWND hWnd,
unsigned int wMsg,
long 1lEvent

)5

5 Inne wazne elementy Win32API

5.1 Biblioteki tadowane dynamicznie

Oprécz statycznego taczenia bibliotek podczas linkowania programu, w Windows istnieje mozli-
wos¢ tadowania kodu w trakcie dziatania aplikacji. Wiele z dotyczchczas wykorzystywanych funk-
¢ji znajduje sie w takich wtasnie modutach: KERNEL32.DLL, GDI32.DLL, czy USER32.DLL.
Tworzenie bibliotek funkcji zasadne jest tam, gdzie pewna funkcjonalnos¢ moze by¢ wspoétdzielo-
na przez wiele réznych moduléw. Zastosowanie bibliotek oznacza zmieniejszenie zapotrzebowa-
nia pamieci, poniewaz system potrafi zoptymalizowaé¢ przydzial pamieci dla biblioteki dotaczanej
dynamicznie.

Przyktad biblioteki:

/* Wiktor Zychla 2003 */
#include <windows.h>

#ifdef __cplusplus
#define EXPORT extern "C" __declspec (dllexport)
#else

#define EXPORT __declspec (dllexport)

#endif
EXPORT int MojaFunkcja();

BOOL WINAPI D11Main(HINSTANCE hinstDLL, DWORD fwdreason, LPVOID lpvReserved)

{

return 1;
}
int MojaFunkcja()
{

return 1;
}

Program, ktory korzysta z biblioteki:

/* Wiktor Zychla 2003 */
#include <windows.h>
#include <stdio.h>

const char libName[] = "abcLib.dll";

int main()

{
typedef int(*pfPInt) ();
pfPInt myFunc;

HMODULE hLibrary;

hLibrary = LoadLibrary(libName);
if (hLibrary == NULL)

{

MessageBox (NULL, "Blad ladowania biblioteki", "", MB_O0K);
return 1;

o8 ROZDZIAY. B. PROGRAMOWANIE WIN32API

myFunc = (pfPInt)GetProcAddress(hLibrary, "MojaFunkcja");

if (myFunc == NULL)

{
MessageBox (NULL, "Blad ladowania funkcji", "", MB_O0K);
return 1;

}

char buf[80];

int res = myFunc();

sprintf(buf, "Wynik : %d", res);
MessageBox (NULL, buf, "", MB_0K);
FreeLibrary(hLibrary) ;

return 0O;

5.2 Robzne przydatne funkcje Win32API

e Typowe okno informacyjne tworzy sie¢ za pomoca funkcji

int MessageBox(

HWND hWnd, // uchwyt okna-wtasciciela
LPCTSTR 1pText, // tresé komunikatu
LPCTSTR lpCaption, // tres¢ opisu komunikatu

UINT uType // styl komunikatu (dodatkowe ikony, przyciski)
)5

e Tekst pokazywany na belce okien macierzystych oraz tekst pokazywany wewnatrz okien
potomnych mozna odczytywaé i ustawiaé za pomoca funkcji

int GetWindowText (

HWND hWnd,// uchwyt okna
LPTSTR lpString,// adres bufora, ktéry przyjmie tekst
int nMaxCount // maksymalna ilo$¢ znakéw do skopiowania

);
BOOL SetWindowText (
HWND hWnd,// uchwyt okna

LPCTSTR 1pString // nowy tekst
)5

Taki sam efekt mozna uzyskaé¢ wysytajac do okna komunikaty WM_GETTEXT i WM _SETTEXT.

e Stan klawiatury i myszy mozna odczyta¢ w kazdym momencie pracy programu, nie tylko
obstugujac odpowiednie komunikaty. Jest to wyjatowo przydatne w programach iterak-
tywnych.

BOOL GetKeyboardState (
PBYTE lpKeyState // adres 256 bajtowej tablicy, ktéra
// otrzyma informacje o stanie klawiatury
)5
BOOL GetCursorPos(

LPPOINT lpPoint // pozycja kursora myszy
)5

5. INNE WAZNE ELEMENTY WIN32API 99

e Niektére funkcje API korzystaja ze wspélrzednych punktu odniesionych do punktu w le-
wym gérnym rogu okna, inne ze wspoirzednych ekranu. Przeliczanie wspotrzednych miedzy
tymi uktadami odniesienia jest tatwe dzieki funkcjom

BOOL ClientToScreen(
HWND hWnd, // uchwyt okna

LPPOINT 1pPoint // punkt we wspéirzednych obszaru klienckiego
)5

BOOL ScreenToClient (

HWND hWnd, // uchwyt okna
LPPOINT lpPoint // punkt we wspélrzednych ekranu
)3

5.3 Zegary

Aplikacje DOSowe mogly polegaé jedynie na przerwaniu BIOSu, ktore niezaleznie od predkosci
procesora pojawiato sie regularnie 18.2 raza na sekunde. Windows udostepnia mechanizm zega-
row systemowych, ktére zajmuja sie informowaniem aplikacji o uptynieciu jakiegos okresu czasu.
Aplikacja tworzy zegar za pomocy funkcji

UINT SetTimer (

HWND hWnd, // uchwyt okna, ktére bedzie otrzymywaé komunikaty zegara
UINT nIDEvent, // identyfikator zegara

UINT uElapse, // interwal czasowy

TIMERPROC 1lpTimerFunc // adres funkcji obslugi zdarzenia zegara

)5

Istnieja dwie mozliwosci uzycia tej funkcji:

1. Podanie pustego wskaznika na funkcje obstugi, na przyklad SetTimer(hwnd, 1, 1000,
NULL), spowoduje ze okno aplikacji bedzie otrzymywalto komunikaty WM_TIMER w usta-
lonych odstepach czasu. System nie przysyta aplikacji komunikatow WM_TIMER, czesciej
niz aplikacja jest w stanie je obstuzyé¢ (18 razy na sekunde w przypadku Windows 98 i
okoto 100 razy na sekunde w Windows NT).

2. Podanie wskaznika na istniejaca w kodzie programu funkcje postaci

VOID CALLBACK TimerProc (HWND hwnd, UINT message, UINT iTimerID, DWORD dwTime)
{

[obstuz komunikat WM_TIMER]
}

spowoduje wysytanie komunikatéw WM_TIMER do tej funkcji. Parametr i TimerlD odpo-
wiada za identyfikator zegara, zas dwTime jest réwny biezacej wartosci funkcji GetTick-
Count().

Dobra praktyka jest explicite niszczenie zegara przy zakonczeniu aplikacji za pomoca funkcji

BOOL KillTimer(

HWND hWnd,// uchwyt okna ktére instalowato zegar
UINT uIDEvent // identyfikator zegara
);

Ponizszy przyktad, oprécz zegara, pokazuje réwniez sposob uzycia kilku nieomawianych do
tej pory funkcji GDI.

60 ROZDZIAY. B. PROGRAMOWANIE WIN32API

Rysunek B.5: Zegar elektroniczny, bardzo tatwo byltoby zrobi¢ z niego budzik

/*
*
* Zegar
*
*/

#include <windows.h>

#define ID_TIMER 1

int xSize, ySize;

/* Deklaracje wyprzedzajgce */

LRESULT CALLBACK WindowProcedure(HWND, UINT, WPARAM, LPARAM);

void PaintCurrentTime(HDC hdc);

/* Nazwa klasy okna */
char szClassName[] = "PRZYKLAD";

int WINAPI WinMain(HINSTANCE hThisInstance, HINSTANCE hPrevInstance,
LPSTR lpszArgument, int nFunsterStil)

{
HWND hwnd; /* Uchwyt okna */
MSG messages; /* Komunikaty okna */
WNDCLASSEX wincl; /* Struktura klasy okna */

/* Klasa okna */

wincl.hInstance = hThisInstance;

wincl.lpszClassName = szClassName;

wincl.lpfnWndProc = WindowProcedure; // wskaznik na funkcje obstugi okna
wincl.style = CS_DBLCLKS;

wincl.cbSize = sizeof (WNDCLASSEX) ;

/* DomysSlna ikona i wskaznik myszy */

wincl.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wincl.hIconSm = LoadIcon(NULL, IDI_APPLICATION);
wincl.hCursor = LoadCursor (NULL, IDC_ARROW);
wincl.lpszMenuName = NULL;

wincl.cbClsExtra = 0;

wincl.cbWndExtra 0;

/* Jasnoszare tlo */

wincl.hbrBackground = (HBRUSH)GetStockObject(LTGRAY_BRUSH);

/* Rejestruj klase okna */
if ('RegisterClassEx(&wincl)) return O;

/* Twérz okno */

5. INNE WAZNE ELEMENTY WIN32API

hwnd = CreateWindowEx(
0,
szClassName,
"Przykiad",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
512,
256,
HWND_DESKTOP,
NULL,
hThisInstance,
NULL
);

ShowWindow(hwnd, nFunsterStil);
/* Petla obslugi komunikatéw */
while(GetMessage (&messages, NULL, O, 0))

{
/* Ttumacz kody rozszerzone */
TranslateMessage (&messages) ;
/* Obstuz komunikat */
DispatchMessage (&messages) ;

}

/* Zuréé parametr podany w PostQuitMessage() */
return messages.wParam;

}

/* Te funkcje wola DispatchMessage() */
LRESULT CALLBACK WindowProcedure(HWND hwnd, UINT message,
WPARAM wParam, LPARAM 1Param)

{
PAINTSTRUCT ps;
RECT r;
HDC hdc;
switch (message)
{
case WM_CREATE:
SetTimer (hwnd, ID_TIMER, 500, NULL);
break;
case WM_TIMER:
GetClientRect(hwnd, &r);
InvalidateRect(hwnd, &r, 1);
break;
case WM_PAINT:
hdc = BeginPaint(hwnd, &ps);
PaintCurrentTime(hdc);
EndPaint(hwnd, &ps);
break;
case WM_SIZE:
xSize = LOWORD(1Param);
ySize = HIWORD(1Param) ;
break;
case WM_DESTROY:
KillTimer (hwnd, ID_TIMER);
PostQuitMessage (0);
break;
default:
return DefWindowProc(hwnd, message, wParam, lParam);
}
return 0;
}

/* Maluj aktualny czas na ekranie */
void PaintCurrentTime(HDC hdc)
{

char sTime[256];

SYSTEMTIME time;

62 ROZDZIAY. B. PROGRAMOWANIE WIN32API

HFONT hFont;
SIZE size;

// pobierz aktualny czas systemowy

// i konwertuj go na zadany format

GetSystemTime(&time);

GetTimeFormat (LOCALE_SYSTEM_DEFAULT, O, &time,
"HH’ :’mm’ :’ss", sTime, 256);

// twérz font logiczny
hFont = CreateFont(112, 0, 0, O,
FW_NORMAL, 0, O, O,
DEFAULT_CHARSET, OUT_DEFAULT_PRECIS,
CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
DEFAULT_PITCH, "LED");
SelectObject(hdc, hFont);

// licz rozmiar tekstu
GetTextExtentPoint32 (hdc, sTime, lstrlen (sTime), &size) ;

// rozpocznij Sciezke graficzna
BeginPath (hdc) ;

SetBkMode (hdc, TRANSPARENT);
TextOut(hdc, (xSize-size.cx)/2, (ySize-size.cy)/2,
sTime, strlen(sTime));

// zakoricz Sciezke
EndPath (hdc) ;

// rysuj Sciezke odpowiednim pedzlem

SelectObject (hdc, CreateHatchBrush (HS_DIAGCROSS, RGB (0, 0, 255))) ;
SetBkColor (hdc, RGB (255, 0, 0)) ;

SetBkMode (hdc, OPAQUE) ;

StrokeAndFillPath (hdc) ;

DeleteObject (SelectObject (hdc, GetStockObject (WHITE_BRUSH)));
SelectObject (hdc, GetStockObject (SYSTEM_FONT)) ;
DeleteObject (hFont) ;

5.4 Okna dialogowe

Aplikacja ztozona z jednego okna dialogowego jest oczywiscie rzadkoscia. Zwykle zaprojektowa-
nie interfejsu uzytkownika odpowiadajacego modelowanemu problemowi wymaga od kilku do
nawet kilkuset réznych okien dialogowych. Programista tworzy nowe okno dialogowe za pomoca
jednej z funkcji:

int DialogBox(

HINSTANCE hInstance,// instancja aplikacji
LPCTSTR 1lpTemplate,// szablon okna

HWND hWndParent,// okno macierzyste

DLGPROC 1lpDialogFunc // funkcja obsiugi okna
);

HWND CreateDialog(

HINSTANCE hInstance,// instancja aplikacji
LPCTSTR lpTemplate,// szablon okna

HWND hWndParent,// okno macierzyste
DLGPROC 1lpDialogFunc // funkcja obstugi okna
)5

Funkcja DialogBox() tworzy tzw. modalne okno dialogowe, tzn. takie, ktore nie pozwala uzyt-
kownikowi na uaktywnienie zadnego innego okna aplikacji do czasu zamkniecia okna dialogowego.

5. INNE WAZNE ELEMENTY WIN32API 63

Funkcja CreateDialog() tworzy niemodalne okno dialogowe, tzn. okno z wlasna, niezalezna petla
obstugi komunikatéw.

Obie z tych funkcji oczekujg wskazania odpowiedniego szablonu okna. Szablon taki dodaje sie
do zasob6w aplikacji (zwykle ma rozszerzenie *.rc). Szablony okien dialogowych maja swoja spe-
cjalna sktadnie i choé mozna wykonstruowaé¢ okno bez dodawania szablonu do zasobéw (szablon
tworzy sie dynamicznie, a nastepnie korzysta sie z funkcji CreateDialogIndirect() lub Dialog-
BoxIndirect(), za$ okna potomne dodaje sie przy obstudze komunikatu WM _INITDIALOG), to
korzystanie z nich znacznie utatwia caly proces.

/* EX.C %/

/%

*

* Okna dialogowe
*

*/

#include <windows.h>

/* Deklaracja wyprzedzajaca: funkcja obslugi okna */

LRESULT CALLBACK WindowProcedure(HWND, UINT, WPARAM, LPARAM);
BOOL DialogBoxWindowProcedure(HWND, UINT, WPARAM, LPARAM);
void CreateMyMenu(HWND hwnd);

/* Nazwa klasy okna */

char szClassName[] = "PRZYKLAD";

int WINAPI WinMain(HINSTANCE hThisInstance, HINSTANCE hPrevInstance,
LPSTR lpszArgument, int nFunsterStil)

{
HWND hwnd; /* Uchwyt okna */
MSG messages; /* Komunikaty okna */
WNDCLASSEX wincl; /* Struktura klasy okna */

/* Klasa okna */

wincl.hInstance = hThisInstance;

wincl.lpszClassName = szClassName;

wincl.lpfnWndProc = WindowProcedure; // wskaznik na funkcje obstugi okna
wincl.style = CS_DBLCLKS;

wincl.cbSize = sizeof (WNDCLASSEX) ;

/* DomysSlna ikona i wskaznik myszy */

wincl.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wincl.hIconSm = LoadIcon(NULL, IDI_APPLICATION);
wincl.hCursor = LoadCursor (NULL, IDC_ARROW);
wincl.lpszMenuName = NULL;

wincl.cbClsExtra = 0;

wincl.cbWndExtra 0;

/* Jasnoszare tlo */

wincl.hbrBackground = (HBRUSH)GetStockObject(LTGRAY_BRUSH) ;

/* Rejestruj klase okna */
if ('RegisterClassEx(&wincl)) return O;

/* Twérz okno */

hwnd = CreateWindowEx(
0,
szClassName,
"Przykiad",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
512,
512,
HWND_DESKTOP,
NULL,
hThisInstance,
NULL
);

CreateMyMenu(hwnd);

64 ROZDZIAY. B. PROGRAMOWANIE WIN32API

ShowWindow(hwnd, nFunsterStil);
/* Petla obstugi komunikatéw */
while(GetMessage (&messages, NULL, 0, 0))

{
/* Tiumacz kody rozszerzone */
TranslateMessage (&messages) ;
/* Obstuz komunikat */
DispatchMessage (&messages) ;

}

/* Zwr6¢ parametr podany w PostQuitMessage() */
return messages.wParam;

}

/* Te funkcje wola DispatchMessage() */
LRESULT CALLBACK WindowProcedure (HWND hwnd, UINT message,
WPARAM wParam, LPARAM 1lParam)

{
static HINSTANCE hInstance ;
switch (message)
{
case WM_CREATE :
hInstance = ((LPCREATESTRUCT) 1lParam)->hInstance ;
break;
case WM_DESTROY:
PostQuitMessage(0) ;
break;
case WM_COMMAND:
switch (LOWORD (wParam))
{
case 100 : DialogBox(hInstance, MAKEINTRESOURCE(501),
hwnd, DialogBoxWindowProcedure); break;
case 101 : SendMessage(hwnd, WM_CLOSE, O, O);break;
}
default:
return DefWindowProc(hwnd, message, wParam, lParam);
}
return O;
}

void CreateMyMenu(HWND hwnd)
{
HMENU hMenu;

HMENU hSubMenu;

hMenu = CreateMenu () ;

hSubMenu = CreateMenu () ;

AppendMenu (hSubMenu, MF_STRING , 100, "&0Okno dialogowe") ;
AppendMenu (hSubMenu, MF_SEPARATOR, O , NULL) ;
AppendMenu (hSubMenu, MF_STRING , 101, "&Koniec")

AppendMenu (hMenu, MF_POPUP, (unsigned int)hSubMenu, "&P1lik") ;

SetMenu(hwnd, hMenu);
}

BOOL DialogBoxWindowProcedure (HWND hwnd, UINT message,
WPARAM wParam, LPARAM 1Param)
{
switch (message)
{
case WM_INITDIALOQG:
return TRUE ;
case WM_COMMAND
switch (LOWORD (wParam))
{
case IDOK : case IDCANCEL
EndDialog (hwnd, 0) ;
return TRUE ;

5. INNE WAZNE ELEMENTY WIN32API 65

}
}
return 0O;
}
/* EX.RC */

#include <windows.h>

501 DIALOG 32, 32, 180, 40

STYLE WS_VISIBLE | WS_SYSMENU | WS_POPUP | WS_CAPTION | DS_MODALFRAME
CAPTION "Okno dialogowe"

FONT 12,"Times New Roman"

BEGIN

DEFPUSHBUTTON "0K",IDOK,66,80,50,14

CTEXT "0 programie...",-1,40,12,100,8
END

Zauwazmy, ze funkcja obstugi komunikatéw nie jest zwykla funkcja obstugi komunikatéw
okna Tak naprawde obstuga komunikatow okna dialogowego zajmuje sie domyélna funkcja ob-
stugi komunikatéow okien dialogowych, istniejaca w systemie
BOOL CALLBACK DialogProc(

HWND hwndDlg,// handle to dialog box

UINT uMsg,// message

WPARAM wParam,// first message parameter

LPARAM 1Param // second message parameter

)

i to ona przekazuje komunikaty do funkcji obstugi komunikatéw w oknie dialogowym.
Istnieja cztery zasadnicze réznice miedzy zwykta funkcja obstugi okna, a funkcja obstugi
okna dialogowego:

e zwykta funkcja obstugi okna zwraca wartosé typu LRESULT, funkcja obstugi okna dialo-
gowego zwraca BOOL

e w przypadku nieobstugiwania jakiego$ komunikatu zwykta funkcja obstugi okna wota do-
myslna funkcje obstugi okien (DefWindowProc), za$ funkcja obstugi okna dialogowego
zwraca warto§¢ TRUE kiedy obstuguje jaki$§ komunikat i FALSE jesli go nie obstuguje

e funkcja obstugi okna dialogowego nie musi obstugiwaé komunikatéw WM _PAINT i WM _DESTROY
e funkcja obstugi okna dialogowego nie otrzymuje komunikatu WM _CREATE, tylko WM _INITDIALOG

Szablon okna dialogowego, oprocz opisu stylu okna i cech okien potomnych moze zawierac
m.in.

e wskazanie menu (MENU menu-name)
e wskazanie czcionki (FONT font)
e wskazanie klasy (CLASS "klasa”)

Istnieje ponadto mozliwosé skorzystania z typowych okien dialogowych. Kazde z tych okien
po zamknieciu zwraca zestaw parametréw niezbednych do zidentyfikowania wyboru uzytkownika.

e Okna do wyboru nazwy pliku

BOOL GetOpenFileName (

LPOPENFILENAME lpofn
);

66 ROZDZIAY. B. PROGRAMOWANIE WIN32API

BOOL GetSaveFileName (

LPOPENFILENAME lpofn
);

e Typowe okno wyboru koloru

BOOL ChooseColor(

LPCHOOSECOLOR 1pcc
);

e Typowe okno wyboru czcionki

BOOL ChooseFont (

LPCHOOSEFONT 1lpcf
);

e Typowe okno ustalania parametréw drukowania

BOOL PrintDlg(
LPPRINTDLG 1lppd
);

Przyktad uzycia okna do wyboru koloru:

#include <windows.h>
#include <commdlg.h>
#include <stdio.h>

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
PSTR szCmdLine, int iCmdShow)

{

char buf[80];

char *msgTpl = "Wybrano kolor o sktadowych: [/d, %d, %dl";

static CHOOSECOLOR cc ;

static COLORREF crCustColors([16] ;

cc.1StructSize = sizeof (CHOOSECOLOR) ;

cc.hwndOwner = NULL ;

cc.hlnstance = NULL ;

cc.rgbResult = RGB (0x80, 0x80, 0x80) ;

cc.1lpCustColors = crCustColors ;

cc.Flags = CC_RGBINIT | CC_FULLOPEN ;

cc.1lCustData =0 ;

cc.lpfnHook = NULL ;

cc.lpTemplateName = NULL ;

if (ChooseColor (&cc))

{

sprintf(buf, msgTpl,
GetRValue(cc.rgbResult),
GetGValue(cc.rgbResult),
GetBValue(cc.rgbResult));
MessageBox(0, buf, "", 0);
};
}

Powloka systemu

Programista ma dostep do powtoki systemu dzieki funkeji

5. INNE WAZNE ELEMENTY WIN32API

HINSTANCE ShellExecute(

HWND hwnd,// okno macierzyste

LPCTSTR lpOperation,// rodzaj operacji
LPCTSTR 1pFile,// nazwa pliku

LPCTSTR lpParameters,// parametry
LPCTSTR 1lpDirectory,// domyslny katalog
INT nShowCmd // flaga otwarcia okna

);

Powloka potrafi wykonaé na zadanym pliku kilka rodzajéw operacji:

e "open”

° 77prin b2

e "explore”

e "properties”

68

ROZDZIAY. B. PROGRAMOWANIE WIN32API

Rozdziat C

Swiat .NET

1 Projektowanie zorientowane obiektowo

1.1 Dlaczego uzywamy jezykéw obiektowych

C# jest kolejnym jezykiem obiektowym, jaki w ciggu ostatnich lat zostal udostepniony pro-
gramistom. Mozna wiec zapytaé: czy kod obiektowy tworzy sie szybciej niz kod nieobiektowy
albo czy programy obiektowe dzialaja szybciej niz nieobiektowe? Okazuje sie, ze niekoniecznie.
Dlaczego wiec jezyki obiektowe uznawane sa za tak wazne?

Odpowiedz jest wbrew pozorom do$é prosta. Otéz to wladnie jezyki obiektowe najlepiej
nadaja sie do modelowania probleméw z otaczajacego nas $wiata. Mozliwos¢ zamykania jakiej$
ustalonej funkcjonalnoéci w obiekcie dysponujacym okreslonym interfejsem, czyli sposobem w
jaki ten obiekt komunikuje sie z innymi, pozwala programiscie tatwiej skupi¢ sie na modelowanym
problemie.

Jezyki obiektowe doskonale sprawdzaja sie tam, gdzie programista stoi przed zadaniem na-
pisania programu uzytkowego, ktéry pozwalalby na rejestrowanie i analize proceséw, o zalez-
noéciach pomiedzy ktérymi co$ juz wiadomo. Jezyk obiektowy doskonale sprawdza sie wiec w
aplikacji do zarzadzania jakimi$ instytucjami, w aplikacjach finansowo-ksiegowych, w aplikacjach
dla stuzb medycznych czy oswiaty. Ale to nie wszystko - dzieki prostej sktadni jezyki obiekto-
we rownie dobrze radzg sobie tam, gdzie zwykle uzywamy prostszych jezykéw imperatywnych,
czyli na przyktad w aplikacjach obliczeniowych, aplikacjach o ztozonych strukturach danych i
skomplikowanych algorytmach operujacych na tych strukturach.

Na jezyki obiektowe nalezy wiec patrzeé¢ jak na naturalne rozszerzenie prostych jezykdw
imperatywnych. Tam gdzie celem jest bardzo bliska interakcja ze sprzetem (na przyktad przy
programowaniu sterownikéw urzadzen) lub tam gdzie wydajnosé jest celem nadrzednym, tam
programista powinien zdecydowaé sie na jezyk maszynowy lub prosty jezyk imperatywny o
wydajnosci zblizonej do jezyka maszynowego, na przytad C. Tam gdzie celem jest doktadnosé
zamodelowania jakiego$ problemu oraz tatwo$é konserwacji kodu i podatnosé na modyfikacje,
zwykle najlepszy okaze sie jezyk obiektowy.

1.2 Reguly modelowania obiektowego
W inzynierii oprogramowania zazwyczaj wyrédznia si¢ kilka faz tworzenia oprogramowania.

1. Poznawanie i analiza problemu
2. Tworzenie modelu obiektowego, projektowanie interfejsu i funkcji programu

3. Implementacja

69

70 ROZDZIAL C. SWIAT .NET

4. Testowanie

Podczas pracy nad projektem zadna z tych faz nie moze by¢ pominieta, nie powinno sie tez
zamienia¢ kolejnosci poszczegdlnych etapow. Nie jest mozliwe tworzenie modelu bez doktadnego
poznania problemu. Nie mozna pisa¢ kodu, jednocze$nie tworzac model obiektowy. Trudno jest
w koncu prowadzi¢ miarodajne testy, kiedy program jest w poczatkowej fazie rozwoju.

W praktyce jednak praca nad projektem w réznych fazach napotyka na rézne trudnosci,
najczesciej wynikajace z dostosowywania pierwotnych zalozen do mozliwosci ich wykonania.
Dlatego tez poszczegdlne fazy przeplataja sie, bardzo czesto nastepuje powrdt do wcezesniej
rozwazanych zagadnien.

W wiekszych zespotach programistycznych istnieje $cisty podzial funkcji zwiazany z realizacja
poszczegblnych faz projektu. W mniejszych zespotach zdarza sie, ze jedna osoba pelni kilka
funkcji. W szczegdlnych przypadkach jedna osoba moze by¢ odpowiedzialna za wszystkie fazy
tworzenia oprogramowanial.

Konsultant Osoba (najczesciej oddelegowana przez zleceniodawce) znajaca wszelkie szczegdly
zwiazane z merytoryczna strona problemu, ktérego ma dotyczy¢ aplikacja (faza 1).

Analityk Zajmuje sie poznawaniem i analiza potrzeb zlecieniodawcy i tworzeniem zaryséw
modelu obiektowego (fazy 1-2).

Projektant Zajmuje sie tworzeniem modelu obiektowego, projektowaniem funkcji programu
oraz ksztaltem interfejsu uzytkownika.

Programista Bieze udzial w projektowaniu modelu obiektowego, a nastepnie zajmuje sie two-
rzeniem kodu (fazy 2-3).

Tester Zajmuje si¢ testowaniem programu.

1.3 Analiza i projektowanie

Analiza problemu zwyke rozpoczyna sie od okreSlenia przez uzytkownika jego wizji i oczekiwan
zwigzanych z tworzonym oprogramowaniem. Analityk musi zwréci¢ uwage na gtéwne potrzeby
systemu, na przypadki szczegblne oraz na to ktore elementy modelu pozostana wzglednie stale,
a ktére moga podlegaé¢ zmianom, zwigzanym z réznymi czynnikami?.

Analityk w trakcie kontaktéow z uzytkownikiem powinien zwracaé¢ uwage na dwie ptaszczyzny

funkcjonowania systemu
czesé statyczna czyli zakres gromadzonych informacji i sposéb ich przechowywania
cze$¢ dynamiczng czyli tworzenie zaleznosci miedzy danymi

Pierwszy model obiektowy moze powstaé¢ wedlug nastepujacego algorytmu:

1. Podczas kontaktu z uzytkownikiem rob jak najwiecej notatek dotyczacych istotnych dla
problemu zagadnien

2. Przejrzyj notatki, podkreélajac w nich wszystkie rzeczowniki, bezposrednio odnoszace sie
do problemu

ITakie podejécie bywa zgubne. Latwo wskazaé¢ programy, w ktérych mimo znakomitego rozpoznania problemu
kuleje strona programistyczna oraz takie, ktére sa bardzo zaawansowane programistycznie, a stabe pod wzgledem
merytorycznym.

2Prawo zmienia sie, niestety, do$é¢ czesto. Bezposrednio wplywa to na sposoby funkcjonowania systeméw in-
formatycznych.

1. PROJEKTOWANIE ZORIENTOWANE OBIEKTOWO 71

3. Utworz klase dla kazdego podkreslonego rzeczownika

4. Okredl wszystkie wladciwosci utworzonych klas i utwérz w klasach odpowiednie pola. Jesli
jakas wtasciwosé dotyczy klasy jako calosci, utwérz pole statyczne w klasie.

5. Przejrzyj notatki, podkreslajac w nich wszystkie czasowniki zwiazane z wyodrebnionymi
rzeczownikami.

6. Utworz metody w klasach dla kazdego podkreslonego czasownika. Jesli jakas akcja dotyczy
klasy jako catosci, utworz metode statyczng.

Model obiektowy utworzony wedlug powyzszego algorytmu powinien by¢ rozszerzony o infor-
macje o wzajemnych relacjach miedzy klasami. Istnieja cztery rodzaje relacji miedzy obiektami.

Relacja jest rodzajem

Relacja jest rodzajem oznacza, ze jedna klasa jest uszczegdlowiona wersja innej. W praktyce
oznacza to, ze miedzy klasami zachodzi relacja dziedziczenia.

public class Student
{
}

public class StudentInformatyki : Student
{
}

Relacja zawiera

Jedli obiekt jednego typu moze zawiera¢ obiekt innego typu, to zalezno$é¢ taka uwzglednia sie
przez dodanie w klasie odpowiedniego pola.

public class ArkuszOcen
{
}

public class Student
{
ArkuszOcen arkuszOcen

}

Jezeli jedna z klas nie jest klasa samodzielna, to znaczy nie ma potrzeby tworzenia obiektow
tej klasy przez inne klasy, to mozna utworzy¢ klase wewnetrzna, niedostepna z zewnatrz.

public class Student

{
public class ArkuszOcen
{
}

ArkuszOcen arkuszOcen

}

Relacja uzywa

Jedli obiekty jednego typu podczas wykonywania jakich$ akcji korzystaja z innych obiektow, to
taka relacje implementuje si¢ tworzac metody o odpowiednich parametrach.

72 ROZDZIAL C. SWIAT .NET

public class Ocena
{
}

public class Student
{
void uzyskalOcene(Ocena ocena);
}
Relacja tworzy

Jesli w wyniku jakich$ dziatan inicjowanych przez obiekt danej klasy powstaje obiekt innej klasy,
mamy do czynienia z relacja tworzy. Relacje taka implementuje si¢ tworzac odpowiednie metody.

public class PracaMagisterska

{
}
public class Student
{
PracaMagisterska piszePraceMagisterska()
{
PracaMagisterska m = new PracaMagisterska();
return m;
}
}

1.4 Narzedzia wspierajace modelowanie obiektowe
2 Podstawowe elementy jezyka C#

Jezyk C# jest jezykiem obiektowym. Z dotychczas znanych jezykéw najbardziej przypomina
Jave, jednak kilka istotnych utomnosci Javy zostatlo w C# poprawionych, czynigc C# jednym
z najelegantszych dotychczas zaprojektowanych jezykéw programowania®. Autorzy projektu je-
zyka wyraznie i czesto podkreslaja, ze wybranie takiej a nie innej sktadni podstawowych kon-
strukcji jezyka oznacza nie tylko duza tatwosé pracy dla programistéw znajacych wezesniej Jave
czy C++, ale oznacza réwniez mozliwoéé tatwej konwersji juz istniejacego kodu?.

Jak juz wczesniej powiedziano, kompilator C# jest czescia érodowiska uruchomieniowego
.NET Framework. Do tworzenia i uruchamiania programéw nadaje si¢ kazdy system Windows,
poczawszy od Windows 98. Réwniez niektére darmowe srodowiska developerskie mozna urucho-
mic¢ na Windows 98 i wyzszych. Jedynie Visual Studio .NET wymaga co najmniej Windows 2000,
jednak rozwijane w nim programy uruchomia si¢ na Windows 98 z zainstalowanym srodowiskiem
uruchomieniowym .NET.

Kompilator C# tworzy kod wynikowy w jezyku posrednim, zwanym IL i umieszcza go w
em module binarnym. Modul moze by¢ aplikacja konsolowa lub okienkowa (pliki *.exe) lub
biblioteka klas (pliki *.dll). NETFramework traktuje kazdy modut w sposéb jednakowy - podczas
uruchamiania kodu zawartego w module, uruchamiany jest kompilator JIT (Just-In-Time), ktéry
tworzy kod natywny systemu operacyjnego, po czym uruchamia ten kod jak zwykla aplikacje
w systemie operacyjnym. Dzieki temu predkos¢ dziatania aplikacji C#-owej w systemie jest
porownywalna z predkoscig aplikacji napisanej w C++.

37e zdziwieniem stucham opinii niektérych programistéw, ze podobiefistwo C# do Javy oznacza jego utomnogé.
Takie opinie powtarzajg najczesciej ci, ktérzy C# nie znaja. Z tych samych powodéw nie warto zapewne zajmowaé
sie Java, bo jest bardzo podobna do C++, nie warto zajmowac sie C++ bo jest bardzo podobny do C itd. Wedle
tej logiki zapewne w ogdle nie warto zajmowaé si¢ programowaniem, bo wszystko jest do czego$ podobne.

4Microsoft rozpowszechnia darmowy konwerter kodu Javy do C#, ktéry zadziwiajaco dobrze radzi sobie z
nawet skomplikowanymi programami. Program mozna bezptatnie pobraé ze stron MSDN.

2. PODSTAWOWE ELEMENTY JEZYKA C# 73

| Kod zrédlowy w Javie |

!

Kompilacja

!
‘ Kod posredni (Java Bytecode) ‘

!

Interpretacja kodu przez maszyne wirtualng Javy

| Kod zrédlowy w C# |
!
Kompilacja
!
‘ Kod posredni (IL) ‘

!
Kompilacja JIT

!

Uruchamianie kodu natywnego

Tabela C.1: Schematy uruchamiania kodéw Javy i C# w systemie operacyjnym

2.1 Pierwszy program w C#

Zgodnie z tradycja rozpocznijmy od najprostszego programu C#-owego i przeanalizujmy ele-
menty jego kodu.

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class CMain
{
public static void Main()
{
Console.WriteLine("Pierwszy program w C#");
}
}
}

Kompilator przywotany z linii polecen przedstawia si¢ i kompiluje program. Kod wynikowy
powyzszego programu zajmuje 3072 bajty.

C:\Examples>csc.exe example.cs

Microsoft (R) Visual C# .NET Compiler version 7.00.9466

for Microsoft (R) .NET Framework version 1.0.3705

Copyright (C) Microsoft Corporation 2001. All rights reserved.

Tak jak w przypadku kazdego jezyka obiektowego, rowniez kod programu C#-owego sktada
sie z klas. Podobnie jak w Javie jedna z klas musi zawiera¢ publiczng statyczna metode Main, od
ktérej rozpoczyna sie wykonanie programu. Mozliwe jest zdefiniowanie metody Main w wiecej
niz jednej klasie, jednak wtedy nalezy explicite poda¢ kompilatorowi nazwe klasy zawierajacej
te metode Main, ktéra ma zosta¢ uwzgledniona jako gtéwna metoda aplikacji.

74 ROZDZIAL C. SWIAT .NET

C:\Examples>csc.exe example.cs /main:Example.CMain

Microsoft (R) Visual C# .NET Compiler version 7.00.9466

for Microsoft (R) .NET Framework version 1.0.3705

Copyright (C) Microsoft Corporation 2001. All rights reserved.

Programista ma do dyspozycji kilkanaécie typow prostych wspodlnych dla wszystkich aplikacji
platformy .NET. Deklarujac zmienne mozna uzywaé petnej nazwy typu lub skrétu jego nazwy

Nazwa typu Skrét nazwy Opis

System.Object object Klasa bazowa dla wszystkich typow
System.String string Napis

System.Sbyte sbyte 8-bitowa liczba caltkowita ze znakiem
System.Byte byte 8-bitowa liczba catkowita bez znaku
System.Int16 short 16-bitowa liczba calkowita ze znakiem
System.UInt16 ushort 16-bitowa liczba catkowita bez znaku
System.Int32 int 32-bitowa liczba catkowita ze znakiem
System.UInt32 uint 32-bitowa liczba caltkowita bez znaku
System.Int64 long 64-bitowa liczba catkowita ze znakiem
System.UInt64 ulong 64-bitowa liczba caltkowita bez znaku
System.Char char 16-bitowy znak Unicode
System.Single float 32-bitowa liczba zmiennoprzecinkowa
System.Double double 64-bitowa liczba zmiennoprzecinkowa
System.Boolean bool warto$¢ logiczna (true/false)
System.Decimal decimal 128-bitowa warto$¢ numeryczna

Oproécz typéw prostych biblioteka standardowa zawiera setki typow ztozonych. Poznanie tych
bardziej uzytecznych jest jednym z zadan jakie czeka programiste chcacego nauczy¢ sie biegle
programowad aplikacje na platformie .NET.

2.2 Struktura kodu, operatory

Kod C#-owy najbardziej przypomina kod Javy. Wszystkie podstawowe konstrukcje jezykowe
takie jak deklaracje zmiennych, operatory, instrukcje warunkowe czy petle dzialaja dokladnie
tak jak w Javie. Dzigki temu programisci znajacy C, C++ czy Jave bardzo szybko odnajda sie
w nowym jezyku.

Przyktad:

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class CMain
{
public static void Main()
{

int i, j=0, n;

Console.Write("Podaj liczbe naturalna: ");
n = int.Parse(Console.ReadLine());

for (i=1; i<n; i++)
j+=i;

2. PODSTAWOWE ELEMENTY JEZYKA C# 75

Console.WriteLine("Suma wynosi " + j.ToString());
}
}
}

Kompilator dos¢ restrykcyjnie traktuje powszechnie popelniane przez programistéw pomytki,
zwykle sygnalizujac btad tam, gdzie kompilator C czy C+-+ poprzestaje na ostrzezeniu. Na
przyktad w powyzszym przykladzie deklaracja

int i, j, n; // brak przypisania j=0

spowoduje btad kompilacji

Microsoft (R) Visual C# .NET Compiler version 7.00.9466
for Microsoft (R) .NET Framework version 1.0.3705
Copyright (C) Microsoft Corporation 2001. All rights reserved.

example.cs(17,9): error CS0165: Use of unassigned local variable ’j’

W przeciwienstwie do C, kompilator C# nie pozwala redefiniowaé¢ zmiennych na kolejnych
poziomach zagniezdzenia kodu, uznano bowiem ze jest to zrédtem zbyt duzej ilosci niezamierzo-
nych pomytek.

/* Wiktor Zychla, 2003 */
using System;

class Example
{
public static void Main()
{
bool b=true;
int 1i;

while (b)
{
int i;
}
}
}

example.cs(12,8): error CS0136: A local variable named ’i’ cannot be declared in
this scope because it would give a different meaning to ’i’, which is
already used in a ’parent or current’ scope to denote something else

Niespodziewanie, lecz konsekwentnie, taka konstrukcja nie jest mozliwa réwniez wtedy, gdy
deklaracja bardziej zagniezdzona poprzedza deklaracje mniej zagniezdzona.

/* Wiktor Zychla, 2003 */
using System;

class Example
{
public static void Main()
{
bool b=true;
while (b)
{
int i;
}

int 1i;

76 ROZDZIAL C. SWIAT .NET

2.3 System typéw, model obiektowy

W obiektowych jezykach programowania zwykle funkcjonujg dwie roztaczne klasy bytéw, na
ktorych mozna operowaé: typy proste (liczby catkowite, zmiennoprzecinkowe, napisy) oraz typy
ztozone (klasy). Istnienie dwdch roztgcznych §wiatéw rodzi mnéstwo probleméw i niejednokrotnie
zmusza programiste do pisania ”brzydkiego” kodu. Na przyktad w sytuacji, kiedy potrzebna jest
funkcja operujaca na wartoéci dowolnego typu, istnienie typow prostych zmusza programiste
do przecigzania tej funkcji tyle razy ile réznych jej wariantow bedzie potrzebowat. W CH+
pewnym sposobem na przezwyciezanie takich trudnosci sg szablony, jednak nie istnieje sposéb
na stosowanie szablonu do typu nieznanego kompilatorowi podczas kompilacji. Taka cecha jezyka
sprawia, ze trudno nazwaé¢ C++ jezykiem w pelni obiektowym. Nawet Java dzieli typy na proste
i ztozone, bowiem stosowanie typéw prostych znaczaco poprawia wydajnosé kodu.

Model obiektowy C# to model z pojedyficzym dziedziczeniem®. Zaktada sie istnienie jednej
wspoélnej klasy object dla wszystkich obiektéw. Choé nadal istnieje podziat na typy proste i typy
zlozone, to z punktu widzenia systemu typéw wszystko jest obiektem, co wiecej typ obiektu jest
mozliwy do odzyskania w trakcie dziatania programu.

Drzieki takiej konstrukcji systemu typéw mozliwe jest zdefiniowanie pewnej funkcjonalnosci
juz na poziomie klasy object. Ta funkcjonalno$é jest dziedziczona na klasy potomne. Najwaz-
niejsze dwie metody wirtualne zdefiniowane w klasie object to:

string ToString() Domy$lnie ta metoda zwraca nazwe typu obiektu. Przeciazona moze zwra-
ca¢ opis zawartosdci obiektu w postaci przyjaznej dla uzytkownika.

Type GetType() Zwraca zmienna typu Type, ktéra okresla typ obiektu.

/* Wiktor Zychla, 2003 */
using System;

namespace Example

{
public class Klasal {}
public class Klasa2

{
public override string ToString()
{
return "Jestem obiektem klasy Klasa2";
}
}
public class CMain
{
public static void Main()
{
Klasal k1 = new Klasal();
Klasa2 k2 = new Klasa2();
Console.WriteLine(k1.ToString());
Console.WriteLine(k2.ToString());
Console.WriteLine(k1.GetType().ToString());
Console.WriteLine(k2.GetType() .ToString());
Console.WriteLine(k1.GetType() .GetType().ToString());
}
}

}

C:\Example>example.exe
Example.Klasal
Jestem obiektem klasy Klasa2

5Sposobem na pokonanie ograniczen pojedynczego dziedziczenia sa tzw. interfejsy.

2. PODSTAWOWE ELEMENTY JEZYKA C# (s

Example.Klasal
Example.Klasa2
System.RuntimeType

Jak wida¢ wartos¢ wyrazenia

object_value.GetType()
sama jest wartoscia typu Type, mozna wiec zapytaé o jej typ

object_value.GetType () .GetType ()

i poprosi¢ o jego reprezentacje

object_value.GetType() .GetType() .ToString()

Zalety zunifikowanego systemu typéw (CTS, Common Type System) to jednak nie tylko
elegancja jezyka. CTS gra gltowna role przy taczeniu przez $rodowisko uruchomieniowe kodu
napisanego w réznych jezykach. Kazdy kompilator musi umieé¢ postugiwaé sie zdefiniowanymi
w CTS typami prostymi, musi takze definiowaé¢ wlasne typy wpasowujac je w okreSlong przez
CTS hierarchie typéw. Sam CTS jest czescia szerszej specyfikacji zwanej CLS (Common Langu-
age Specification), ktéra dodatkowo okresla inne istotne wymagania dla kompilatora (takie jak
spos6b zarzadzania pamiecia, obstugi wyjatkéw).

Najwieksza zaletag CTS jest jednak bezpieczenstwo jakie oferuje tak zaprojektowany system
typow.

e Typ kazdego obiektu moze by¢ jednoznacznie okreslony, nawet dynamicznie, czyli w trakcie
dzialania programu.

e Nie ma mozliwosci oszukania systemu typow przez probe przekonania go ze jaki$ obiekt
ma inny typ niz jego prawdziwy typ.

e Dostep do sktadowych kazdego obiektu (publiczny, prywatny) jest okreslony na poziomie
definicji klasy i nie jest mozliwe dziatanie whrew okreslonym prawom dostepu. To znaczy,
ze na przyklad jesli sktadowa klasy jest prywatna, to system typéw i srodowisko urucho-
mieniowe chronig ja przed dostepem z zewnatrz®.

2.4 Typy proste a typy referencyjne, boxing i unboxing

System typéw, w ktérym kazdy byt jest obiektem nie jest pomystem nowym. Tak jest na przy-
ktad w SmallTalku. Niestety, SmallTalk ptaci za te ceche jezyka cene efektywnoéci - tam gdzie
mamy do czynienia na przyklad z liczbami calkowitymi czy zmiennoprzecinkowymi (na kto-
rych procesor potrafi przeciez dokonywaé szybkich obliczen) konieczno$é opakowywania ich w
struktury obiektowe dramatycznie zmniejsza wydajnosc.

Projektanci jezyka C# rozwiazali ten problem dzielagc $wiat wszystkich obiektéw na dwie
kategorie: obiekty proste i obiekty referencyjne. Obiekty proste sa tworzone na stosie i repre-
zentowane sg przez aktualng warto$¢ obiektu. Obiekty proste nie moga wiec mie¢ wartosci null,
ktéra zwigzania jest z pustym wskazaniem - one zawsze maja wartosé. Obiekty referencyjne
tworzone sg na stercie, zas$ na stosie znajduje sie referencja do obiektu na stercie.

W C++ kwalifikatory dostepu to tak naprawde mechanizm ktérym programista chroni sie sam przed soba.
Mozna bowiem zrzutowaé obiekt klasy z polami prywatnymi na inng klase z polami publicznymi, w ten sposéb
obchodzac mechanizm kwalifikatoréw.

78 ROZDZIAL C. SWIAT .NET

Stos Sterta

int 17
string adres — ‘ ”Ala ma kota” ‘

Obiektami prostymi sa w C# na przyklad arytmetyczne typy wbudowane, enumeracje i typy
zdefiniowane jako struktury (patrz 2.5). Obiektami referencyjnymi sa pozostale klasy, tablice,
delegaci, interfejsy.

Obiekt typu prostego jest inicjowany bezposrednio po zadeklarowaniu. Oznacza to, ze nie
ma potrzeby jawnego wywolania konstruktora, na przyktad:

int i;

for (i=0; i<20; i++)

Programista moze przeksztatca¢ obiekty o typach prostych do postaci referencyjnej za po-
mocy tzw. opakowywania (ang. boring), a nastepnie z powrotem do postaci prostem (odpako-
wywanie, unbozing).

int i=1;
object o = i;
int newi = (int)o;
Stos Sterta
1 1
0 adres — | 1
newi 1

2.5 Klasy

Pojecie klasy jest fundamentalnym pojeciem programowania obiektowego. Pojedyncza klasa opi-
suje cechy jakiego$ konkretnego obiektu - jego wlasciwosci i mozliwe akcje.
Najprostsza definicja klasy w C# mogtaby wyglada¢ tak:

class cOsoba
{
public int wiek;

}

Taka definicja pozwala konstruowaé obiekty opisanego typu i odwolywac sie do jedynego pola
obiektéw tej klasy:

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
class cOsoba
{
public int wiek;

}

2. PODSTAWOWE ELEMENTY JEZYKA C# 79

public class CMain
{
public static void Main()
{
cOsoba o = new cOsoba();
o.wiek = 13;

Console.WriteLine("wiek osoby to " + o.wiek.ToString() + " lat");
}
}
}

Poniewaz w C# nie ma znanych z C i C++ plikéw nagtowkowych, w ktoérych umieszczato
sie deklaracje funkcji, cata definicja klasy musi znajdowaé sie w jednym pliku. Nie ma réwniez
potrzeby pisania deklaracji wyprzedzajacych - klasa moze by¢ uzywana w dowolnym miejscu
kodu bez wzgledu na miejsce jej definicji, na przyktad:

/* Wiktor Zychla, 2003 */
using System;

class Example

{

class A
{

B b;
}
class B
{

A a;
}
public static void Main()
{
}

}

Definicja klasy sktada sie z definicji elementow skiadowych okredlajacych jej funkcjonalnosé.
W C+# istnieje 7 mozliwych rodzajéw elementéw sktadowych:

pola Pole jest elementem sktadowym klasy, ktory przechowuje jakas wartosc.

metody Metoda jest funkcja, ktéra najczesciej w jaki$ sposdb operuje na wartosciach przecho-
wywanych w polach.

wlasciwosci (propercje) Propercje sa metodami, ktére z punktu widzenia klientéw klasy wy-
gladaja jak pola.

stale Stale sg polami, ktérych wartos¢ nie moze ulegaé¢ zmianom.

indeksery Indeksery sa konstrukcjami jezykowymi, ktore pozwalaja na dostep do danych kla-
sy tak, jakby byly one umieszczone w tablicy, cho¢ wewnetrzna reprezentacja moze byé
zupelnie inna.

zdarzenia Zdarzenia powoduja wykonywanie sie jakiegos kodu. Zdarzenia maja swoje listy stu-
chaczy, a zaistnienie zdarzenia powoduje wykonanie wszystkich funkcji na liscie stuchaczy.

operatory W C# istnieje mozliwos¢ przeciazania kilku standardowych operatoréw.

Kazdy element sktadowy (z drobnymi wyjatkami) moze byé opatrzony odpowiednim kwali-
fikatorem dostepu.

public Brak ograniczen w dostepie do sktadowej.

80 ROZDZIAL C. SWIAT .NET

protected Dostep jest ograniczony do sktadowych danej klasy i klas potomnych.
internal Dostep jest ograniczony do biezacego modutu.

protected internal Dostep jest ograniczony do sktadowych danej klasy i klas potomnych bie-
zacego modutu.

private Dostep jest ograniczony do sktadowych danej klasy.

W przeciwienstwie do C++ kazda sktadowa klasy musi by¢ jawnie opatrzona odpowiednim
kwalifikatorem dostepu, zas jego brak oznacza domyslnie kwalifikator private, na przyktad:

/* Wiktor Zychla, 2003 */
using System;

class Example

{
class A
{
public string s;
int 1i;
}
public static void Main()
{
A a =new AQ;
a.s = "Ala ma kota";
a.i = 5; // btad
}
}

example.cs(14,2): error CS0122: ’Example.A.i’ is inaccessible due to its
protection level

Pola

Projektujac obiekty dla swojej aplikacji, programista zwykle stoi przed zadaniem zbudowania
zbioru klas tak, aby jak najlepiej opisa¢ problem, ktéry rozwiazywaé ma aplikacja. Stad na-
turalne sg konstrukcje, w ktérych polami klasy opisujacej osobe bylyby jej atrybuty takie jak
imie, nazwisko, data urodzenia itp., klasa opisujaca pozycje w bibliotece mogtaby zawiera¢ pola
opisujace rodzaj pozycji, jej tytul, autora i date wydania itp.

class COsoba
{
public string Imie;
public string Nazwisko;
public DateTime data_urodzenia;

}
Przypomnijmy sobie, ze w C++ istnieja dwie mozliwodci utworzenia obiektu:
COsoba osobal;

COsoba* osoba2 = new COsoba();

W C# klasa opisana tak jak wyzej bedzie typem referencyjnym, to znaczy ze uzycie obiektu
bedzie wymagalo jego jawnego utworzenia:

COsoba osoba = new COsoba();

Sam term osoba funkcjonuje w CTS jako referencja do obiektu na stercie programu. Odwo-

” N

tania do jego sktadowych odbywaja si¢ za pomocg operatora ”.”, na przyktad

2. PODSTAWOWE ELEMENTY JEZYKA C# 81

osoba.Imie = "Xawery";

Programista moze w klasie zdefiniowa¢ réwniez pola statyczne. Maja one wlasnosé przyna-
lezenia do klasy, a nie do zadnego konkretnego obiektu klasy. Intuicyjnie mozna wiec rozumieé
pola statyczne jako odpowiednik zmiennych globalnych, wystepujacych w innych jezykach pro-
gramowania.

/* Wiktor Zychla, 2003 */
using System;

namespace Example

{
class COsoba
{
public static int IloscOsob;
}
public class CMain
{
public static void Main()
{
COsoba.IloscOsob = 17;
Console.WriteLine(COsoba.IloscOsob.ToString());
}
}
}
Metody

Metody zawieraja w sobie kod wykonywany podczas dziatania programu. Na przyktad:

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
class COsoba
{
public string Imie;
public string Nazwisko;

public string ImieNazwisko()
{
return Imie+" "+Nazwisko;
}
}

public class CMain

{
public static void Main()
{

COsoba o = new COsoba();

o.Imie = "Xawery";
o.Nazwisko = "Xawerowski";

Console.WriteLine(o.ImieNazwisko());

Specjalne znaczenie majg metody statyczne, ktére podobnie jak pola statyczne nie sg przy-
pisane do konkretnej instancji obiektu danej klasy, tylko do klasy jako takiej. Podobnie jak pola,
metody statyczne sg intuicyjnymi odpowiednikami funkcji globalnych z C czy C++.

82 ROZDZIAL C. SWIAT .NET

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
class CInfo
{
public static string GetInfo()
{
return "Info";
}
}

public class CMain

{
public static void Main()
{

Console.WriteLine(CInfo.GetInfo());

}

}

}

W standardowy sposéb przecigza sie metody, tak aby akceptowaly rézne listy wywolania:

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class CMain
{
static void Metoda(int i, string s)
{
Console.WriteLine(String.Format("Liczba ’{0}’, napis ’{1}’ ", i, s));
}
static void Metoda(int i)
{
Metoda(i, "jakis napis");
}
static void Metoda(string s)
{
Metoda(17, s);
}

public static void Main()

{
Metoda(5, "Ala ma kota");
Metoda(13);
Metoda("kot ma Ale");

}

}
}

C:\Example>example.exe

Liczba ’5’, napis ’Ala ma kota’
Liczba ’13’, napis ’jakis napis’
Liczba ’17’, napis ’kot ma Ale’

Istnieje réwniez mozliwos¢é poinformowania kompilatora o tym, ze metoda moze by¢ wotana
z nieznang w czasie kompilacji liczba parametréw:

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{

public class CMain

{

static void VariableParList(params int[] iInfo)

2. PODSTAWOWE ELEMENTY JEZYKA C# 83

{
Console.Write("parametry: ");
for (int i=0; i<ilInfo.GetLength(0); i++)

Console.Write(iInfo[i].ToString()+",");

Console.WriteLine();

}

public static void Main()

{
VariableParList(1);
VariableParList(1, 2);
VariableParList(1, 2, 3, 4, 5);

}

}

}

Kompilator nie pozwoli jednak na skompilowanie kodu, w ktérym ze wzgledu na przecigzenie
funkcji intencje programisty sa niejasne.

/* Wiktor Zychla, 2003 */
using System;

namespace Example

{
class CMain
{
static void A(int a, params int[] tab)
{
Console.WriteLine("A1");
}
static void A(int a, int b, params int[] tab)
{
Console.WriteLine("A2");
}
public static void Main()
{
AC1, 2, 3);
}
}
}

Czy wolajac funkcje A programista mial na mysli wersje pierwsza, z jednym parametrem
jawnym, czy druga, z dwoma parametrami jawnymi? Cokolwiek mys$lal programista, kompilator
ma wlasne zdanie na temat takiego kodu:

example.cs(19,8): error CS0121: The call is ambiguous between the following methods
or properties: ’Example.CMain.A(int, int, params int[])’ and
’Example.CMain.A(int, params int[])’

Specjalng role wéréd metod w klasie pelni metoda Main(), ktéra okresla punkt startowy
aplikacji’. Parametry startowe programu sa przekazane jako tablica do metody Main():

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class CMain
{
public static void Main(string[] args)

{

7O mozliwosci umieszczenia wielu alternatywnych metod Main() w kodzie aplikacji napisano wigcej na stronie
73.

84 ROZDZIAL C. SWIAT .NET

Console.WriteLine("Oto kolejne argumenty wywolania programu: ");
foreach (string s in args)
Console.WriteLine(s);
}
}
}

C:\Example>example.exe 17 "napis napis"
Oto kolejne argumenty wywolania programu:
17

napis napis

Przekazywanie parametréw do metod

Sposéb przekazania parametru do metody zalezy od tego, czy zmienna jest typu prostego czy
typu referencyjnego. Jedli zmienna jest typu prostego, jak int, to do metody zostanie przekazana
wartosé, jesli zmienna jest typu referencyjnego, to do metody zostanie przekazana referencja.

Oznacza to, ze wolana metoda nie ma mozliwosci zmiany, w przypadku typéw prostych -
wartosci zmiennej, w przypadku typow referencyjnych - referencji do zmiennej.

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class CMain
{
public static void Zmien(int i, string s)
{
i=1;
s = "Ala ma kota";
}
public static void Main()
{
int i=0;
string s = "Kot ma Ale";

Console.WriteLine("{0}, {1}", i, s);
Zmien(i, s);
Console.WriteLine("{0}, {1}", i, s);
}
}
}

C:\Example>example.exe
0, Kot ma Ale
0, Kot ma Ale

To, ze referencja do przekazywanego obiektu nie moze ulegaé¢ zmianie nie oznacza, ze wartosé
obiektu referencyjnego nie moze by¢ zmodyfikowana - wprost przeciwnie, metoda ma mozliwos$é
zmiany wlasciwosci obiektu przekazanego przez referencje.

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;

namespace Example
{
public class CMain
{
public static void Zmien(ArrayList a)
{
a.Add(0);
}
public static void Main()

{

2. PODSTAWOWE ELEMENTY JEZYKA C#

ArrayList a = new ArrayList();
Console.WriteLine("elementow na liscie {0}", a.Count);

Zmien(a);

Console.WriteLine("elementow na liscie {0}", a.Count);

}
}
}

C:\Example>example.exe
elementow na liscie O
elementow na liscie 1

85

Jedli intencja programisty jest zmiana wartosci przekazywanej do funkcji, moze zazadaé prze-
kazania do funkcji referencji do obiektu (w przypadku typu referencyjnego bedzie to referencja
do referencji) za pomoca stowa kluczowego ref. Jest to dostowny odpowiednik przekazywania

parametréw do funkcji przez referencje, znany z C++-.

/* Wiktor Zychla, 2003 */
using System;

namespace Example

{
public class CMain

{

public static void Zmien(ref int i, ref string s)

{
i=1;
s "Ala ma kota";

}
public static void Main()
{

int i=0;

string s = "Kot ma Ale";

Console.WriteLine("{0}, {1}", i, s);

Zmien(ref i, ref s);

Console.WriteLine("{0}, {1}", i, s);

}
}
}

C:\Example>example.exe
0, Kot ma Ale
1, Ala ma kota

Wydawaé by sie mogto, ze w taki sposob nalezy réwniez przekazywaé parametry, ktore
mialyby stuzyé¢ do przekazywania wynikéw do funkcji. Naiwnie moznaby wiec sprébowaé napisaé

co$ takiego:

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class CMain

{

public static void Oblicz(ref int wynik)

{
wynik = 1;
}
public static void Main()
{

int wynik;

Oblicz(ref wynik);

Console.WriteLine("wynik: {0}"

}

, wynik);

86 ROZDZIAL C. SWIAT .NET

jednak kompilator takiej konstrukcji nie przyjmie

example.cs(16,19): error CS0165: Use of unassigned local variable ’wynik’

Istnieja dwa mozliwe rozwiazania takiego problemu:

e Przed wykonaniem obliczen przypisac jakas wartosé zmiennej wynik. Nie jest to rozwiazanie
eleganckie, skoro wynik ma dopiero otrzymac¢ wartos¢ w wyniku obliczen.

e Zadeklarowaé parametr funkcji jako out int wynik zamiast ref int wynik. Stowo kluczowe out
jest rownowazne ref, przy czym zmienna nie musi otrzymac wartoéci przed wykorzystaniem
jej jako parametru do funkcji.

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class CMain
{
public static void Oblicz(out int wynik)
{
wynik = 1;
}
public static void Main()
{

int wynik;

Oblicz(out wynik);
Console.WriteLine("wynik: {0}", wynik);
}
}
}

Konstruktory

Konstruktory sa w pewnym sensie specjalnymi metodami, ktére zawieraja kod inicjujacy obiekty.
Konstruktory definiuje si¢ doktadnie tak samo jak w C++ czy w Javie: przez utworzenie kodu
pseudo-metody o nazwie takiej jak nazwa klasy. Podstawowa réznica miedzy C# a na przyktad
C++ jest taka, ze, podobnie jak w Javie, Srodowisko uruchomieniowe za pomoca odsmiecacza
zajmuje sie oczyszczaniem pamieci z nieuzywanych juz obiektow?®.

Konstruktory mozna oczywiscie przetadowywaé, mozna réwniez korzystaé¢ z konstruktoréw
klas bazowych lub z innych konstruktoréw juz okreslonych w klasie za pomoca wyrazen inicju-
jacych base(...) oraz this(...), na przyklad:

/* Wiktor Zychla, 2003 */
using System;
using System.Threading;

namespace Example
{
public class CExample

{
DateTime d;
int i=0, j=0;

8Istnieje specjalny interfejs IDisposable przygotowany na uzytek klas, ktére potrzebuja jawnie wykonaé akcje
przy niszczeniu obiektu przez od$miecacz.

2. PODSTAWOWE ELEMENTY JEZYKA C# 87

public CExample()
{
d = DateTime.Now;

}

public CExample(int I, int J) : this()
{
this.i
this.j
}

I;
J;

public override string ToString()
{
return String.Format("[{0},{1}], utworzone {2}", i, j, d);
}
}
public class CMain
{
public static void Main()
{
CExample el = new CExample();

Thread.Sleep(1000);
CExample e2 = new CExample(13, 17);

Console.WriteLine(el);
Console.WriteLine(e2);
}
}
}

C:\Example>example.exe
[0,0], utworzone 2003-03-18 21:48:08
[13,17], utworzone 2003-03-18 21:48:10

C# pozwala zdefiniowaé konstruktor statyczny, ktéry bedzie wywotany przed skonstruowa-
niem pierwszego obiektu klasy. Statyczny konstruktor moze by¢ tylko jeden, bez zadnego kwa-
lifikatora dostepu i z pusta lista parametrow.

class CExample

{
static CExample()
{

}
}

Propercje

Propercje pozwalaja ukry¢ implementacje metody tak, aby z punktu widzenia klienta klasy wy-
gladata ona jak pole. Propercje stosuje sie tam, gdzie istnieje konieczno$é¢ nadania lub pobrania
wartosci pola, a przy tym wykonaé jakies dodatkowe operacje. Za pomoca propercji mozna takze
ograniczy¢ dostep do jakiegos pola, czyniac je tylko do odczytu lub tylko do zapisu.

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class COsoba
{
private int m_wiek;
private DateTime m_dataUrodzenia;

public int wiek
{

get { return m_wiek; }

88 ROZDZIAL C. SWIAT .NET

}

public DateTime dataUrodzenia
{
get { return m_dataUrodzenia; }
set
{
m_dataUrodzenia = value;
m_wiek = DateTime.Now.Year-m_dataUrodzenia.Year;
}
}
}

public class CMain
{
public static void Main()
{
COsoba o = new COsoba();
o.dataUrodzenia = new DateTime(1950, 3, 8);

Console.WriteLine("Osoba:\r\nUrodzona\t{0:d}\r\nWiek\t\t{1}",
o.dataUrodzenia, o.wiek);
}
}
}

C:\Example>example.exe
Osoba:

Urodzona 1950-03-08
Wiek 53

Stale

State mozna zadeklarowa¢ w klasie przez opatrzenie deklaracji pola kwalifikatorem const.

public const string sKraj = "Polska";

Co jednak zrobié¢, gdy warto$¢ stalej jest znana dopiero po uruchomieniu programu? W C#
taki problem rozwiazuje kwalifikator readonly, ktéry oznacza pole zawierajace stalta, przy czym
wartos$¢ takiego pola mozna modyfikowaé tylko w konstruktorze klasy.

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class COsoba
{
public readonly DateTime datal;
public COsoba()
{
datal = DateTime.Now;
}
}
public class CMain
{
public static void Main()
{
COsoba o = new COsoba();
Console.WriteLine(o.datal);
}
}
}

2. PODSTAWOWE ELEMENTY JEZYKA C# 89

Indeksery

Indeksery pozwalaja klientom klasy traktowaé obiekt tak, jakby byl on tablica, bez wzgledu na
reprezentacje pdl obiektu. Indeksery podobne sg troche do propercji - podobnie jak propercje
indeksery moga pobieraé¢ warto$¢ get lub sposob ustala¢ wartosé set.

/* Wiktor Zychla, 2003 */
using System;

namespace Example

{
public class COsoba
{
public int this[int i, int j]
{
get { return i+j; }
}
}
public class CMain
{
public static void Main()
{
COsoba o = new COsobal();
Console.WriteLine(o[5,17]);
}
}
}

Idea indekseréw narodzila sie z checi utatwienia programistom dostepu do sktadowych obiek-
tu, ktéry w jaki$ sposob opisuje strukture tablicopodobna. Na przyklad klasy opisujace okna
potomne, takie jak ComboBox czy ListView, z pewnoécia jako jedno z pdl beda zawiera¢ jakas
tablice elementéow przechowywanych w wewnetrznej liscie obiektu. Indekser umozliwia w takim
przypadku dostep do takiej listy bezposrednio przez indeksowanie obiektu, a nie jego pola, tzn.
na przyktad zamiast

ComboBox comboBox = new ComboBox();

comboBox. Items [5]

mogliby$my pisaé¢ (majac zdefiniowany odpowiedni indekser)
ComboBox comboBox = new ComboBox() ;

comboBox[5] = ...

Przecigzanie operatoréw

Przeciazanie operatoréw nie wnosi do jezykéw programowania nic, poza czystoscig i elegancja
kodu. Z technicznego punktu widzenia przecigzone operatory sg jakimis metodami, ktére biora
okreslong ilo§¢ parametréw i zwracaja wyniki.

C# pozwala przeciaza¢ operatory za pomoca sktadni

public static retval operatorop (objectl [, object2])

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class CVec
{
public int x;
public int y;

90

ROZDZIAE C. SWIAT .NET

public CVec(int X, int Y)

public static CVec operator+(CVec vl, CVec v2)

{
}

return new CVec(v1.x+v2.x, vli.y+v2.y);

public override string ToString()

{

}
}

return String.Format("[{0},{1}1", x, y);

public class CMain

{

public static void Main()

{

}
}
}

CVec u = new CVec(2, 3);
CVec v = new CVec(1, 1);
Console.WriteLine("{0}+{1}={2}", u, v, u+v);

C:\Example>example.exe
[2,3]1+[1,1]1=[3,4]

Obowiazuja nastepujace zasady przy przecigzaniu operatoréw w CH:

2.6

mozna przeciazaé¢ operatory unarne +, -, |, | ++, — true i false oraz binarne +, -, *, /,

nie mozna przeciazaé¢ operatora [|, mozna jednak zdefiniowaé indekser, ktéry pozwala trak-
towaé obiekt jak tablice

nie mozna przeciazaé operatora (), z wyjatkiem definiowania wtasnych jawnych konwersji
operatory warunkowe (&&, —, i 7:) nie moga by¢ przeciazane

operatory nie wystepujace w C# nie moga by¢ przeciazane

operatory zdefiniowane przez Framework (., =, new) nie moga by¢ przeciazane

operatory (== i !=) moga by¢ przeciazane, wymaga to jednak przeciazenia metod Equals
i GetHashCode

przetadowanie niektérych operatoréw binarnych (na przyktad +) powoduje automatyczne
przeladowanie pewnych innych operatoréw (w tym przypadku +=)

operatory < i > musza by¢ przetadowywane jednoczeénie

Struktury

Typy proste w C# deklaruje sie tak samo jak typy referencyjne, zastepujac stowo kluczowe
class stowem kluczowym struct. Tak jak typy referencyjne nazywamy klasami, tak typy proste
nazywamy strukturami.

Deklaracja struktury moze zawiera¢ dowolna ilo$¢ konstruktoréw, z wyjatkiem konstruktora
bezparametrowego, ktory jest tworzony domyslnie i powoduje wyzerowanie (nadanie wartosci
domyslnych) wartosci wszystkich pdl struktury. W przypadku typéw prostych, ktére nie za-
wieraja pol, korzystanie ze zmiennych mozliwe jest wiec bez wywolania konstruktora (jak na
przyklad w przypadku typu int).

2. PODSTAWOWE ELEMENTY JEZYKA C#

/* Wiktor Zychla, 2003 */
using System;

namespace Example

{

}

struct RGB

{
public int r;
public int g;
public int b;

public RGB(int R, int G, int B)
{

public override string ToString()

{

return String.Format("[R:{0}, G:{1}, B:{2}]", r, g, b);

}
}

public class CMain

{
public static void Main()

{

RGB rgb new RGBQ);

RGB rgb2 = new RGB(1, 2, 3);
Console.WriteLine(rgb);
Console.WriteLine(rgb2);

}

}

C:\Example>example.exe
[R:0, G:0, B:0]
[R:1, G:2, B:3]

2.7 Dziedziczenie

91

Model obiektowy C# udostepnia pojedyncze dziedziczenie. Oznacza to, ze kazda klasa moze mieé
co najwyzej jedna klase bazowa. O relacjach miedzy klasami programista informuje kompilator
za pomocy sktadni

class <klasaPotomna> : <klasaBazowa>

/* Wiktor Zychla, 2003 */
using System;

namespace Example

{

class A

{

public int ID;

}

class B : A

{

public int ID2;

}
public class CMain

{

public static void Main()
{
A a = new AQ);
B b = new BO;
a.ID = 1;
b.ID = 2;
b.ID2 = 3;

92 ROZDZIAL C. SWIAT .NET

Jedli jakas metoda wystepuje w klasie potomnej i w klasie bazowej, to kompilator zaklada, ze
metoda z klasy potomnej przykrywa definicje metody z klasy bazowej (ominiecie obowiazkowego
w takim przypadku kwalifikatora new zostanie przez kompilator wykryte i programista zostanie
ostrzezony o jego braku).

Co sie jednak stanie, jeéli obiekt klasy potomnej zostanie najpierw zrzutowany na obiekt
klasy macierzystej, a nastepnie zostanie wywotana metoda?

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
class A
{
public void DajGlos()
{
Console.WriteLine("A");
}
}
class B : A
{
new public void DajGlos()
{
Console.WriteLine("B");
}
}
public class CMain
{
public static void Main()
{
new AQ);

A
B new B(Q);

a
b
a.DajGlos();
b.DajGlos();
((A)b) .DajGlos();
}

}
}

C:\Example>example.exe
A
B
A

Jak wida¢, kompilator statycznie wyznaczyt typ obiektu i wymusit zawotanie funkcji wtasci-
wej dla wyznaczonego typu.

Programista moze jednak zazadaé¢ polimorficznego traktowania przeciazonych w klasach po-
tomnych metod, to znaczy dynamicznego wyznaczania typu obiektu i wolania odpowiedniej
funkcji. Stuza do tego kwalifikatory wvirtual i override umieszczone przy odpowiednich deklara-
cjach.

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
class A
{
virtual public void DajGlos()
{

2. PODSTAWOWE ELEMENTY JEZYKA C# 93

Console.WriteLine("A");
}
}
class B : A
{
override public void DajGlos()
{
Console.WriteLine("B");
}
}
public class CMain
{
public static void Main()
{
new AQ);

A
B new BQ);

a
b
a.DajGlos();
b.DajGlos();
((A)b) .DajGlos();
}

}
}

C:\Example>example
A
B
B

Programista moze zabezpieczy¢ klase przed dziedziczeniem z niej za pomoca kwalifikatora
sealed, na przyktad

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
sealed class A
{
}
class B : A
{
}
public class CMain
{
public static void Main()
{
}
}
}

example.cs(9,9): error CS0509: ’Example.B’ : cannot inherit from sealed class
’Example.A’
2.8 Niszczenie obiektow

Niszczeniem obiektéw w C# zajmuje sie odSmiecacz. Co pewien czas odémiecacz przeglada sterte
w poszukiwaniu obiektéw do ktorych brak juz referencji i zwalnia przydzielong im pamieé.
Programista nie ma wigc kontroli nad niszczeniem obiektow takiej jak na przykiad w C++.
Istniejg jednak dwa aspekty niszczenia obiektéw, ktérych programista musi byé swiadomy.

Destruktory

Zadziwiajace, ale destruktory istnieja w C#. Ich dzialanie zdecydowanie rézni si¢ od dziatania
destruktoréw w C++4, bardziej zas przypomina dziatanie metod typu Finalize z Javy.

94 ROZDZIAL C. SWIAT .NET

Chodzi o to, ze programista nie ma zadnej kotroli nad tym, kiedy destruktor zostanie wy-
wotany. Od$miecacz wykona kod zawarty w destruktorze tuz przed usunieciem obiektu, jednak
sam moment usuwania obiektu jest z punktu widzenia programisty nie mozliwy do okreslenia.

Ponizszy przyktad pokazuje, ze destruktory sa wywolywane tuz przed zakonczeniem progra-
mu. Okazuje sie jednak, ze przerwanie dzialania programu za pomocg CTRL+C spowoduje, ze
destruktory nie wykonaja sie!

/* Wiktor Zychla, 2003 */
using System;

using System.Threading;

namespace Example

{
public class CExample
{
public int numer;
public CExample(int Numer)
{
numer = Numer;
Console.WriteLine("Utworzono obiekt {0}", numer);
}
~CExample ()
{
Console.WriteLine("Zniszczono obiekt {0}", numer);
}
public static void Main(string[] args)
{
int objectNo = 10;
CExample[] examples = new CExample[objectNo 1;
for (int i=0; i<10; i++)
examples[i] = new CExample(i);
Thread.Sleep(5000);
}
}
}

C:\Example>example.exe
Utworzono obiekt O

Utworzono obiekt
Utworzono obiekt
Utworzono obiekt
Utworzono obiekt
Utworzono obiekt
Utworzono obiekt
Utworzono obiekt
Utworzono obiekt
Utworzono obiekt
Zniszczono obiekt
Zniszczono obiekt
Zniszczono obiekt
Zniszczono obiekt
Zniszczono obiekt
Zniszczono obiekt
Zniszczono obiekt
Zniszczono obiekt
Zniszczono obiekt
Zniszczono obiekt

© 00N O WN -

OFRr NWPd OO N

Interfejs IDisposable

Z innego rodzaju problemem mamy do czynienia, kiedy obiekt C# inicjuje zasoby innego ro-
dzaju niz pamieé, na przyktad obiekty systemowe takie jak gniazda, potaczenia do baz danych,

2. PODSTAWOWE ELEMENTY JEZYKA C# 95

obiekty GDI. Brak kontroli nad zwalnianiem tych zasobéw (na przyktad uchwytéw GDI), moze
wrecz zaklécié prace systemu! Aby uniknaé takich probleméw, nalezy zaimplementowaé w kla-
sie interfejs IDisposable, ktéry ma jedna metode: Dispose(), w ktérej programista moze jawnie
zniszczy¢ zasoby przyznane obiektowi.

/* Wiktor Zychla, 2003 */
using System;
using System.Threading;

namespace Example

{
public class CExample : IDisposable
{

public int numer;

public CExample(int Numer)
{
numer = Numer;
Console.WriteLine("Utworzono obiekt {0}", numer);

}

public void Dispose()
{
Console.WriteLine("Zniszczono obiekt {0}", numer);

}

public static void Main(string[] args)

{
int objectNo = 10;

CExample[] examples = new CExample[objectNo 1;
for (int i=0; i<10; i++)
examples[i] = new CExample(i);

Thread.Sleep(5000);

for (int i=0; i<10; i++)
examples[i].Dispose();

Niestety, programista musi sam pamieta¢ o wywotaniu metody Dispose gdy obiekt przestaje
by¢ potrzebny. W przypadku konstrukcji pojedynczego obiektu, przydatny okazuje sie cukie-
rek syntaktyczny, polegajacy na umieszczeniu konstrukeji obiektu w klauzuli using. W chwili
zakonczenia nastepujacego po niej bloku kodu, metoda Dispose() wolana jest automatycznie.

/* Wiktor Zychla, 2003 */
using System;
using System.Threading;

namespace Example

{
public class CExample : IDisposable
{

public int numer;

public CExample(int Numer)
{
numer = Numer;
Console.WriteLine("Utworzono obiekt {0}", numer);

}

public void Dispose()
{
Console.WriteLine("Zniszczono obiekt {0}", numer);

}

96 ROZDZIAL C. SWIAT .NET

public static void Main(string[] args)

{
using (CExample example = new CExample(0))
{

Thread.Sleep(5000);

}

}

}
}

C:\Example>example.exe
Utworzono obiekt O
Zniszczono obiekt 0O

2.9 Interfejsy

Kiedy méwimy o klasach, mamy na my$li pewne wlasciwosci. Interfejsy sa odpowiednikami klas,
przy czym dotyczg one jakiej$ okreslonej funkcjonalnoéci. Interfejsy sa odpowiednikami klas
abstrakcyjnych, znanych z innych jezykow programowania - kiedy klasa implementuje interfejs
(czasem moéwimy tez dziedziczy z interfejsu), czyli implementuje wszystkie metody interfejsu,
klienci tej klasy moga by¢ pewni istnienia w klasie wszystkich definiowanych przez interfejs
metod.

Interfejsy sa sposobem na przezwyciezenie ograniczenia pojedynczego dziedziczenia - o ile
klasa moze mie¢ tylko jedna klase bazowa, o tyle ta sama klasa moze implementowaé dowolna
ilos¢ interfejsow. Interfejs nie moze zawiera¢ pdl, tylko specyfikacje metod przy czym w definicji
interfejsu metody nie moga mie¢ zadnych kwalifikatoréw dostepu, zas w implementacji interfejsu
w klasie implementowane metody musza by¢ publiczne (inaczej nie mialoby sensu umieszczanie
ich w publicznym intefejsie, ktéry klasa rzekomo miataby spelniac).

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
interface I
{
void DajGlos();
}
class A : I
{
public void DajGlos()
{
Console.WriteLine("A");
}
}
public class CMain
{
public static void Main()
{
A a = new AQ;
a.DajGlos();
}
}
}

Jedli klasa nie implementuje wszystkich wymaganych funkcji, to kompilator podczas kompi-
lacji zglosi btad.

Z punktu widzenia programisty interfejs zachowuje sie jak klasa, to znaczy mozna obiekty
rzutowaé na interfejs, statycznie i dynamicznie?. Mozna takze definiowaé zmienne ktérych typem
jest konkretny interfejs.

90 konwersji miedzy typami mozna przeczytaé na stronie 99.

2. PODSTAWOWE ELEMENTY JEZYKA C#

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
interface I
{
void DajGlos();
}
class A : I
{
public void DajGlos()
{
Console.WriteLine("A");
}
}
public class CMain
{
public static void Main()
{
A a = new AQ;
I1i=aaslI;
i.DajGlos();
}
}
}

97

Programista moze w czasie wykonania programu dowiedzie¢ si¢ czy klasa implementuje jakis
interfejs za pomoca stowa kluczowego is. Jest to przydatne zwlaszcza wtedy, kiedy obiekty
znajduja sie w jakims kontenerze, w ktorym wszystkie sa zrzutowane do typu bazowego object.

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
interface I
{
void DajGlos();
}
class A : I
{
public void DajGlos()
{
Console.WriteLine("A");
}
}
class B
{
public void DajGlos()
{
Console.WriteLine("A");
}
}
public class CMain
{
public static void Main()
{
A a =new AQ;
B b = new BO;

if (a is I) Console.WriteLine("A implementuje I");
if (b is I) Console.WriteLine("B implementuje I");

}
}
}

C:\Example>example.exe
A implementuje I

98 ROZDZIAL C. SWIAT .NET

Interfejsy nie sa domy$lnie dziedziczone z klasy bazowej do klas potomnych. Jesli programista
zrzutuje obiekt klasy potomnej na interfejs implementowany w klasie bazowej, to nawet jedli klasa
potomna zawiera odpowiednie metody, zostanie zawolana metoda z klasy bazowej.

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
interface I
{
void DajGlos();
}
class A : I
{
public void DajGlos()
{
Console.WriteLine("A");
}
}
class B : A
{
new public void DajGlos()
{
Console.WriteLine("B");
}
}
public class CMain
{
public static void Main()
{
B b = new B();
b.DajGlos();
((I)b) .DajGlos();
}
}
}

C:\Example>example.exe
B
A

Jedli klasa potomna mialaby implementowaé interfejs, to nalezy o tym poinformowaé kom-
pilator.

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
interface I
{
void DajGlos();
}
class A : I
{
public void DajGlos()
{
Console.WriteLine("A");
}
}
class B : A, I
{
new public void DajGlos()
{
Console.WriteLine("B");

}

2. PODSTAWOWE ELEMENTY JEZYKA C# 99

}
public class CMain
{
public static void Main()
{
B b = new B(;
b.DajGlos();
((I)b) .DajGlos();
}
}
}

C:\Example>example.exe
B
B

Interfejsy moga implementowaé inne interfejsy.

interface I
{

void I(Q);
}
interface J
{

void J(O);
}
interface I1J : I, J
{

void IJ(Q);
¥

2.10 Konwersje miedzy typami

Mozliwos¢é przypisania wprost wartodci jednego typu do wartosci innego typu zalezy tylko od
tego, czy zdefiniowano bezpoéredni operator konwersji miedzy tymi typami. Najczedciej taka
proba nie powiedzie sie, bowiem operatory konwersji zdefiniowano tylko dla wybranych par
typow.

Zobaczmy jak kompilator reaguje na prébe wymuszenia konwersji miedzy warto$ciami roz-
nych typéw gdy operator konwersji bezposredniej istnieje tylko dla konwersji w jedng strone.

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class CMain
{
public static void Main()
{
int i=1;
long j=1;

j=i;
i=3;
}
}
}

Microsoft (R) Visual C# .NET Compiler version 7.00.9466
for Microsoft (R) .NET Framework version 1.0.3705
Copyright (C) Microsoft Corporation 2001. All rights reserved.

example.cs(14,6): error CS0029: Cannot implicitly convert type ’long’ to ’int’

100 ROZDZIAL C. SWIAT .NET

Wszystko sie zgadza - konwersja z wartosci 32-bitowej do wartosci 64-bitowej jest legalna (tak
zostala okre$lona) bowiem nie powoduje utraty danych. Konwersja odwrotna moze prowadzié
do utraty danych i cho¢ kompilator taka konwersje dopusci, programista musi swoj zamiar
potwierdzié¢:

j=1i;
i=(int)j;

Typy wbudowane

Wartosé kazdego typu mozna przeksztalcié do wartodci typu string za pomoca metody To-
String(). Wbudowane klasy arytmetyczne maja statyczne metody Parse, stuzace do konwersji
napisow.

/* Wiktor Zychla, 2003 */
using System;

namespace Example

{
public class CMain
{
public static void Main()
{
string sI = "45";
string sF = "123,5";
int i = int.Parse(sI);
float f = float.Parse(sF);
Console.WriteLine("{0}; {1}", i, £);
}
}
}

Bardziej ogdlne podejscie mozliwe jest dzieki konwersjom miedzy typami wbudowanymi,
dostepnymi jako statyczne metody klasy System.Convert.

/* Wiktor Zychla, 2003 */
using System;

namespace Example

{
public class CMain
{
public static void Main()
{
string sI = "45";
string sF = "123,5";
int i = Convert.ToInt32(sI);
double f = Convert.ToDouble(sF);
Console.WriteLine("{0}; {1}", i, f);
}
}
}

Typy wtlasne
Mozliwe sa dwa rodzaje konwersji wprost (przez przypisanie):

konwersja jawna Z konwersja jawna mamy do czynienia wtedy, kiedy wymiana wartosci mie-
dzy dwoma typami wymaga jawnego rzutowania, na przyktad:

2. PODSTAWOWE ELEMENTY JEZYKA C# 101

double d
int i

1.5;
(int)d;

konwersja niejawna Z konwersja niejawng mamy do czynienia wtedy, kiedy wymiana wartosci
miedzy dwoma typami nie wymaga jawnego rzutowania, na przyktad:

int i
double d

1;
i;

W przypadku typéw wbudowanych rodzaje konwersji sa juz zdeterminowane, jednak w przy-
padku wlasnych klas programista staje przed wyborem rodzajéow konwersji miedzy swoim typem
a innymi typami. Wyboér odpowiedniego typu konwersji zalezy od tego czy podczas konwersji
moze dojéé¢ do utraty danych, czy nie. Wyobrazmy sobie sytuacje, w ktérej typ A jest bardziej
pojemny informacyjnie niz typ B. Wobec tego konwersja danej typu B do danej typu A moze by¢
niejawna, poniewaz nie istnieje ryzyko utraty informacji. Konwersja w odwrotng strone powinna
by¢ jawna, aby klient klasy byl swiadomy mozliwej utraty informacji.

O tym, czy konwersja jest dokonywana jawnie, czy niejawnie, decyduje definicja operatora
konwersji. Operatory konwersji definiuje sie jako jawne przez uzycie kwalifikatora explicit lub
niejawne implicit.

Jako przyktad rozwazmy strukture opisujaca liczby rzymskie. Konwersja liczby rzymskiej do
typu int moze by¢ niejawna, bowiem int jest bardziej pojemny informacyjnie niz zbiér wszystkich
liczb rzymskich. Konwersja odwrotna powinna by¢ jawna.

/* Wiktor Zychla, 2003 */
using System;
using System.Text;

namespace Example
{
public class CMain
{
struct RomanNumeral
{
readonly string[] literals;
int value;

public RomanNumeral(int value)
{
if (value > 3999) throw new ArgumentOutOfRangeException();

literals = new string[] { "I", "v", "X", "L",
||C|l, IID"’ "M" }’
this.value = value;

}

public static explicit operator RomanNumeral(int value)
{
return new RomanNumeral(value);

}

public static implicit operator int(RomanNumeral roman)
{
return roman.value;

}

string BuildRomanString(int index, int v)
{
if (v <= 0) return String.Empty;

string s = String.Empty;
int digit = v%10;
int j;

if (digit == 4)

102

}

pub
{
s
i

s = literals[index]+literals[index+1]+s;
else if (digit == 9)

s = literals[index]+literals[index+2]+s;
else if (digit >= 5 &% digit <= 8)
{

s = literals[index+1];

digit -= 5;
}
if (digit >= 1 && digit <=3)
{

for (j=0; j<digit; j++)

s = s+literals[index];

}

return BuildRomanString(index+2, v/10)+s;

lic override string ToString()

tring s String.Empty;
nt tVal = value;

return BuildRomanString(O, value);

}

public static void Main()

{

}

int

RomanNumeral r

int

i 2003;
(RomanNumeral)i;

r;

J

Console.WriteLine("{0}, {1}, {2}", i, r, j);

Dziedziczenie a konwersje

ROZDZIAE C. SWIAT .NET

Jak w kazdym obiektowym jezyku programowania, obiekt klasy potomnej mozna zawsze niejaw-
nie zrzutowaé na obiekt klasy macierzystej. W druga strone mozliwa jest tylko konwersja jawna,
jednak uda sie ona tylko wtedy, kiedy dany obiekt jest rzeczywiscie odpowiedniego typu.
Oprécz rzutowania statycznego, miedzy typami referencyjnymi mozliwe jest rowniez rzuto-
wanie dynamiczne za pomocg operatora as. Jesli warto$¢ rzutowania dynamicznego réwna jest
null, to znaczy ze rzutowanie nie powiodto sie. Rzutowanie dynamiczne pozwala uniknaé¢ wyjat-
ku, ktéry bylby wyrzucony przez rzutowanie statyczne przy bledzie rzutowania, na przyklad:

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;

namespace Example

{

public class CMain

{

static void f1(object o)

{

}

//

Has

mozliwy wyjatek!
htable h = (Hashtable)o;

static void £2(object o)

{

//
//
Has
if
{

rzutowanie moze nie udac sie
ale nie bedzie wyjatku
htable h = o as Hashtable;
(h == null)

2. PODSTAWOWE ELEMENTY JEZYKA C# 103

}

}

public static void Main()

{
ArraylList a = new ArrayList();
f1(a);
f2(a);

}

}

}

2.11 Wyjatki

Wyjatki sa mechanizmem jaki nowoczesne jezyki programowania wykorzystuja w celu zwieck-
szenia produktywnosci i czytelnosci kodu. Projektanci platformy .NET przyjeli, ze biblioteki
systemowe informuja kod uzytkownika o bledach za pomoca wyjatkéw i zachecaja uzytkowni-
kéw do zerwania z przyzwyczajeniami, znanymi na przyktad z C, polegajacymi na przekazywaniu
informacji o bledach przez wartosci funkcji.

Wyjatki przechwytuje sie za pomoca sktadni

try
{
// blok w ktérym przechwytywane bedag wyjatki
}
catch (TypWyjatku wyjatek)
{
// obstuga przechwyconego wyjatku
}
finally
{
// kod wykonywany zawsze na zakoiczenie bloku
}

Wyjatki wyrzuca sie za pomoca sktadni

throw <obiekt opisujacy wyjatek>

Istnieja trzy podstawowe strategie dotyczace wyjatkow. Wybodr odpowiedniej strategii nalezy
do programisty:

brak obstugi wyjatkéw Kod funkcji nie zawiera obstugi wyjatkow
informacja dla funkcji wotajacej Kod klauzuli catch wyrzuca przechwycony wyjatek

pelne obstuzenie wyjatku Kod klauzuli catch zawiera pelny kod obstugi wyjatku i nie infor-
muje funkcji wotajacej o problemach

Wyjatki sa obiektami klas, ktore dziedzicza z klasy Fxception. Klasa ta moze by¢ przeciazona,
choé¢ juz w podstawowej wersji zawiera sposo uzytecznych informacji, takich jak informacja
diagnostyczna czy §lad stosu, na przyktad:

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;

namespace Example
{
public class CMain
{
public static void f£()
{

104 ROZDZIAE C. SWIAT .NET

try
{
int i = 1-1;
int j = 1/i;
}
catch (Exception ex)
{

Console.WriteLine("Informacja o biedzie:\r\n{0}\r\nSlad stosu:\r\n{1}",
ex.Message, ex.StackTrace);
}
}
public static void Main()
{
£0;
}
}
}

C:\Example>csc.exe example.cs /debug

Microsoft (R) Visual C# .NET Compiler version 7.00.9466

for Microsoft (R) .NET Framework version 1.0.3705

Copyright (C) Microsoft Corporation 2001. All rights reserved.

C:\Example>example.exe
Informacja o biedzie:
Attempted to divide by zero.
Slad stosu:
at Example.CMain.f() in C:\000\example.cs:line 14

2.12 Klasa string
Podstawowe mozliwosci klasy string

Obstuga napiséw mozliwa jest w C# dzieki klasie string. Kazdy obiekt tej klasy ma dostep do
wielu przydatnych propercji i metod.

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;

namespace Example
{
public class CMain
{
public static void Main()
{
string s = "Ala ma kota";
Console.WriteLine("Length(’{0}’): {1}", s, s.Length);

Console.WriteLine("ToLower: ’{0}’, ToUpper: ’{1}’",
s.ToLower(), s.ToUpper());

string sS = "Ala";
if (s.StartsWith(sS))

Console.WriteLine("’{0}’ StartsWith ’{1}’", s, sS);
string sE = "ota";
if (s.EndsWith(sE))

Console.WriteLine("’{0}’ EndsWith ’{1}’", s, sE);
Console.WriteLine("Remove(2,3): ’{0}’", s.Remove(2, 3));

string sI = "!++!";
Console.WriteLine("Insert(3, {1}): ’{0}’", s.Insert(3, sI), sI);

Console.WriteLine("Substring(4, 2): °{0}’", s.Substring(4, 2));

Console.WriteLine("Index0f(’a’): ’{0}’", s.Index0f(’a’));

2. PODSTAWOWE ELEMENTY JEZYKA C#

Console.WriteLine("LastIndexO0f(’a’): ’{0}’", s.LastIndex0f(’a’));

Console.WriteLine("PadLeft(20, ’_’): ’{0}’", s.PadLeft(20, ’_’));
string sT = " qwerty "3
Console.WriteLine("Trim(’{0}’): ’{1}’", sT, sT.Trim());
}
}

}

C:\Example>example.exe

Length(’Ala ma kota’): 11

ToLower: ’ala ma kota’, ToUpper: ’ALA MA KOTA’
’Ala ma kota’ StartsWith ’Ala’

’Ala ma kota’ EndsWith ’ota’

Remove(2,3): ’Ala kota’

Insert(3, !++!): ’Ala!++! ma kota’
Substring(4, 2): ’ma’

Index0f(’a’): ’2’

LastIndex0f(’a’): 10’

PadLeft(20, ’_’): ’ Ala ma kota’

Trim(’ qwerty ’): ’quwerty’

Formatowanie

105

C# udostepnia bardzo elegancki sposéb formatowania napiséw, przypominajaca troche sposéb
formatowania znany z C, jednak znacznie udoskonalony. Programista przygotowuje formatowany
napis, przetykany wyrazeniami formatujacymi, zawierajacymi numery kolejnych parametréw dla

formatowanego napisu wraz ze wskazaniem sposobu formatowania.

Zobaczmy najpierw prosty przyktad:

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;

namespace Example

{
public class CMain
{
public static void Main()
{
string s = "{0}{1}={2N\r\n{0}+{2}={3}\r\n{2}+{3}={4}";
int i0 = 17, i1 = 23;
Console.WriteLine(s, i0, il, iO+il, 2%iO0+il, 3*i0+2*il);
}
¥
}

Wyzszoéé takiego sposobu przekazywania parametréw dla wyrazen formatujacych nad tym
dostepnym w C polega na tym, ze wyrazenie formatujace zawiera w sobie numer parametru,
w zwigzku z czym ten sam parametr moze w napisie wystepowaé wiele razy bez koniecznosci

powtarzania go na lidcie parametréw, na przyktad:

Console.WriteLine("{0}, {0}, {0}, {0}", 1);

Wyniki formatowania mogg by¢ przekazane nie tylko do konsoli, ale do zmiennej typu string,

dzieki statycznej funkcji Format w klasie string, na przyktad:

string s = "{O}+{1}={2}\r\n{0}+{2}={3\r\n{2}+{3}={4}";
int i0 = 17, il = 23;

string sResult = String.Format(s, i0, i1, i0+il, 2%iO+il, 3%i0+2xil);

106 ROZDZIAL C. SWIAT .NET

Standardowy sposob formatowania warto$ci numerycznych pozwala, oprocz numeru para-
metru, doda¢ do wyrazenia formatujacego takze dlugos$é¢ pola oraz sposéb formatowania, na
przyktad:

Console.WriteLine(

"{0,5} {1,5}", 123, 456); // wyréwnaj do prawej
Console.WriteLine(
"{0,-5} {1,-5}", 123, 456); // wyréwnaj do lewej
123 456
123 456

Dostepne sposoby formatowania wyrazen numerycznych:

Znak formatujacy Interpretacja

Club ¢ Finansowa

D lub d Dziesietna

E lube Wyktadnicza

F lub f Ustalona ilo$¢ pozycji dziesietnych
Glubg Ogdlna

N lub n Numeryczna

P lub p Procentowa

R lubr Mozliwa do ponownego sparsowania
X lub x Heksadecymalna

Przyktad:

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;

namespace Example

{
public class CMain
{
public static void Main()
{
int i = 123456;
Console.WriteLine("{0:C}", i);
Console.WriteLine("{0:D}", i);
Console.WriteLine("{0:E}", i);
Console.WriteLine("{0:F}", i);
Console.WriteLine("{0:G}", i);
Console.WriteLine("{0:N}", i);
Console.WriteLine("{0:P}", i);
Console.WriteLine("{0:X}", i);
Console.WriteLine();
double d = 123.456;
Console.WriteLine("{0:E}", d);
Console.WriteLine("{0:F}", d);
Console.WriteLine("{0:G}", d);
Console.WriteLine("{0:N}", d);
Console.WriteLine("{0:P}", d);
Console.WriteLine("{0:R}", d);
}
}

2. PODSTAWOWE ELEMENTY JEZYKA C# 107

C:\Example>example.exe
123_456,00 zi

123456

1,234560E+005
123456,00

123456

123_456,00
12_345_600,00%

1E240

1,234560E+002
123,46
123,456
123,46
12_345,607%
123,456

Programista moze wyposazy¢ wlasne obiekty w mozliwo$¢ dowolnego zadawania parametréw
formatowania. Umozliwia to interfejs IFormattable.

/* Wiktor Zychla, 2003 */
using System;

namespace Example

{
class CFormatExample : IFormattable
{
public int ie;
public string se;
private CFormatExample() {3}
public CFormatExample(int ie, string se)
{
this.ie = ie; this.se = se;
}
public string ToString(string format, IFormatProvider fp)
{
switch (format)
{
case "A" : return ie.ToString();
case "B" : return se;
default : return String.Format("{0}:{1}", ie, se);
}
}
}
public class CExample
{
public static void Main(string[] args)
{
CFormatExample fe = new CFormatExample(17, "Ala ma kota");
Console.WriteLine(String.Format("{0}", fe));
Console.WriteLine(String.Format("{0:A}", fe));
Console.WriteLine(String.Format("{0:B}", fe));
}
}
}

C:\Example>example.exe
17:Ala ma kota

17

Ala ma kota

Encoding

Klasyczny problem zwiazany z obstuga napiséw to konwersja napisu do tablicy znakéw i tabli-
cy znakéw do napisu. Klasycznie do tego problemu podchodzi sie traktujac napis jako tablice

108 ROZDZIAL C. SWIAT .NET

znakow (tak jest na przyklad w C).

Zauwazmy jednak, ze istnieje wiele mozliwych standardéw kodowania znakéw. Niekoniecznie
kod znaku w standardzie ASCII musi by¢ taki sam jak w standardzie UNICODE, pewne znaki
moga wrecz by¢ niedostepne w jednych standardach a dostepne w innych.

W C# udostepniono klase System.Text.Encoding, za pomocs ktérej mozna konwertowaé
napisy i tablice znakéw w nastepujacych standardach:

Standard kodowania Uwagi

ASCII

BigEndianUnicode

Unicode

UTF7 Unicode, strona kodowa 65000
UTFS8 Unicode, strona kodowa 65001

Przyktad:

/* Wiktor Zychla, 2003 */
using System;
using System.Text;

namespace Example
{
public class CMain
{
public static void Main()
{
byte[] ba = new bytel]
{72, 101, 108, 108, 111};
string s = Encoding.ASCII.GetString(ba);
Console.WriteLine(s);

string sP = "Chrzaszcz chrzesci w Zyrardéwku';
byte[] unicodeB = Encoding.Unicode.GetBytes(sP);
char[] unicodeC = Encoding.Unicode.GetChars(unicodeB) ;

Console.WriteLine();
foreach (byte b in unicodeB)
Console.Write("{0:D3} ", b);
Console.WriteLine();
foreach (char c¢ in unicodeC)
Console.Write("{0} ", c);
}
}
}

C:\Example>example
Hello

067 000 104 000 114 000 122 000 005 001 115 000 122 000 099 000 122 000 032 000
099 000 104 000 114 000 122 000 025 001 091 001 099 000 105 000 032 000 119 000
032 000 123 001 121 000 114 000 097 000 114 000 100 000 243 000 119 000 107 000
117 000

Chrzgszcz chrzesci w Zyrardéwku

2.13 Delegaci i zdarzenia
Delegaci

Delegat jest typem referencyjnym, ktéry w elegancki sposéb przechowuje wskaznik na funkcje.
CTS za pomocy delegatéw pozwala przekazywaé¢ funkcje jako parametry do innych funkcji,

2. PODSTAWOWE ELEMENTY JEZYKA C# 109

kontrolujac jednoczesnie zgodnosé typéw - kompilator nie pozwoli na utworzenie delegata z
funkcji o nieodpowiednim prototypie.
Sama deklaracja delegata przypomina deklaracje wskaznika na funkcje w jezyku C:

typedef int(*pfPInt)(); // definicja typu wskazZnika na funkcje w C

delegate int pfPInt(); // definicja delegata - wskaznika na funkcje w C#

Podkredlmy - delegaci sa obiektami, konstruuje sie ich wiec w standardowy sposob za pomoca
new.

/* Wiktor Zychla, 2003 */
using System;
using System.Text;

namespace Example
{
public class MathClass
{
public static int Kwadrat(int n)
{
return n*n;

}

public static int Dwukrotnosc(int n)
{
return n+n;
}
}

public class CMain
{
public delegate int MathDelegate(int n);

public static int Oblicz(int n, MathDelegate m)
{
return m(n);

}

public static void Main()

{

int nl = Oblicz(11, new MathDelegate(MathClass.Kwadrat));
int n2 = Oblicz(11, new MathDelegate(MathClass.Dwukrotnosc));

Console.WriteLine("{0}, {1}", n1, n2);
}
}
}

Dowolna ilo$é¢ delegatow moze byé ztozona do jednego delegata za pomoca operatora —+,
ktérego wykonanie powoduje wykonanie catej sekwencji. Jedli delegaci zwracajg wyniki, to wynik
zlozonego delegata jest wynikiem ostatnio wykonanego delegata.

/* Wiktor Zychla, 2003 */
using System;
using System.Text;

namespace Example
{
public class InfoClass
{
public static void WypiszKwadrat(int n)
{
Console.WriteLine(n*n);

}

110 ROZDZIAE C. SWIAT .NET

public static void WypiszDwukrotnosc(int n)
{
Console.WriteLine(n+n);
}
}

public class CMain
{
public delegate void InfoDelegate(int n);

public static void Oblicz(int n, InfoDelegate m)

{
m(n);
}
public static void Main()
{
InfoDelegate dl = new InfoDelegate(InfoClass.WypiszKwadrat);
InfoDelegate d2 = new InfoDelegate(InfoClass.WypiszDwukrotnosc);
InfoDelegate d3 = d1+d2;
Oblicz(11, d3);
}
}
}
Zdarzenia

Kiedy zachodzi konieczno$é poinformowania jakiego$ obiektu o zajsciu jakiego$ zdarzenia, bar-
dzo przydatny okazuje sie mechanizm zdarzen. Obiekt, ktéry jest sprawca pojawienia sie zdarze-
nia przechowuje liste delegatow, ktorzy zostang wykonani kiedy zdarzenie ma zosta¢ ogloszone
swiatu. Kazdy inny obiekt, ktéry jest zainteresowany otrzymaniem powiadomienia, po prostu
dopisuje swojego delegata do listy delegatéw zdarzenia.

/* Wiktor Zychla, 2003 */
using System;
using System.Threading;

namespace DelegacilZdarzenia
{

public delegate void CZdarzenieDelegate(CZdarzenieEventArgs e);

// Argumenty zdarzenia
public class CZdarzenieEventArgs
{

public int informacjal;

public int informacja2;

private CZdarzenieEventArgs() {}
public CZdarzenieEventArgs(int Informacjal, int Informacja2)
{
informacjal = Informacjail;
informacja2 = Informacja2;
}
}

// Obiekt, ktéry bedzie wysylal zdarzenie
public class CObiekt
{

public event CZdarzenieDelegate Zdarzenie;

public void ZdarzenieZaszlo(CZdarzenieEventArgs e)
{
this.Zdarzenie(e);

}

2. PODSTAWOWE ELEMENTY JEZYKA C# 111

public CObiekt() {}
}

class CMain
{
// Reakcja na zdarzenie
static void Reakcjal(CZdarzenieEventArgs e)

{
Console.WriteLine(String.Format("Reakcja 1: {0},{1}",
e.informacjal, e.informacja2));

}

static void Reakcja2(CZdarzenieEventArgs e)

{
Console.WriteLine(String.Format("Reakcja 2: {0},{1}",
e.informacjal, e.informacja2));

}

public static void Main()

{
CObiekt obiekt = new CObiekt();
obiekt.Zdarzenie += new CZdarzenieDelegate(Reakcjal);
Thread.Sleep(1000);
obiekt.ZdarzenieZaszlo(new CZdarzenieEventArgs(1, 2));
Thread.Sleep(1000) ;
obiekt.Zdarzenie += new CZdarzenieDelegate(Reakcja2);
obiekt.ZdarzenieZaszlo(new CZdarzenieEventArgs(3, 4));
Thread.Sleep(1000);
Console.WriteLine("koniec");

}

}
}

C:\Example>example.exe
Reakcja 1: 1,2
Reakcja 1: 3,4
Reakcja 2: 3,4

koniec

Uczen Czarnoksieznika

Mozliwoéci C# w zakresie delegatéw i zdarzen podsumujmy bajka o uczniu czarnoksieznika!©.

Dawno dawno temu, za siedmioma gorami i siedmioma rzekami, mieszkal poteiny Czarno-
ksieznik. Czarnoksieznik mial Ucznia, ktory bardzo chcial kiedy$ byc tak madry jak Czarnoksiez-
nik. Poki co, Czarnoksieznik wymyslat swojemu Uczniows kolejne, coraz bardziej skomplikowane
zadania, a Uczen skrupulatnie je wykonywal.

Taki uktad trwal i trwal, az w koncu Czarnoksieznik uznal, zZe nie musi juz caly czas doglgdac
pracy swojego Ucznia. ”Uczniu!” - rzekl ktdregos dnia - ”Jeste$ juz na tyle samodzielny, Ze w
czasie kiedy pracujesz mogltbym zajgé sie swoimi sprawami. Po prostu informuj mnie o tym,
kiedy skonczysz prace.”

using System;
using System.Threading;

namespace UczenCzarnoksieznika

{
class Uczen
{
public void PoradzSie(Czarnoksieznik czarnoksieznik)
{
_czarnoksieznik = czarnoksieznik;
}
0Qryginat, historia pracownika biurowego, dostepny jest pod adresem

http://www. sellsbrothers. com /writing/default. aspx?content=delegates. htm.

112 ROZDZIAE C. SWIAT .NET

public void Pracuj()
{
Console.WriteLine("Uczen: rozpoczynam prace.");
if (_czarnoksieznik != null) _czarnoksieznik.PracaRozpoczeta();

Console.WriteLine("Uczen: pracuje.");
if (_czarnoksieznik != null) _czarnoksieznik.PracaTrwa();

Console.WriteLine("Koncze prace.");
if (_czarnoksieznik != null)
{
int ocena = _czarnoksieznik.PracaZakonczona() ;
Console.WriteLine("Ocena : {0}", ocena);
}
}
private Czarnoksieznik _czarnoksieznik;

}

class Czarnoksieznik
{
public void PracaRozpoczeta() { }
public void PracaTrwa() {7
public int PracaZakonczona()
{
Console.WriteLine("Ach, znakomicie!");
return 2;
}
}

class Uniwersum

{
public static void Main()
{
Uczen uczen = new Uczen();
Czarnoksieznik czarnoksieznik = new Czarnoksieznik();

uczen.PoradzSie(czarnoksieznik);
uczen.Pracuj();
}
¥
}

Wydawalo sie, ze wszystko funkcjonuje jak nalezy, jednak Uczen zaczql zastanawiac sie co by
sie stato, gdyby nie tylko Czarnoksieznik, ale kto$ inny byl rowniez zainteresowany jego postepa-
mi (na przyklad Uczennica pewnej zaprzyjaznionej z Czarnoksieznikiem Wrozki). W pierwszej
chwili Uczen troche sie zmartwil, bo wyobrazil sobie, Ze jak duzo réznych metod musialby znad,
aby o swoich postepach informowaé innych. W koricu kazdy moglby chcieé byé informowany
w troche inny sposob. Troche sie jednak uspokoil kiedy pomyslal o rozdzieleniu listy mozliwych
powtadomien od tmplementacyi tych powiadomien. Zaprojektowal wiec odpowiedni interfejs.

using System;
using System.Threading;

namespace UczenCzarnoksieznika
{
interface IUczenPowiadomi
{
void PracaRozpoczeta();
void PracaTrwa();
int PracaZakonczona();

}

class Uczen

{

public void PoradzSie(IUczenPowiadomi uczenpowiadomi)

{

_uczenpowiadomi = uczenpowiadomij;

2. PODSTAWOWE ELEMENTY JEZYKA C# 113

}
public void Pracuj()
{
Console.WriteLine("Uczen: rozpoczynam prace.");
if (_uczenpowiadomi != null) _uczenpowiadomi.PracaRozpoczeta();

Console.WriteLine("Uczen: pracuje.");
if (_uczenpowiadomi != null) _uczenpowiadomi.PracaTrwa();

Console.WriteLine("Koncze prace.");
if (_uczenpowiadomi != null)
{
int ocena = _uczenpowiadomi.PracaZakonczona() ;
Console.WriteLine("Ocena : {0}", ocena);
}
}

private IUczenPowiadomi _uczenpowiadomi;

}

class Czarnoksieznik : IUczenPowiadomi
{
public void PracaRozpoczeta() { }
public void PracaTrwa() {1}
public int PracaZakonczona()
{
Console.WriteLine("Ach, znakomicie!");
return 3;
}
}

class Uniwersum

{

public static void Main()

Uczen uczen = new Uczen();
Czarnoksieznik czarnoksieznik = new Czarnoksieznik();

uczen.PoradzSie(czarnoksieznik);
uczen.Pracuj();
}
}
}

Przekonanie Czarnoksieinika do zaimplementowania interfejsu troche trwato i choé na razie
nikt inny nie byl implementowaniem jego interfejsu zainteresowany, to Uczen byl z siebie bardzo
zadowolony. "W koncu teraz” - pomyslal - “kazdy zainteresowany bedzie mogt tatwo dowiedzieé
sie jak sobie radze.”

Czarnoksieznik nie byt jednak zachwycony. ”Uczniu!” - zagrzmial - ”Dlaczego zadajesz sobie
tyle trudu informujgc mnie o rozpoczeciu Twojej pracy i o jej trwaniu? Nie jestem tym zaintere-
sowany. Nie do$é, ze zmuszasz mnie do implementowania odpowiednich metod w interfejsie, to
jeszcze tracisz swoj czas czekajge az zauwaze Twoje poczynania. Przeciez gdybym akurat gdzie$
wybyt, to musialbys bardzo diugo czekaé na zakonczenie wykonania moich metod. Zréb cos z tym,
Uczniu!”

Chegc nie chege, zganiony przez swojego Mistrza, Uczen uznal, Ze interfejsy sq owszem uzy-
teczne w wielu przypadkach, jednak niespecjalnie nadajg sie do implementowania zdarzen. Pomy-
slat, ze rzeczywiscie byloby wlasciwie informowac zainteresowanych tylko o tych wydarzeniach,
ktorymi sq oni zainteresowani. Zamiast interfejsu stworzyl wiec delegatéow do odpowiednich funk-
cyi.

using System;
using System.Threading;

namespace UczenCzarnoksieznika

{

114 ROZDZIAE C. SWIAT .NET

delegate void PracaRozpoczeta();
delegate void PracaTrwa();
delegate int PracaZakonczona();

class Uczen
{
public void Pracuj()
{
Console.WriteLine("Uczen: rozpoczynam prace.");
if (rozpoczynaprace != null) rozpoczynaprace();

Console.WriteLine("Uczen: pracuje.");
if (pracuje != null) pracujeQ);

Console.WriteLine("Koncze prace.");
if (zakonczylprace !'= null)
{
int ocena = zakonczylprace();
Console.WriteLine("Ocena : {0}", ocena);
}
}
public PracaRozpoczeta rozpoczynaprace;
public PracaTrwa pracuje;
public PracaZakonczona zakonczylprace;

}

class Czarnoksieznik
{
public int PracaZakonczona()
{
Console.WriteLine("Ach, znakomicie!");
return 4;
}
}

class Uniwersum
{
public static void Main()
{
Uczen uczen = new Uczen();
Czarnoksieznik czarnoksieznik = new Czarnoksieznik();

uczen.zakonczylprace = new PracaZakonczona(czarnoksieznik.PracaZakonczona) ;
uczen.Pracuj();

W ten sposob Uczen przestal zajmowaé Czarnoksieinika zdarzeniami, ktorymi tamten nie
byl zainteresowany. W miedzyczasie okazalo sie, Ze samo Uniwersum zainteresowato sie poczy-
nantams Ucznia i cheialo byé informowane o rozpoczeciu i zakonczeniu przez niego pracy.

using System;
using System.Threading;

namespace UczenCzarnoksieznika

{
delegate void PracaRozpoczeta();
delegate void PracaTrwa();
delegate int PracaZakonczona();

class Uczen

{
public void Pracuj()
{
Console.WriteLine("Uczen: rozpoczynam prace.");
if (rozpoczynaprace != null) rozpoczynaprace();

Console.WriteLine("Uczen: pracuje.");

2. PODSTAWOWE ELEMENTY JEZYKA C# 115

if (pracuje != null) pracuje();

Console.WriteLine("Koncze prace.");
if (zakonczylprace != null)
{
int ocena = zakonczylprace();
Console.WriteLine("Ocena : {0}", ocena);
}
}
public PracaRozpoczeta rozpoczynaprace;
public PracaTrwa pracuje;
public PracaZakonczona zakonczylprace;

}

class Czarnoksieznik

{

public int PracaZakonczona()
{
Console.WriteLine("Ach, znakomicie!");
return 4;
}
}

class Uniwersum

{

static void UczenRozpoczalPrace()

{

Console.WriteLine("Uniwersum zauwaza, ze Uczen rozpoczal prace.");

}

static int UczenZakoczylPrace()

{

Console.WriteLine("Uniwersum zauwaza, ze Uczen zakonczyl prace.");
return 7;

}
public static void Main()
{
Uczen uczen = new Uczen();
Czarnoksieznik czarnoksieznik = new Czarnoksieznik();

uczen.rozpoczynaprace = new PracaRozpoczeta(Uniwersum.UczenRozpoczalPrace);
uczen.zakonczylprace = new PracaZakonczona(czarnoksieznik.PracaZakonczona) ;
uczen.zakonczylprace = new PracaZakonczona(Uniwersum.UczenZakoczylPrace);
uczen.Pracuj();

Katastrofa! Okazato sie, Ze uczynienie delegatow publicznymi polami w swojej klasie, by-
to bledem Ucznia. Uniwersum, w swoim uniwersalnym wymiarze, przystonito powiadomienie o
zakonczeniu pracy skierowane do Czarnoksieznika swoim wlasnym.

Uczen postanowit, ze musi cos$ na to poradzic. Zdal sobie sprawe, Ze potrzebuje jakiegos me-
chanizmu rejestrowania i wyrejestrowywania delegatow, tak aby stuchacze zdarzen mogli dodawaé
1 usuwad swoje funkcje do powiadomien, ale nie mogli zniszczyé catej listy funkcyi powiadomien.
Uczen skorzystal wiec ze zdarzen, o ktorych wiedzial zZe automatycznie tworzg odpowiednie pro-
percje zwigzane z obstugq delegatow, tak ze stuchacze mogli by¢ dodawani i usuwani za pomocq
operatorow += 1 -=.

using System;
using System.Threading;

namespace UczenCzarnoksieznika

{
delegate void PracaRozpoczeta();
delegate void PracaTrwa();
delegate int PracaZakonczona();

116 ROZDZIAE C. SWIAT .NET

class Uczen
{
public void Pracuj()
{
Console.WriteLine("Uczen: rozpoczynam prace.");
if (rozpoczynaprace != null) rozpoczynaprace();

Console.WriteLine("Uczen: pracuje.");
if (pracuje != null) pracujeQ);

Console.WriteLine("Koncze prace.");
if (zakonczylprace != null)
{
int ocena = zakonczylprace();
Console.WriteLine("Ocena : {0}", ocena);
}
}
public event PracaRozpoczeta rozpoczynaprace;
public event PracaTrwa pracuje;
public event PracaZakonczona zakonczylprace;

}

class Czarnoksieznik
{
public int PracaZakonczona()
{
Console.WriteLine("Ach, znakomicie!");
return 4;
}
}

class Uniwersum
{
static void UczenRozpoczalPrace()
{
Console.WriteLine("Uniwersum zauwaza, ze Uczen rozpoczal prace.");
}
static int UczenZakoczylPrace()
{
Console.WriteLine("Uniwersum zauwaza, ze Uczen zakonczyl prace.");
return 7;
}
public static void Main()
{
Uczen uczen = new Uczen();
Czarnoksieznik czarnoksieznik = new Czarnoksieznik();

uczen.rozpoczynaprace += new PracaRozpoczeta(Uniwersum.UczenRozpoczalPrace);
uczen.zakonczylprace += new PracaZakonczona(czarnoksieznik.PracaZakonczona) ;
uczen.zakonczylprace += new PracaZakonczona(Uniwersum.UczenZakoczylPrace) ;
uczen.Pracuj();

Po tym wszystkim Uczen odetchngl z ulgg. W elegancki sposéb poradzil sobie z zaspokojeniem
potrzeb wszystkich zainteresowanych jego postepami, a sam nie musial sie specjalnie przejmowaé
wewnetrznymi implementacjamsi ich metod. Zauwwazyl jedynie, ze choé zarowno Czarnoksieinik
jak © Uniwersum oceniajg jego poczynania, to do niego dociera tylko jedna ocena. Uczen chcial
za$ znaé oceny, ktore wystowiajg mu wszyscy zainteresowani zakonczeniem przez niego pracy.
Na szczescie byl w stanie przeglgdac liste stuchaczy zdarzenia i zbieraé¢ wyniki od wszystkich po
kole.

using System;
using System.Threading;

namespace UczenCzarnoksieznika

2. PODSTAWOWE ELEMENTY JEZYKA C# 117

{
delegate void PracaRozpoczeta();
delegate void PracaTrwa();
delegate int PracaZakonczona();
class Uczen
{
public void Pracuj()
{
Console.WriteLine("Uczen: rozpoczynam prace.");
if (rozpoczynaprace != null) rozpoczynaprace();
Console.WriteLine("Uczen: pracuje.");
if (pracuje != null) pracuje();
Console.WriteLine("Koncze prace.");
if (zakonczylprace !'= null)
{
foreach (PracaZakonczona pz in zakonczylprace.GetInvocationList())
{
int ocena = pz();
Console.WriteLine("Ocena : {0}", ocena);
}
}
}
public event PracaRozpoczeta rozpoczynaprace;
public event PracaTrwa pracuje;
public event PracaZakonczona zakonczylprace;
}
class Czarnoksieznik
{
public int PracaZakonczona()
{
Console.WriteLine("Ach, znakomicie!");
return 4;
}
}
class Uniwersum
{
static void UczenRozpoczalPrace()
{
Console.WriteLine("Uniwersum zauwaza, ze Uczen rozpoczal prace.");
}
static int UczenZakoczylPrace()
{
Console.WriteLine("Uniwersum zauwaza, ze Uczen zakonczyl prace.");
return 7;
}
public static void Main()
{
Uczen uczen = new Uczen();
Czarnoksieznik czarnoksieznik = new Czarnoksieznik();
uczen.rozpoczynaprace += new PracaRozpoczeta(Uniwersum.UczenRozpoczalPrace);
uczen.zakonczylprace += new PracaZakonczona(czarnoksieznik.PracaZakonczona);
uczen.zakonczylprace += new PracaZakonczona(Uniwersum.UczenZakoczylPrace);
uczen.Pracuj();
}
}
}

Uczen usiadl na chwile zadowolony ze swoich pomystow. Niestety, okazato sie Ze zaréwno
Uniwersum jak i Czarnoksieznik majg mndostwo wlasnych zajeé i zauwaienie postepow ucznia
zajmugje 1m coTaz Wiecej cZasu.

class Czarnoksieznik

{

118 ROZDZIAE C. SWIAT .NET

public int PracaZakonczona()

{
Thread.Sleep(5000);
Console.WriteLine("Ach, znakomicie!");
return 4;

}
}

class Uniwersum

{

static int UczenZakoczylPrace()

{
Thread.Sleep(7000);
Console.WriteLine("Uniwersum zauwaza, ze Uczen zakonczyl prace.");
return 7;

}

Dla Ucznia oznaczalo to, Ze zamiast pilnie pracowaé musi po wywolaniu stuchacza zdarzenia
czekalé w nieskoriczonos$é na jego zakoriczenie. Postanowit wiec chwilowo przestaé przejmowad
sie ocenami, za to wolaé odpowiednich stuchaczy asynchronicznie.

public void Pracuj()

{
Console.WriteLine("Koncze prace.");
if (zakonczylprace != null)
{
foreach (PracaZakonczona pz in zakonczylprace.GetInvocationList())
{
pz.BeginInvoke(null, null);
}
}

}

Dzieki temu Uczeri mogt natychmiast po wywolaniu powiadomienia zajgé sie z powrotem
swoimi sprawamsi. Brakowalo mu jednak tego, ze ktos docenia jego prace. Postanowil wiec nadal
wotaé stuchaczy asynchronicznie i co jakis czas sprawdzaé, czy jego praca jest juz oceniona.

class Uczen

{
public void Pracuj()
{
Console.WriteLine("Koncze prace.");
if (zakonczylprace != null)
{
foreach (PracaZakonczona pz in zakonczylprace.GetInvocationList())
{

IAsyncResult res = pz.BeginInvoke(null, null);
while (!'res.IsCompleted) Thread.Sleep(1);

int ocena = pz.EndInvoke(res);
Console.WriteLine("Ocena : {0}", ocena);

W ten sposéb, miestety, Uczen co prawda mdgl kontynuowaé swojg prace natychmiast po
zawolaniu funkcji-stuchacza, jednak w osobnym waqtku co chwila zaglgdal przez ramie czy za-
wolany stuchacz zdarzenia juz zakonczyt prace. Uczen nie byl z tej konieczno$ci zadowolony,
postanowit wiec zatrudnié wlasnego delegata ktory powiadamiatby go o zakoriczeniu pracy przez
asynchronicznego delegata.

2. PODSTAWOWE ELEMENTY JEZYKA C# 119

using System;
using System.Threading;

namespace UczenCzarnoksieznika

{
delegate void PracaRozpoczeta();
delegate void PracaTrwa();
delegate int PracaZakonczona();

class Uczen

{
public void Pracuj()
{
Console.WriteLine("Uczen: rozpoczynam prace.");
if (rozpoczynaprace != null) rozpoczynaprace();
Console.WriteLine("Uczen: pracuje.");
if (pracuje != null) pracujeQ);
Console.WriteLine("Koncze prace.");
if (zakonczylprace != null)
{
foreach (PracaZakonczona pz in zakonczylprace.GetInvocationList())
{
pz.BeginInvoke(new AsyncCallback(OcenPrace), pz);
}
}
}

private void OcenPrace(IAsyncResult res)

{
PracaZakonczona pz = (PracaZakonczona)res.AsyncState;
int ocena = pz.EndInvoke(res);
Console.WriteLine("Ocena : {0}", ocena);

}
public event PracaRozpoczeta rozpoczynaprace;
public event PracaTrwa pracuje;
public event PracaZakonczona zakonczylprace;
}
class Czarnoksieznik
{
public int PracaZakonczona()
{
Thread.Sleep(5000);
Console.WriteLine("Ach, znakomicie!");
return 4;
}
}
class Uniwersum
{
static void UczenRozpoczalPrace()
{
Console.WriteLine("Uniwersum zauwaza, ze Uczen rozpoczal prace.");
}
static int UczenZakoczylPrace()
{
Thread.Sleep(7000);
Console.WriteLine("Uniwersum zauwaza, ze Uczen zakonczyl prace.");
return 7;
}
public static void Main()
{

Uczen uczen = new Uczen();
Czarnoksieznik czarnoksieznik = new Czarnoksieznik();

uczen.rozpoczynaprace += new PracaRozpoczeta(Uniwersum.UczenRozpoczalPrace);
uczen.zakonczylprace += new PracaZakonczona(czarnoksieznik.PracaZakonczona);

120 ROZDZIAE C. SWIAT .NET

uczen.zakonczylprace += new PracaZakonczona(Uniwersum.UczenZakoczylPrace);
uczen.Pracuj();
Thread.Sleep(20000);
}
}
}

Teraz wszyscy byli zadowoleni. Czarnoksieznik i Uniwersum byli powiadamiani o zdarzeniach,
ktore ich interesowaty. Uczen mdgl powiadamiad wszystkich zainteresowanych, a sam nie mu-
sial czekaé na zakonczenie metod implementujgcych powiadomienia. Mégl za to asynchronicznie
zbieraé¢ wyniki tych metod.

Zmeczony catym dniem ciezkiej pracy, Uczen mdgl w koncu iS¢ spac...

2.14 Moduty

Klasy w programie C#-owym pogrupowane sa w rozlacznych przestrzeniach nazw (namespa-
ce’ach). Dostep do klas umieszczonych w okreslonej przestrzeni nazw mozliwy jest dzieki kon-
strukcji

NazwaPrzestrzeniKlas.NazwaFunkcji

na przyktad

System.Console.WriteLine(...);

badz zadeklarowaniu na poczatku programu checi dostepu do okreslonej przestrzeni nazw

using NazwaPrzestrzeniKlas

dzigki czemu do funkcji z tej przestrzeni nazw mozna odwotywaé si¢ bez poprzedzania ich
nazw nazwg przestrzeni nazw. Podzial programu na rézne przestrzenie nazw zwykle wynika z
logicznego podziatu programu na modutly. Nie wnikajac w strukture modutu, powiedzmy tylko
ze zawiera on opis klas, przy czym modul wykonywalny (*.exe) rézni sie od modulu-biblioteki
(*.dll) tylko tym, ze w jednej z klas zawiera kod startowy (tu: funkcje Main()).

Przyktad najprostszego modutu:

/* Wiktor Zychla, 2003 */
using System;

namespace ExampleModule
{
public class ExampleClass
{
public int Metoda()
{
return 17;
}
}
}

C:\Example>csc.exe /target:library exampleM.cs

Microsoft (R) Visual C# .NET Compiler version 7.00.9466

for Microsoft (R) .NET Framework version 1.0.3705

Copyright (C) Microsoft Corporation 2001. All rights reserved.

Przyktad programu korzystajacego z modutu:

2. PODSTAWOWE ELEMENTY JEZYKA C# 121

/* Wiktor Zychla, 2003 */
using System;
using ExampleModule;

namespace Example
{
public class CMain
{
public static void Main()
{
ExampleClass e = new ExampleClass();
Console.WriteLine(e.Metoda());
}
}
}

C:\Example>csc.exe /reference:exampleM.dll example.cs
Microsoft (R) Visual C# .NET Compiler version 7.00.9466

for Microsoft (R) .NET Framework version 1.0.3705

Copyright (C) Microsoft Corporation 2001. All rights reserved.

Od tej pory modut gltéwny i biblioteka moga by¢ kompilowane niezaleznie, za$ prawidtowe
wykonanie kodu modutu mozliwe bedzie tylko wtedy, kiedy biblioteka bedzie dostepna dla sro-
dowiska uruchomieniowego w czasie wykonania programu, czyli na przyktad znajdzie sie w tym
samym folderze co modutl gtéwny.

2.15 Refleksje

Mozliwos¢é odczytywania i analizy metadanych, czyli opisu typow z juz istniejacego kodu nosi
nazwe refleksji. Refleksje sa jednym z najpotezniejszych mechanizméw platformy .NET.

Przede wszystkim kazdy typ w systemie moze by¢ zidentyfikowany, ponadto mozna utworzy¢
zmienng typowa podajac nazwe typu.

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class CExample
{
static void PrintTypeInfo(Type t)
{
Console.WriteLine("Definicja {0} znajduje sie w module {1}.",
t, t.Module);
}

public static void Main(string[] args)
{
string s = String.Empty;
PrintTypeInfo(s.GetType());

Type t = Type.GetType("Example.CExample");
PrintTypeInfo(t);
}
}
}

C:\Example>example.exe
Definicja System.String znajduje si¢ w module CommonLanguageRuntimeLibrary.
Definicja Example.CExample znajduje si¢ w module example.exe.

Kazdy modul moze by¢ przeanalizowany pod katem zawartych w nim typow:

/* Wiktor Zychla, 2003 */
using System;

122 ROZDZIAE C. SWIAT .NET

using System.Reflection;

namespace Example
{
class CExample
{
static Assembly GetAssembly(string[] args)
{
Assembly assembly;
if (0 == args.Length)
{
assembly = Assembly.GetExecutingAssembly();
}
else
{
assembly = Assembly.LoadFrom(args[0]);
}
return assembly;

}

public static void Main(string[] args)
{
Assembly assembly = GetAssembly(args);
if (null != assembly)
{
Console.WriteLine("Informacje o typach dla {0}", assembly);

Type[] types = assembly.GetTypes();
foreach(Type type in types)
{
Console.WriteLine("\nTyp: {0}", type);
foreach(MemberInfo member in type.GetMembers())
{
Console.WriteLine("\tSkladowa: {0}", member);

C:\Example>example.exe
Informacje o typach dla Example, Version=1.0.1176.39934, Culture=neutral, Public
KeyToken=null

Typ: Example.CExample
Skladowa: Int32 GetHashCode ()
Skladowa: Boolean Equals(System.Object)
Skladowa: System.String ToString()
Skladowa: Void Main(System.String[])
Skladowa: System.Type GetType()
Skladowa: Void .ctor()

Za pomoca tego programu mozna obejrzeé listy typow w modutach .NET, na przyktad
System.Windows.Forms.dll czy MSCORLIB.DLL.

Mechanizm refleksji moze byé wykorzystany do dynamicznego tworzenia instancji obiektow,
gdy znany jest typ obiektu. Mozna w taki sposéb zrealizowaé¢ dynamiczne taczenie modutéow -
laczenie nie w czasie kompilacji, tylko w czasie wykonania.

/* Wiktor Zychla, 2003 */
using System;
using System.Reflection;

namespace Example
{
public class CTest
{
public int testVal;

2. PODSTAWOWE ELEMENTY JEZYKA C#

public CTest() {}

override public string ToString()
{
return "CTest: " + testVal.ToString();
}
}

public class CExample
{

public static void DynamicObjectCreation(Type t)

{
int i;
object o;

ConstructorInfo c;
FieldInfo f;

ConstructorInfol[] ci;
ParameterInfol[] pi;
FieldInfol[] fi;

ci = t.GetConstructors();
for (i=0; i<ci.Length; i++)
{

c = cil[il;

pi = c.GetParameters();
if (pi.Length == 0)
{

o = c.Invoke(null);

fi = t.GetFields();
for (int j=0; j<fi.Length; j++)
{

£ = fi[jl;

if (f.FieldType == Type.GetType("System.Int32"))

f.SetValue(o, 17);
}

Console.WriteLine("Typ {0}, ToString(): {1}", o.GetType(), o);

}
}

public static void Main()

{

DynamicObjectCreation(Type.GetType("Example.CTest"));

}
}
}

C:\Example>example.exe
Typ Example.CTest, ToString() CTest: 17

2.16 Atrybuty

123

Myslac o typach i obiektach, ktore s instancjami odpowiednich typéw, wyraznie rozrézniamy
te dwa swiaty. W chwili wykonania programu instancje obiektow sa elementami dynamicznymi
- pojawiaja sie i ging zaleznie od woli programisty. Tworzac, modyfikujac i niszczac obiekty
programista pracuje na poziomie jezyka, czyli na poziomie konkretnych wartosci wypelniajacych
szablony jakimi sa typy. Dzieki mechanizmowi refleksji, programista w trakcie dziatania progra-
mu moze réwniez pracowaé na poziomie metajezyka, czyli na poziomie informacji o typach: o ich

sktadowych, o zalezno$ciach miedzy typami.

Mechanizm atrybutéw to kolejny mechanizm z poziomu metajezyka. Atrybuty pozwalaja
rozszerzy¢ definicje typéw o dodatkowe informacje, mozliwe do wydobycia dzigki refleksjom.

124 ROZDZIAE C. SWIAT .NET

Wyobrazmy sobie pewien abstrakcyjny scenariusz, w ktérym kazdy typ pojawiajacy sie w pro-
gramie bylby okreslony jako niebieski, czarny lub zielony. Uwaga - nie instancja typu (czyli
konkretna zmienna), ale wlasnie typ sam w sobie. Taka informacja mogtaby by¢ na przyktad
jakas$ dodatkows wskazéwka dla kompilatora lub byé w jakis inny sposdb wykorzystana w trakcje
dziatania aplikacji.

Scenariusz ten zrealizujemy wlasnie dzieki atrybutom. Atrybuty sa klasami dziedziczacymi
z klasy Attribute, ktorych instancje dzieki specjalnej sktadni mozna zwiazaé z klasami badz
ich sktadowymi.

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class KolorKlasyAttribute : Attribute
{
public KolorKlasyAttribute(string kolor)
{
this.kolor = kolor;
}
public string Kolor
{
get { return kolor; }
}

string kolor;

}

[KolorKlasy("zielony")]
public class Typl

{

}

[KolorKlasy("niebieski")]
public class Typ2

{
}
public class CMainForm
{
public static void Main()
{
Type type;
// zbadaj Typl
type = typeof(Typl);
foreach (Attribute a in type.GetCustomAttributes(true))
{
KolorKlasyAttribute kolorKlasy = a as KolorKlasyAttribute;
if (kolorKlasy != null)
Console.WriteLine("Typ {0} ma kolor {1}", type.Name, kolorKlasy.Kolor);
}
// zbadaj Typ2
type = typeof(Typ2);
foreach (Attribute a in type.GetCustomAttributes(true))
{
KolorKlasyAttribute kolorKlasy = a as KolorKlasyAttribute;
if (kolorKlasy != null)
Console.WriteLine("Typ {0} ma kolor {1}", type.Name, kolorKlasy.Kolor);
}
}
}

}

C:\Example>example.exe
Typ Typl ma kolor zielony
Typ Typ2 ma kolor niebieski

2. PODSTAWOWE ELEMENTY JEZYKA C# 125

Predefiniowane atrybuty

W swiecie .NET istnieje kilkanascie gotowych atrybutéw, ktérych mozna uzyé do poinformowa-
nia kompilatora o specjalnych wtasciwosciach typéw lub ich sktadowych. W kolejnych rozdziatach
zobaczymy przyklady uzycia atrybutu [Serializable], ktéry stuzy do poinformowania kompi-
latora o tym, ze klasa moze by¢é serializowana. Zobaczymy takze przyklady uzycia atrybutéw
[DllImport] i [StructLayout], ktére umozliwiaja zdefiniowanie funkcji i struktur odwoluja-
cych sie do funkgcji i struktur ze zwyklych, niezarzadzanych bibliotek Windowsowych.

Tu wspomnimy jedynie o atrybutach, pozwalajacych na okreslenie informacji o pliku, beda-
cym efektem kompilacji. Mozna je umiesci¢ w dowolnym miejscu w kodzie, bowiem odnoszg sie
do catego modutu, bedacego wynikiem kompilacji. Efekt ich dodania mozna obejrze¢ na zaktadce
Wersja, w oknie wtasciwosci pliku.

[assembly: AssemblyTitle("Moja Aplikacja numer 1")]
[assembly: AssemblyDescription("Opis mojej aplikacji")]
[assembly: AssemblyCompany("Moja firma")]

[assembly: AssemblyProduct("A1")]

[assembly: AssemblyCopyright("Moja firma")]

[assembly: AssemblyVersion("1.7.1.0")

2.17 Kod niebezpieczny

Programisci, ktérzy dobrze znaja C czy C++, czasami bywaja w pierwszym kontakcie rozcza-
rowani brakiem bezpo$redniej kontroli nad zarzadzaniem pamiecig oraz brakiem wskaznikéw w
C#.

Brak mozliwosci sterowania destrukcja obiektow jest w pelni uzasadniony. Z pewnoscia w
pewnych przypadkach mozliwe jest napisanie przez programiste kodu, ktéry samodzielnie za-
rzadza przydzielaniem i zwalnianiem pamieci, jednak w wiekszosci przypadkéw automat i tak
robi to lepiej. Jesli komus bardzo zalezy na mozliwosci pelnej kontroli nad przydzielaniem i
zwalnianiem pamieci - niech po prostu programuje w C.

Co zas do wskaznikéw, to okazuje sie, ze istnieje w C# mozliwosé korzystania z nich. Po
prostu fragment kodu korzystajacy ze wskaznikéw musi by¢ oznakowany kwalifikatorem unsafe.
Cho¢ nazwa sugeruje, ze kod taki jest w jakis sposob niebezpieczny, tak naprawde chodzi tu
tylko o obejscie dos¢ restrykcyjnego systemu typow C#, ktéry w zaden sposdb nie potrafitby
przepusci¢ kodu upstrzonego wskaznikami. Oprocz kodu niebezpiecznego mozliwy jest réwniez
kod niezarzqdzany. Z kodem niezarzadzanym mamy do czynienia przy uruchamianiu z kodu C#-
owego modutéow COM lub COM+, napisanych w Visual Basicu lub C++. Kod niezarzadzany
sam zajmuje sie obstuga pamieci i nie korzysta z bibliotek platformy .NET.

Kod niebezpieczny musi by¢ kompilowany z przetacznikiem /unsafe.

/* Wiktor Zychla, 2003 */
using System;

namespace Example

{
public class CExample
{
unsafe public static void Swap(int* pi, int* pj)
{
int tmp = *pi;
*pil = *pj;
*pj = tmp;
}
public static void Main(string[] args)
{
int i = 17;
int j = 23;

126 ROZDZIAE C. SWIAT .NET

Console.WriteLine("Przed zamiang: i = {0}, j = {1}", i, j);
unsafe { Swap(&i, &j); }
Console.WriteLine("Po zamianie: i = {0}, j = {1}", i, j);

W kodzie niebezpiecznym o wiele tatwiej popelni¢ niezamierzona pomytke. Jednak zte od-
wolania do pamieci beda wylapywane przez $rodowisko uruchomieniowe:

/* Wiktor Zychla, 2003 */
using System;

namespace Example

{
public class CExample
{
unsafe public static void Blad()
{
int 1i;
int* pi = &i;
pi += 10000;
*pi = 0;
}
public static void Main(string[] args)
{
unsafe { Blad(); }
}
}
}

C:\Example>example.exe

Unhandled Exception: System.NullReferenceException: Object reference not set to
an instance of an object.

at Example.CExample.Blad()

at Example.CExample.Main(String[] args)

2.18 Dokumentowanie kodu

Programisci bardzo niechetnie dokumentuja kod, ktéry tworza. Z drugiej strony nawet kilka
stow komentarza bywa czesto bardzo cenne, zwlaszcza kiedy wraca sie do kodu napisanego
dawno temu. Oczywiscie istnieje mozliwoé¢ tworzenia komentarzy w kodzie, jednak nie da sie
na podstawie takich komentarzy zbudowaé niczego co mogloby by¢ jaka$ forma dokumentacji
calosci kodu.

W C+# zaproponowano pewien jednolity sposéb tworzenia komentarzy w kodzie jako tagdw
jezyka XML, Zobaczmy prosty przyktad komentarzy w kodzie programu, sposéb tworzenia
dokumentacji i ostateczna posta¢ dokumentacji:

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
/// <summary>
/// Klasa zawierajgca kod startowy aplikacji.
/// </summary>
class CExample
{
/// <summary>
/// Tutaj mégiby znalezé sie opis funkcji f.

"VWiecej o jezyku XML na stronie 166.

2. PODSTAWOWE ELEMENTY JEZYKA C# 127

/// Opis ten moze byé dowolnie dugi.
/// </summary>

void £()

{

}

/// <summary>

/// Gtéwna funkcja aplikacji.
/// </summary>

[STAThread]

static void Main(string[] args)
{

}

}
C:\Example>csc.exe /doc:example.xml example.cs

<?xml version="1.0"7>
<doc>
<assembly>
<name>example</name>
</assembly>
<members>
<member name="T:Example.CExample">
<summary>
Klasa zawierajaca kod startowy aplikacji.
</summary>
</member>
<member name="M:Example.CExample.f">
<summary>
Tutaj mégiby znalezé sie opis funkcji f.
Opis ten moze by¢ dowolnie dtugi.
</summary>
</member>
<member name="M:Example.CExample.Main(System.String[])">
<summary>
Giéwna funkcja aplikacji.
</summary>
</member>
</members>
</doc>

Tworzenie dokumentacji w ten sposob jest szczegdlnie tatwe w Visual Studio .NET. Edytor
kodu C# potrafi automatycznie zbudowaé¢ odpowiedni szablon dokumentacji po wprowadzeniu
przez programiste znaku rozpoczecia takiego komentarza, czyli ///. Istnieje kilkanascie réznych
mozliwych tagéow XML jakimi mozna opatrywaé rézne elementy kodu, najbardziej przydaje sie
jednak mozliwo$¢ petnego dokumentowania metod:

/// <summary>

/// Tutaj mégiby znalezé sig¢ opis funkcji f.

/// Opis ten moze byé dowolnie diugi.

/// </summary>

///<param name="n">Komentarz dotyczacy zmiennej n</param>

///<param name="m">Komentarz dotyczacy zmiennej m</param>
///<returns>Komentarz dotyczacy wartosci zwracanej przez funkcje</returns>
int f(int n, int m)

{

}

Utworzony plik z dokumentacja moze byé¢ otworzony na przyktad przez przegladarke Inter-
netowa, jednak mozna, za pomocg arkuszy styléw XSL, nada¢ mu wlasne formatowanie. Visual
Studio .NET potrafi wykorzysta¢ te mozliwoéé do utworzenia elegancko sformatowanych stron
HTML z dokumentacja.

Wykorzystajmy dla przyktadu bardzo prosty arkusz stylow:

128 ROZDZIAE C. SWIAT .NET

3 C:\Example\ekample sinl - Microsoft Internet Explarer

C:AEwampledetample. sl

<7uml version="1.0" 7>
- <doc>
— <assembly>
<hamerexample</name:
</assemblys
- <members>
— <member name="T:Example.CExample">
<summary=Klasa zawierajaca kod startowy aplikacii.</summary>
=/member>
— <memher name="M:Example.CExample f(System.Int32,8ystem.Int32)">
<summary>Tutaj maglby znalez¢ sig opis funkcji f. Opis ten moze by¢ dowolnie diugi.</summary>
<param name="n">Komentarz dotyczacy zmiennej n</param:=
«<param name="m">Komentarz dotyczacy zmiennej m</param>
<raturns>Komentarz dotyczacy wartosci zwracane] przez funkcje</retumss
</member>
— <memher name="M:Example.CExample.Main(System.String[1)">
=summary>Glowna funkcja aplikacji.</summary>
=/member>
</members>
=/doez

Rysunek C.1: Dokumentacja XML w przegladarce Internetowej

3 C:\Example\ekample sinl - Microsoft Internet Explarer

C:AEwampledetample. sl

Wykorzystanie XSL do formatowania XML

Nazwa modulu: example

Members

MMember
'T:Examnple CExzample

‘Summary

[Klasa zawierajaca kod startowy aplikaci

M Example. CEzample f{System. Int32, System Int32); Tutaj méglby malefd sie opis funkeji £ Opis ten moze byt dowolnie dhugi.

M Example CExample Main(System String[] (Gtéwna Funlecja aphcacs:

Rysunek C.2: Zastosowanie prostego arkusza styléw XSL, przedstawionego w tekscie, do sfor-
matowania dokumentacji XML

2. PODSTAWOWE ELEMENTY JEZYKA C# 129

<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xs1">
<xsl:template match="/">
<html><body>
<h1>Wykorzystanie XSL do formatowania XML</h1>
<hr/>
<h3>
Nazwa modutu: <xsl:value-of select="doc/assembly/name"/>
</h3>
<table border="1">
<thead><h3>Members</h3></thead>
<tbody>
<tr>
<td>Member</td>
<td>Summary</td>
</tr>
<xsl:for-each select="doc/members/member">
<tr>
<td><xsl:value-of select="@name"/></td>
<td><xsl:value-of select="summary/text()"/></td>
</tr>
</xsl:for-each>
</tbody>
</table>
</body></html>
</xsl:template>
</xsl:stylesheet>

i w pliku z dokumentacja XML dodajmy informacje o arkuszu styléw:

<7xml-stylesheet href="example.xsl" type="text/xsl"?>
<?xml version="1.0"7>

<doc>
<assembly>
<name>example</name>
</assembly>
<members>
<member name="T:Example.CExample">
<summary>
Klasa zawierajgca kod startowy aplikacji.
</summary>
</member>
<member name="M:Example.CExample.f (System.Int32,System.Int32)">
<summary>
Tutaj mégiby znalezé sie¢ opis funkcji f.
Opis ten moze by¢ dowolnie dtugi.
</summary>
<param name="n">Komentarz dotyczacy zmiennej n</param>
<param name="m">Komentarz dotyczacy zmiennej m</param>
<returns>Komentarz dotyczacy wartosci zwracanej przez funkcje</returns>
</member>
<member name="M:Example.CExample.Main(System.String[]1)">
<summary>
Gidéwna funkcja aplikacji.
</summary>
</member>
</members>
</doc>

2.19 Dekompilacja kodu
Rozwazmy przyktad prostego kodu:

/* Wiktor Zychla, 2003 */
using System;

namespace NExample

{

130

le - Microsoft Intemet Explorer

P itk Usbiore lussdia Pemos

ROZDZIAE C. SWIAT .NET

Adi Ci\Exampletexample.sml

A s B A | 8 &= @ 2 LI
sty Dl Zalizymaj Ocddwies Stat | Wszuksj Ulibions Mulimedia Historia | Poceta Edivy Dyskusia

Example.CExample
Elasa zawisrajaca kod startowy aplikacii

f(System.Int32,System.Int32) method
Tutaj mégiby znaleff sie opis fankeii £ Opis ten moze byé dowolnie dhugt
Parameters
”
Komentarz dotyczacy zmiennej n
N Eomentarz dotyczacy zmiente] m

Returns

Komentarz dotyczacy wartodci rwracane przez funkcje

Main(System.String[]) method

Gigwna funkecja aplikacyi

=l o Fraeis Itaﬂ@a

] Biolowe

[T [Wb

Rysunek C.3: Zastosowanie innego arkusza styléow XSL, programista ma tutaj catkowita dowol-

nosé

class CExample

{
public int i;
public string s;

public int Oblicz(int n)
{
int k = 0;
for (int 1=0; 1<n; 1++)
k+=1;

return k;

}
public CExample()
{
i=0;
s = String.Empty;
}
}
class CMain
{
public static void Main()
{

CExample e = new CExample();
Console.WriteLine(e.0blicz(7).ToString());
}
}
}

2. PODSTAWOWE ELEMENTY JEZYKA C# 131

Dekompilacja do jezyka IL

NET Framework SDK zawiera m.in. dekompilator kodu, dzieki ktéremu mozna obejrzeé¢ kod
IL-owy dowolnego modutu .NETowego'?. Dekompilator uruchamia sie poleceniem ildasm. eze.
Dekompilator pozwala obejrze¢ kod dowolnego obiektu w dowolnej klasie projektu. Oznacza
to, ze moze byé nawet wykorzystany do podgladania kodu bibliotek .NET!
Wykorzystajmy wiec Ildasm do zdekompilowania metody Main z powyzszego przyktadu:

.method public hidebysig static void Main() cil managed

{
.entrypoint
// Code size 27 (0x1b)
.maxstack 2
.locals init (class NExample.CExample V_O,
int32 V_1)
IL_0000: newobj instance void NExample.CExample::.ctor()
IL_0005: stloc.0
IL_0006: 1ldloc.0
IL_0007: 1dc.i4.7
IL_0008: callvirt instance int32 NExample.CExample::0Oblicz(int32)
IL_000d: stloc.1
IL_000e: 1ldloca.s v_1
IL_0010: call instance string [mscorlib]lSystem.Int32::ToString()
IL_0015: call void [mscorlib]System.Console: :WriteLine(string)
IL_0Ola: ret

} // end of method CMain::Main

oraz do zdekompilowania metody CFEzample.Oblicz:

.method public hidebysig instance int32 O0Oblicz(int32 n) cil managed

{

// Code size 24 (0x18)

.maxstack 2

.locals init (int32 V_O,
int32 V_1,
int32 V_2)

IL_0000: 1dc.i4.0

IL_0001: stloc.0O

IL_0002: 1dc.i4.0

IL_0003: stloc.1

IL_0004: br.s IL_000e

IL_0006: 1dloc.O

IL_0007: 1ldloc.1

IL_0008: add

IL_0009: stloc.0

IL_000a: 1dloc.1

IL_000b: 1ldc.i4.1

IL_000c: add

IL_000d: stloc.1

IL_00Oe: 1ldloc.1

IL_000f: 1ldarg.1

IL_0010: Dblt.s IL_0006

IL_0012: 1dloc.0O

IL_0013: stloc.2

IL_0014: br.s IL_0016

IL_0016: 1ldloc.2

IL_0017: ret

} // end of method CExample::0blicz

Struktura kodu poéredniego jest bardzo prosta, kompilator C# nie stosuje praktycznie zad-
nych optymalizacji. To reguta w $wiecie .NET - kompilator JIT podczas kompilacji kodu po-
$redniego do kodu natywnego i tak dokonuje swoich optymalizacji, dlatego kompilatory jezykdw
nie muszg tego robié¢ na poziomie kompilacji kodu jezyka do kodu posredniego.

Jezyk IL bedzie doktadniej omoéwiony w rozdziale 8.2

2Dekompilator IL jest czeécia NET Framework SDK, kompilator IL jest czescig samego .NET Frameworka.

132

ROZDZIAL C. SWIAT .NET

® anakrino -
File Dislect Booinele Help
=) e
Refiection | Secondary | Becompied | sl Grat |
4 Syetem. Buntime, 5enallzat\on.Formattals.Soaﬂ' ;i

@ Svstem.Secuity

95 System ServiceProcess

P System.Web

@ System \Web. RegularE xpressions
@ System\Web Services

@ Spstem Windows. Forms +
P Systern il

public static wvoid Main() {

CExample locald;
imt localil;

locald new CExample();
Jocall TocalQ.0blicz(F
Console.WriteLine{locall

13
Tostring());

Rysunek C.4: Dekompilacja kodu IL do C# w Anakrino

Dekompilacja do C#

Czy mozna wyobrazi¢ sobie narzedzie, ktére pozwalatoby odtwarza¢ kod C# z binarium zawie-

rajacego kod posredni?

Okazuje sie, ze tak. Najpopularniejszym w tej chwili dekompilatorem kodu C# jest Ana-
krino. Zdekompilowany kod zawiera poprawne nazwy klas, metod i parametréw, niepoprawnie
natomiast odtwarzane sg na przyktad nazwy zmiennych lokalnych metod. Dzieje sie tak, ponie-
waz nazwy zmiennych lokalnych nie sa przechowywane w kodzie posrednim.

Zdekompilowana przez Anakrino kod metody Main:

public static void Main() {
CExample localO;
int locall;

local0 = new CExample();
locall = local0.0blicz(7);
Console.WriteLine(locall.ToString());

oraz kod metody CEzample.Oblicz:

public int Oblicz(int n) {
int localO;
int locall;
int local2;

localO = 0;

locall = 0;

while (locall < n) {
localO0 += localil;
locall++;

}

local2 = localO;

return local2;

2. PODSTAWOWE ELEMENTY JEZYKA C# 133

Jezyk Zrodlowy Jezyk docelowy Dekompilator
Dowolny jezyk IL Ildasm

C# C# Anakrino

Dowolny inny jezyk C# Anakrino (czasami)
Dowolny jezyk Inny niz IL lub C# 7

Tabela C.2: Schemat dekompilacji migdzy réznymi jezykami platformy NET

Okazuje sie, ze struktura kodu posredniego dla for i while jest identyczna, dlatego dekompi-
lator odtwarza kod kazdej petli jako while.

Zabezpieczanie sie przed dekompilacja

Mozliwos¢ dekompilacji dowolnego kodu do postaci MSILa, a w niektérych wypadkach nawet do
postaci kodu C+# oznacza, ze kazdy moze analizowa¢ kod napisany przez innych programistéw. W
pierwszej chwili moze sie wiec wydawac ze jest to powazna luka, dzieki ktérej osoby niepowotane
moglyby wej$¢ w posiadanie jakichs poufnych informacji.

Chwila zastanowienia wystarczy jednak by doj$¢ do wniosku, ze przeciez mozliwos¢ dekom-
pilacji dowolnego kodu do postaci kodu assemblerowego istniala zawsze. Dowolny modut zawie-
rajacy kod maszynowy mogl byé analizowany za pomoca debuggeréw lub dekompilatoréw. To
co do tej pory bylo wrecz niemozliwe, to dekompilacja kodu maszynowego do jezykéw wysokiego
poziomu. Kod maszynowy programu kompilowanego kompilatorem Visual Basica nie mogt by¢
w zaden sensowny spos6b zdekompilowany z powrotem do postaci kodu VB.

Aby zminimalizowaé ryzyko zwiazane z analiza zdekompilowanego kodu przez osoby trzecie,
nalezy zastosowaé narzedzia do zaciemniania kodu (ang obfuscators).

2.20 Poréwnanie C# z innymi jezykami

C#, Java oraz C++ maja wspélne korzenie, stad C# ma z Java i C++ zdecydowanie wiecej
elementéw wspoélnych niz z innymi jezykami.

C# wsréd wspotezesnych jezykéw obiektowych zajmuje miejsce szczegélne. Laczy bowiem
w sobie bardzo wysoka wydajnosé (co stawia go obok C++), z niezwykle eleganckim modelem
obiektowym (co stawia go obok SmallTalka).

C# a C++

C++ byto proba zbudowania jezyka obiektowego na bazie sktadni jezyka C. C+# jest jezykiem od

poczatku do konca zaprojektowanym jako jezyk obiektowy. Podobienstwo sktadni jest zabiegiem

celowym, wprowadzonym po to aby utatwié¢ programistom przejécie ze §wiata C i C++ do C#13.
Kilka wazniejszych réznic miedzy C# a C++:

e W C# z punktu widzenia programisty wszystko jest obiektem.

e System typow C# jest o wiele silniejszy niz w C++. Typy $ledzone sg dynamicznie, to
znaczy ze nawet w czasie wykonania programu nie ma mozliwosci konwersji pomiedzy
wartosciami niezgodnych typow.

e W C# nie ma plikéw nagtéwkowych, ponadto kolejnosé klas w projekcie nie ma znaczenia.

13Jest to naprawde duza zaleta. C# jako zupelnie nowy jezyk moégl mieé przeciez zupelnie nowsa sktadnie i
sposéb pisania kodu (na przyktad z géry na dét i z prawa na lewo).

134

ROZDZIAE C. SWIAT .NET

W C# testowanie warunkéw wymaga wyrazen typu bool. W C++ mozna zamiennie wy-
korzystywaé¢ w takich przypadkach wyrazenia typu int, na przyktad if (1).

W C# nie ma jawnej destrukcji obiektéw. Niszczeniem nieuzywanej pamieci zajmuje sie
odsmiecacz.

W C+# nie ma szablonéw. Jednorodny model obiektowy pozwala pisa¢ kod elegantszy niz
przy pomocy szablonéw w C++.

Przekazywanie bledéw w C# odbywa sie za pomoca wyjatkéw. Ta reguta stosowana jest
konsekwentnie.

Model obiektowy C# dopuszcza tylko pojedyncze dziedziczenie z mozliwoscig implemen-
towania wielu interfejséw.

C# a Java

Na temat podobienstw i réznic miedzy C# a Java toczy sie wiele dyskusji. Z pewnoscig C#
nie zajmie miejsca Javy, bowiem zakresy stosowalnosci C# i Javy nieco si¢ rozmijaja: Java
byta, jest i bedzie nadal najlepszym wyborem jesli chodzi o aplikacje przenosne. Z drugiej stro-
ny, C# pozwala na rozwiazanie tych samych probleméw co Java, tyle ze przy uzyciu znacznie
wydajniejszego srodowiska i przy uzyciu prostszych technik.

Kilka wazniejszych réznic miedzy C# a Java:

Typy proste w Javie tworza osobny Swiat. Aby traktowaé typy proste i typy referencyjne w
sposob jednorodny nalezy umieszczaé obiekty typow prostych w obiektach referencyjnych,
za pomoca tzw. klas wrapperéw. Typy proste w C# sa z punktu widzenia modelu obiek-
towego takie same jak typy referencyjne. Obiekt typu prostego jest obiektem - ma pola,
metody i inne wladciwosci. W C# wyrazenia 5.ToString() czy (5-x) .ToString() sa jak
najbardziej poprawne. W C# programista moze definiowaé¢ wlasne typy proste, zastepujac
stowo class stowem struct.

W C# istnieje mozliwos¢ przekazania parametréw przez referencje za pomoca ref i out. W
Javie parametry sg zawsze przekazywane przez wartosc.

Iterfejsy w Javie moga zawieraé¢ sktadowe, w C# nie. Jednak w C# istnieje mozliwosé
implementowania interfejséw, ktérych funkcje sktadowe maja te same nazwy.

Java nie wykrywa przepetnien podczas obliczen matematycznych. W C# mozna wymusié¢
wykrywanie przepelnien za pomoca bloku osygnowanego jako checked.

W C+# wolno pisa¢ kod korzystajacy ze wskaznikow.

Mechanizm delegatéw, dostepny w C#, jest bardzo elegancki i pozwala nie tylko zapanowaé
nad wskaznikami do funkcji, ale takze rozwiazuje problem zdarzen prosciej niz w Javie.

Jak pisze w Thinking in C# Bruce Eckel, jeden z dtugoletnich propagatoréw Javy:

Java has succeeded in two key areas: as the dominant language for writing server-side
applications and as the top language for teaching computer science in colleges. The
.NET Framework is better for both these areas, although it is not inevitable that it

3. PRZEGLAD BIBLIOTEK PLATFORMY .NET 135

will become dominant in either. For writing client applications, there is no question
that C# clearly outstrips Java.!4

3 Przeglad bibliotek platformy .NET

Biblioteki systemowe platformy .NET zawieraja, wiele waznych funkcji zgromadzonych w réz-
nych przestrzeniach nazw. Za ich pomocg programista moze oprogramowaé system plikéw, me-
chanizmy tworzenia watkow i proceséw, komunikacje z siecig i bazami danych, mechanizmy
kryptograficzne, obstuge XML itd.

Programista powinien odréznia¢ funkcje udostepniane przez biblioteki platformy .NET od
bezposrednich mechanizméw jezyka C#.

Jest to wazne dla programistéw korzystajacych z platformy .NET, bowiem funkcje z biblio-
tek .NET sa dostepne w kazdym jezyku programowania, kompilowanym na platformie .NET.
Oznacza to na przyktad, ze z funkcji do obstugi plikéw zgromadzonych w System.IO korzysta
sie tak samo w C#, VB.NET, SML.NET, IL i kazdym innym jezyku platformy .NET.

Jest to jednak réownie wazne dla programistéw przygotowujacych kompilatory wtasnych je-
zykow na platformie .NET, bowiem nie musza oni przygotowywaé¢ wtasnych bibliotek typowych
funkcji, a zamiast tego moga w swoim jezyku udostepni¢ mechanizmy wotania gotowych funkcji
z bibliotek .NET.

3.1 Kolekcje wbudowane i System.Collections

Przygotowujac swoja aplikacje do okre$lonych zadan, programista musi zmierzy¢ sie¢ z dwoma
czynnikami ksztaltujacymi jej obraz: algorytmami i strukturami danych. O ile konkretne algo-
rytmy sa zwykle zalezne od postaci problemu, ktéry aplikacja ma rozwiazywac, o tyle te same
struktury danych spotyka sie niemal co chwila.

Pewng bardzo specjalng grupe struktur danych stanowig byty, ktére bardzo ogélnie moznaby
nazwaé¢ kontenerami. Zadaniem konteneréw jest grupowanie w wieksze struktury obiektow,
ktore z jakich$ powodéw powinny by¢ trzymane razem. Rézne jezyki programowania wspomagaja
programistow w tym zakresie w rozny sposob: w C tablice sa czeScia jezyka, wszystkie inne
struktury danych programista musi przygotowaé¢ sam; w C++ mozliwoséci C rozszerzono przez
dodanie biblioteki szablonéw STL, w ktérej programista moze znalezé wiekszos¢é potrzebnych
rodzajow konteneréw oraz algorytmy do operowania na nich.

Programista tworzac aplikacje w C# ma do dyspozycji solidna biblioteke konteneréw (zwa-
nych tu kolekcjami), zgromadzone w przestrzeni nazw System.Collections.

Tablice

Tablice sa najprostszymi kontenerami. W C+#, podobnie jak w wielu innych jezykach, programi-
sta po okresleniu rozmiaru tablicy nie ma wprost mozliwosci zmiany jej rozmiaru. Z tego powodu
tablice przydaja sie najczesciej tam, gdzie ilo$é¢ elementéw jest z géry znana.

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class CExample

Y Java sprawdzila sie na dwéch kluczowych frontach: jako jezyk do oprogramowywania aplikacji po stronie ser-
wera oraz jako jezyk do nauczania informatyki na studiach. .NET Framework jest lepszy i tu i tam, jednak nie
koniecznie zdominuje Jave w ktorymkolwiek zakresie. Z pewnosciq jednak jesli chodzi o aplikacje klienckie, C#
zostawia Jave daleko w tyle.

136 ROZDZIAL C. SWIAT .NET

{
public static void Main(string[] args)
{

Console.Write("Podaj ilosc elementow tablicy: ");

int n = int.Parse(Console.ReadLine());
int[] tab = new int[n];

for (int i=0; i<n; i++)
tab[i] = 2%i+1;

for (int i=0; i<n; i++)
Console.WriteLine("{0} element tablicy -> {1}", i, tab[i]);
}
}
}

C:\Example>example.exe

Podaj ilosc elementow tablicy: 7
element tablicy ->
element tablicy ->
element tablicy ->
element tablicy ->
element tablicy ->
element tablicy ->
element tablicy -> 13

o WN P O
= O N O W

Tablice moga by¢ inicjowane w momencie deklaracji, na przyktad:

int[] tab = {1, 2, 3, 4, 5, 6};

lub réwnowaznie

int[] tab = new int[]{1, 2, 3, 4, 5, 6};

Inaczej niz w przypadku prostych imperatywnych jezykéw programowania, tablice w C# sa
w kazdej chwili swojego istnienia Swiadome swoich atrybutow. Oznacza, to ze programista moze
na przyktad w kazdej chwili dowiedzie¢ sie jaki jest rozmiar tablicy:

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class CExample
{
public static void Main(string[] args)

{
int[] tab = new int[]{1, 2, 3, 4, 5, 6};

Console.WriteLine(tab.Length.ToString());
}
}
}

C:\Example>example.exe
6

Tablice referencji

O ile w przypadku tablic, przechowujacych obiekty o typach prostych, dostep do elementow
tablicy mozliwy jest natychmiast po przydzieleniu pamieci dla tablicy, o tyle w przypadku typéw
referencyjnych programista moze byé w pierwszej chwili zaskoczony:

3. PRZEGLAD BIBLIOTEK PLATFORMY .NET 137

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class CObiekt
{
public int dana;
public CObiekt() {}
}

public class CExample
{
public static void Main(string[] args)
{
const int IL = 5;
CObiekt[] tab = new CObiekt[IL];

tab[0] .dana 1;

}
}
}

C:\Example>example

Unhandled Exception: System.NullReferenceException: Object reference not set to
an instance of an object.
at Example.CExample.Main(String[] args)

Dlaczego préba odwotania do elementu, zainicjowanej przeciez tablicy, koniczy sie niepowo-
dzeniem? Otoz dzieje sie tak dlatego, ze w przypadku tablic przechowujacych obiekty typéw
referencyjnych, zainicjowanie tablicy:

const int IL
CObiekt[] tab

5;
new CObiekt[IL];

spowoduje utworzenie kontenera zawierajacego 5 niezainicjowanych referencji. Aby odwoty-
wac sie do elementéw tablicy, nalezy wiec oprocz zainicjowania samej tablicy, zainicjowac jej
elementy:

const int IL = 5;
CObiekt[] tab = new CObiekt[IL];

for (int i=0; i<IL; i++)
tab[i] = new CObiekt();

Tablice wielowymiarowe

Tablice wielowymiarowe deklaruje sie w C# réwnie latwo jak jednowymiarowe, zas ich obshuga
rowniez nie nastrecza zadnych trudnosci. W kazdej chwili programista moze dowiedzie¢ si¢ jakie
sa wymiary takiej tablicy:

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class CExample
{
public static void Main(string[] args)

{
int[,,,] tab = new int[3,5,2,6];

138 ROZDZIAL C. SWIAT .NET

tab[0, 2, 1, 4] = 3;

Console.WriteLine("Tablica {O}-wymiarowa.", tab.Rank);
for (int i=0; i<tab.Rank; i++)
Console.WriteLine("Dlugosc w {0}-tym wymiarze : {1}",
i, tab.GetLength(i));
}
}
}

C:\Example>example
Tablica 4-wymiarowa.
Dlugosc w O-tym wymiarze :
Dlugosc w 1-tym wymiarze :
Dlugosc w 2-tym wymiarze :
Dlugosc w 3-tym wymiarze :

oON O W

Pewnym wariantem tablic wielowymiarowych sa tzw. tablice postrzepione (ang. jagged ar-
Tays).

/* Wiktor Zychla, 2003 */
using System;

namespace Example
{
public class CExample
{
public static void Main(string[] args)
{
int[1[] tab = new int[4]1[];

tab[0]
tab[1]
tab[2]
tab[3]

new int[6];
new int[2];
new int[3];
new int[5];

tab[2]1[2] = 5;

Aby zrozumieé¢ réznice miedzy zwyklymi tablicami wielowymiarowymi, a tablicami postrze-
pionymi, wyobrazmy sobie 2-wymiarowa tablice zadeklarowana w nastepujacy sposéb:

int[,] tab
tab[1,1]

new int[3,3];
5;

oraz jej postrzepionego kuzyna

int[][] tab = new int[10][];

tab[0] = new int[3];
tab[1] = new int[2];
tab[2] = new int[1];
tab[1] [1] = 5;

Tablica dwuwymiarowa ma dokladnie 9 elementéw utozonych w prostokatna macierz 3 na
3 elementy. W przeciwienstwie do niej, tablica postrzepiona przechowuje referencje do trzech
tablic, z ktérych pierwsza ma 3 elementy, druga 2, a trzecia tylko 1.

Zarowno w jednym jak i w drugim przypadku z punktu widzenia uzytkownika sa to tablice
dwuwymiarowe, jednak tablica postrzepiona moze optymalniej wykorzystywaé zasoby pamie-
ci, definujac w razie potrzeby krétsze lub dtuzsze ”podtablice”. Mozna wiec powiedzieé, ze n-
wymiarowa tablica jest po prostu macierza n-wymiarowa, zas n-wymiarowa tablica postrzepiona
to w istocie n niezaleznych tablic o wymiarze n — 1, z ktérych kazda moze mieé¢ inne rozmiary.

3. PRZEGLAD BIBLIOTEK PLATFORMY .NET 139

ArrayList

Zwykte tablice zdecydowanie nie rozwigzuja problemu konteneréw, bowiem tablice maja bardzo
powazng wade. Otéz ilosé elementéw tablicy musi byé znana w momencie inicjowania tablicy.
Gdyby w trakcie dzialania programu ilos¢ danych ulegla zmianie, programista stanatby przed
zadaniem mozolnego przekopiowania tablicy do innej, najprawdopodobniej wiekszej tablicy.

Aby pokonaé te niedogodnos¢ nalezy skorzystaé z kolekcji, z ktérych najprostsza jest Array-
List. W przeciwienstwie do na przykiad kolekcji z STL w C++, ArrayList i pozostate kolekcje
.NET korzystaja z jednorodnego interfejsu, traktujacego wszystko to co wrzucono do kontenera
jako object.

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;

namespace Example

{
public class CExample
{
static void InfoOKolekcji(ArrayList a)
{
Console.WriteLine("Kolekcja ma {0} elementow: ", a.Count);
foreach (object o in a)
Console.WriteLine("{0} : {1}", o.GetType(), o);
}
public static void Main(string[] args)
{
ArrayList a = new ArrayList();
a.Add(5);
a.Add(7);
a.Add(9);
a.Add(true);
a.Add("ala ma kota");
InfoOKolekcji(a);
}
}
}

C:\Example>example.exe
Kolekcja ma 5 elementow:
System.Int32 : 5
System.Int32 : 7
System.Int32 : 9
System.Boolean : True
System.String : ala ma kota

Oczywidcie sytuacja, w ktorej w jednym kontenerze znajduja sie obiekty roznych typow jest
dos¢ rzadka. Najczesciej programista uzywa kontenera jak zwyklej tablicy, o ktérej rozmiary nie
chce sie¢ martwi¢. Wtedy iteracja przez kolejne elementy moze wrecz wymuszaé typ elementu

foreach (int i in a)

co oczywiscie spowoduje wyrzucenie wyjatku, jesli przypadkiem ktorys element kontenera nie
jest takiego typu jakiego spodziewa sie programista. W przypadku watpliwosci zawsze mozna
rzutowaé dynamicznie

foreach (object o in a)
if (o is int)

140 ROZDZIAE C. SWIAT .NET

Kolekcje silnie otypowane

Programiéci, ktérzy przychodzacy ze $wiata C++, gdzie korzystali z konteneréw z biblioteki STL,
niejednokrotnie zgtaszaja pod adresem konteneréw C#-owych jedno zastrzezenie. ”Ot6z” - jak
mawiaja - "mozliwo§¢ umieszczania w kontenerze obiektéw dowolnego typu, oznacza podatnosé
takich konteneréw na przypadkowe bledy”.

Rzeczywiscie, jesli z jakichs powodéw programista spodziewa sie w kontenerze obiektéw typu
int, z zwiazku z czym napisze gdzies w kodzie

foreach (int i in a)

to moze skonczy¢ sie to wyrzuceniem wyjatku, w przypadku omyltkowego umieszczenia w
kontenerze obiektu innego typu. By¢é moze nawet obiekt taki umieszczany jest w kontenerze
statycznie:

a.Add("Ala ma kota");

a kompilator mimo to nie zgtasza zadych zastrzezen.

Drzieje sie tak dlatego, ze jak juz powiedziano, kolekcje przechowuja referencje do obiektow
promujac je wczesniej do typu object i dopiero na wyrazne zyczenie programista moze dowiedzie¢
sie jaki jest prawdziwy typ obiektu przechowywanego w kontenerze. Kiedy programista korzysta
z C++ kontenera vector<T>, kompilator jest w stanie statycznie wychwycié tego rodzaju biad.

Céz, z perspektywy programisty kolekcje STL maja zdecydowanie powazniejsze wady (wy-
nikajace z tego, ze zdefiniowane sa w postaci szablonéw), ktérych nie mozna w zaden sposéb
obejsé. Okazuje sie za to, ze w C# przez utworzenie wlasnej klasy dziedziczacej z Collection-
Base mozna zdefiniowaé kontenery otypowane statycznie.

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;

public class IntArrayList : System.Collections.CollectionBase
{
public virtual void Add(int i)
{
InnerList.Add(i);
}
public int this[int index]
{
get { return (int)InnerList[index]; }
}
}

namespace Example
{
public class CExample
{
public static void Main(string[] args)
{
IntArrayList a = new IntArrayList();
a.Add(4);
a.Add(7);
a.Add(11);
a.Add("Ala ma kota");

Console.WriteLine(a[2]);

3. PRZEGLAD BIBLIOTEK PLATFORMY .NET 141

}

C:\Example>csc.exe example.cs

Microsoft (R) Visual C# .NET Compiler version 7.00.9466

for Microsoft (R) .NET Framework version 1.0.3705

Copyright (C) Microsoft Corporation 2001. All rights reserved.

example.cs(27,7): error CS1502: The best overloaded method match for
>IntArrayList.Add(int)’ has some invalid arguments

example.cs(27,14): error CS1503: Argument ’1’: cannot convert from ’string’ to
’int’

Stos, kolejka

Whbudowane w System. Collections kontenery Stack i Queue zachowuja sie doktadnie tak, jak
nalezaloby tego oczekiwaé. Oprocz ”zwyktych” operacji wstawiania i zdejmowania elementow,
zaréwno kolejka jak i stos umozliwiajg ”podejrzenie” aktualnie dostepnej wartosci.

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;

namespace Example
{
public class CExample
{
public static void Main(string[] args)

{
Stack s = new Stack();

s.Push(4);

s.Push("Ala ma kota");
s.Push(3);

s.Pop(Q);

Console.WriteLine(s.Peek());

Queue q = new Queue();
q.Enqueue(4);

q.Enqueue(5);
Console.WriteLine(q.Peek());

q.Dequeue () ;
Console.WriteLine(q.Peek());

Hashtable

Hashtable jest kolekcjqg asocjacyjng, to znaczy ze pamieta pary w postaci klucz — wartosé.
Dzieki wewnetrznej strukturze, czas dostepu do wartosci skojarzonej z kluczem jest bardzo szybki
i nie zalezy od ilosci elementéw w kolekcji.
Hashtable wykorzystuje sie na przyklad do pamietania odwzorowan czesciowych (par z —
f(x)) lub fragmentéw tabel bazodanowych (par ID — rekord z tabelr).
W przeciwienistwie do innych konteneréw, element Hashtable’a jest wiec para typu DictionaryEntry.
Programista musi o tym pamietaé¢ podczas przegladania kolekcji.

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;

namespace Example

{

142 ROZDZIAE C. SWIAT .NET

public class CExample
{
public static void Main(string[] args)
{
Hashtable h = new Hashtable();
h.Add(5, "Ala ma kota");
h.Add(3, "Kot ma Ale");
h.Add(18, "Ktos ma cos");

foreach (DictionaryEntry de in h)
Console.WriteLine("Para {0} - {1}", de.Key, de.Value);
}
}
}

C:\Example>example.exe
Para 18 - Ktos ma cos
Para 5 - Ala ma kota
Para 3 - Kot ma Ale

Innym sposobem przegladania Hashtable’a jest przegladanie kolekcji kluczy oraz kolekcji
wartosci niezaleznie.

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;

namespace Example
{
public class CExample
{
public static void Main(string[] args)
{
Hashtable h = new Hashtable();
h.Add(5, "Ala ma kota");
h.Add(3, "Kot ma Ale");
h.Add(18, "Ktos ma cos");

// przegladaj wartosci
foreach (string s in h.Values)
Console.WriteLine("Wartosc {0}", s);

// przegladaj klucze, skojrz wartosci
foreach (int key in h.Keys)
Console.WriteLine("Para {0} - {1}", key, hlkey]);
}
}
}

C:\Example>example.exe
Wartosc Ktos ma cos
Wartosc Ala ma kota
Wartosc Kot ma Ale
Para 18 - Ktos ma cos
Para 5 - Ala ma kota
Para 3 - Kot ma Ale

Pewnym zaskoczeniem moze byé fakt, ze elementy Hashtable’a sa ujawniane kolejnoéci inney,
niz byly umieszczane w kolekcji. Wyjadnieniem tego zjawiska i sposobami radzenia sobie z nim
zajmiemy sie na stronie 151.

Wtasne kolekcje i interfejs IEnumerable

Istnienie wbudowanych konteneréw nie oznacza, ze kazdy kolejny tworzony kontener musi dzie-
dziczy¢ z ktéregos juz zdefiniowanego. Inwencja programistéw jest w koncu nieograniczona i

3. PRZEGLAD BIBLIOTEK PLATFORMY .NET 143

wewnetrzna reprezentacja jakiego$ kontenera zdefiniowanego przez uzytkownika moze by¢ moc-
no odlegla od typowej.

To czego potrzeba, aby kontener spelnial swoje zadanie, to umozliwienie klientowi korzysta-
jacemu z niego jakiegos ogbélnego mechanizmu przegladania elementéw, tak aby klient nie musiat
by¢ $wiadomy wewnetrznej reprezentacji danych w kontenerze.

Taka mozliwos¢ daje para interfejséw IEnumerable oraz IEnumerator.

IEnumerator ma 3 elementy:

bool MoveNext() Metoda MoveNext shuzy klientowi do poinformowania interfejsu o tym,
ze klient chce obejrze¢ kolejny element kontenera. Metoda ta powinna zwrdéci¢ wartosc true
jesli po obejrzeniu kolejnego elementu klient moze kontytuowaé przegladanie oraz false w
przeciwnym przypadku

object Current Propercja Current powinna ujawniaé¢ biezacy element kontenera.

void Reset() Metoda Reset powinna umozliwi¢ klientowi przywrécenie stanu wyjsciowego
przegladania elementéw, czyli najczeSciej ustawienie biezacego elementu jako pierwszego
elementu kontenera.

IEnumerable ma tylko 1 element:

IEnumerator GetEnumerator() Metoda GetEnumerator stuzy do pobrania instancji obiek-
tu pozwalajacego przeglada¢ zawartosé kolekcji.

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;

namespace Example
{
public class MyCol : IEnumerable
{
public class MyColEnumerator : IEnumerator
{
int index;
MyCol myCol = null;

public bool MoveNext()
{
index++;
if (index >= IL)
return false;
else
return true;

}
public object Current
{
get { return myCol.t([index]; }
}
public void Reset()
{
index = -1;
}
public MyColEnumerator(MyCol myCol)
{
this.myCol = myCol;
Reset();
}

144 ROZDZIAE C. SWIAT .NET

const int IL = 3;
int[] t = new int[IL];

public IEnumerator GetEnumerator()

{
return new MyColEnumerator(this);
}
public MyCol()
{
for (int i=0; i<IL; i++) t[i] = 2xi;
}

public class CExample
{
public static void Main(string[] args)

{
MyCol myCol = new MyCol();

IEnumerator ie = myCol.GetEnumerator();
while (ie.MoveNext())
Console.WriteLine(ie.Current.ToString());
}
}
}

C:\Example>example.exe
0
2
4

Zaimplementowanie interfejsu IEnumerable umozliwia takze klientom kontenera na prze-
gladanie go za pomoca foreach. Foreach jest cukierkiem syntaktycznym'®, ktéry w trakcie
kompilacji jest ttumaczony do postaci takiej, jak w powyzszym przyktadzie.

MyCol myCol = new MyCol();

foreach (int i in myCol)
Console.WriteLine(i.ToString());

Sortowanie kolekcji

Framework pozwala rozwiazaé¢ problem sortowania w dos¢ elegancki sposéb. W przypadku ty-
péw prostych kryteria sortowania sa juz ustalone, za$ programista musi jedynie skorzystaé z
odpowiednich sposobéw ich uzycia. W przypadku wlasnych typéw programista moze okreslié¢
rozne porzadki sortowania przez uzycie ktérego$ z interfejséow: IComparer lub IComparable.
Zacznijmy od najprostrzego przykiadu: sortowania tablic i kolekcji zawierajacych obiek-
ty typow prostych. Aby osiggnaé¢ zamierzony cel, wystarczy skorzystaé ze statycznej funkcji
Array.Sort w celu posortowania tablicy lub metody Sort kolekcji typu ArrayList.

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;

15 Curkierek syntaktyczny to sympatyczne ttumaczenie angielskiego terminu syntactic sugar. Termin ten oznacza
taki element skladni jezyka, ktory z jednej strony nie wnosi niczego nowego do mozliwosci samego jezyka, z drugiej
za$ strony upraszcza kod, badz czyni go przejrzystszym. Typowym przykladem cukierka syntaktycznego jest petla
for w rodzinie jezykéw C-podobnych. Jezyk nie stracilby nic, gdyby wyeliminowaé z niego konstrukcje for (53),
bowiem to samo mozna zawsze wyrazi¢ przy pomocy while. Petla for jest jednak czytelniejsza.

3. PRZEGLAD BIBLIOTEK PLATFORMY .NET 145

namespace Example
{
public class CExample
{
static void Wypisz(IEnumerable ie)
{
Console.Write("{0}: [", ie.GetType());
foreach (int i in ie)
Console.Write("{0},", i);
Console.WriteLine("1");

}

public static void Main(string[] args)

{
const int IL = 10;
Random r = new Random();

int[] tab new int[IL];
ArrayList atab = new ArrayList();

for (int i=0; i<IL; i++)
{
tab[i]l = r.Next()%100;
atab.Add (r.Next()%100);
}

Wypisz(tab);
Array.Sort(tab);
Wypisz(tab);

Wypisz(atab);
atab.Sort();
Wypisz(atab);
}
}
}

C:\Example>example.exe

System.Int32[]: [94,43,42,78,52,50,88,47,73,48,]
System.Int32[]: [42,43,47,48,50,52,73,78,88,94,]
System.Collections.ArrayList: [29,92,23,60,77,15,99,7,46,15,]
System.Collections.ArrayList: [7,15,15,23,29,46,60,77,92,99,]

Przy okazji tego przyktadu zauwazmy, ze zaréwno tablice jak i kolekcje implementuja inter-
fejs IEnumerable, zwracajacy domyslny enumerator do przegladania elementéw w kontenerze.
Skorzystaliémy z tego sprytnie przekazujac do funkcji Wypisz obiekt typu IEnumerable, dzieki
czemu jedna i ta sama funkcja stuzy do przegladania elementéw tablicy i kolekcji.

Powyzszy przyktad oczywiScie nie rozwiazuje problemu, bowiem w przypadku typow uzyt-
kownika funkcje sortujace nie mialtyby zadnych podstaw do okreslenia porzadku sortowania.

W najprostrzym scenariuszu programista we wlasnej klasie implementuje interfejs ICompa-
rable, dzieki ktéremu instancja obiektu wie jak poréwnaé sie z inng instancja obiektu.

Zalézmy, ze w klasie COsoba mamy pola przechowujace imi¢ i nazwisko i chcemy skonstru-
owac porzadek, ktory w pierwszej kolejnosci porownywalby nazwisko, zas w przypadku rownych
nazwisk poréwnywalby imiona.

/* Wiktor Zychla, 2003 */

using System;
using System.Collections;

namespace Example
{
public class COsoba : IComparable
{
public string imie;
public string nazwisko;

146 ROZDZIAE C. SWIAT .NET

public int CompareTo(object o)
{

if (o is COsoba)

{

COsoba 02 = o as COsoba;

if (this.nazwisko == o2.nazwisko)
return this.imie.CompareTo(o02.imie);
else
return this.nazwisko.CompareTo(o02.nazwisko);
}
else
return -1;

}

public override string ToString()
{
return String.Format("{0} {1}", nazwisko, imie);

}

public COsoba(string imie, string nazwisko)
{
this.imie = imie; this.nazwisko = nazwisko;
}
}

public class CExample
{
static void Wypisz(IEnumerable ie)
{
foreach (object o in ie)
Console.WriteLine("{0},", o);
}

public static void Main(string[] args)
{
ArrayList atab = new ArrayList();

atab.Add(new COsoba("Jan", "Kowalski"));
atab.Add(new COsoba("Zdzistaw", "Kowalski"));
atab.Add(new COsoba("Jan", "Malinowski"));
atab.Add(new COsoba("Tomasz", "Abacki"));

Wypisz(atab);
atab.Sort();
Wypisz(atab);
}
}
}

C:\Example>example.exe
Kowalski Jan,

Kowalski Zdzistaw,
Malinowski Jan,

Abacki Tomasz,

Abacki Tomasz,
Kowalski Jan,
Kowalski Zdzistaw,
Malinowski Jan,

Zwroémy uwage w jaki sposob odbywa sie ustalenie sortowania wedtug 2 pol obiektu: otdz
najpierw odbywa sie poréwnanie nazwisk, a nastepnie, w przypadku réwnosci nazwisk, poréw-
nanie imion. Poréwnanie odbywa sie za pomoca tego samego mechanizmu, ktory jest wiasnie
oprogramowywany, czyli za pomoca interfejsu IComparable, tyle ze tym razem metoda pochodzi
z klasy string.

if (this.nazwisko == o02.nazwisko)

3. PRZEGLAD BIBLIOTEK PLATFORMY .NET 147

return this.imie.CompareTo(o02.imie);
else
return this.nazwisko.CompareTo(02.nazwisko);

W taki sam sposéb mozna ustala¢ dowolne kryteria sortowania wedtug dowolnej ilosci pdl. Co
jednak zrobi¢ w przypadku, kiedy dla jednego rodzaju obiektéw chciatoby sie kilka réznych po-
rzadkéw sortowania? Zalézmy, ze w klasie COsoba dotozymy nowe pole okreslajace wiek osoby i
chcieliby$my aby istnial inny porzadek sortowania niz alfabetyczny - na przyktad porzadek chro-
nologiczny (a moze jeszcze jakie$ inne)? Jak rozwiazaé¢ taki problem, skoro zaimplementowanie
interfejsu IComparable pozwala okreslié¢ tylko jeden porzadek sortowania?

Otéz aby okredli¢ wiecej niz jeden porzadek sortowania nalezy utworzyé¢ jaka$ pomocnicza
klase, ktora bedzie implementowaé interfejs IComparer. Interfejs ten ma tylko jedna metode
Compare, ktéra stuzy do poréwnywania dwéch obiektéw. W celu uzycia wybranego intefejsu do
uporzadkowania obiektéw w kontenerze, nalezy uzyé przeciazonej wersji metody Sort, ktora
oczekuje jako parametru wtadnie obiektu typu IComparer.

/* Wiktor Zychla, 2003 */
using System;

using System.Collections;

namespace Example

{
public class COsoba : IComparable
{
public class COsobaSortByDataUr : IComparer
{

public int Compare(object objl, object obj2)
{

COsoba ol = objl as COsoba;

COsoba 02 = obj2 as COsoba;

return ol.dataUr.CompareTo(o02.dataUr);
}
public COsobaSortByDataUr() {}
}

public string imie;
public string nazwisko;

public DateTime dataUr;

public int CompareTo(object o)

{
if (o is COsoba)
{
COsoba 02 = o as COsoba;
if (this.nazwisko == o02.nazwisko)
return this.imie.CompareTo(o02.imie);
else
return this.nazwisko.CompareTo(o02.nazwisko);
}
else
return -1;
}
public override string ToString()
{
return String.Format("{0} {1}, ur. {2:d}", nazwisko, imie, datalUr);
}
public COsoba(string imie, string nazwisko, string dataUr)
{
this.imie = imie; this.nazwisko = nazwisko;
this.dataUr = DateTime.Parse(dataUr);
}

}

148

public class CExample

{

static void Wypisz(IEnumerable ie)

{

Console.WriteLine();
foreach (object o in ie)
Console.WriteLine("{0},", o);

}

public static void Main(string[] args)

{

ArrayList atab = new ArrayList();

atab.Add(new
atab.Add(new
atab.Add(new
atab.Add(new

Wypisz(atab
atab.Sort();
Wypisz(atab

COsoba("Jan", "Kowalski",
COsoba("Zdzistaw", "Kowalski",
COsoba("Jan", "Malinowski",
COsoba("Tomasz", "Abacki" ,

);

);

atab.Sort(new COsoba.COsobaSortByDataUr());

Wypisz(atab

}
}
}

);

C:\Example>example.exe

Kowalski Jan, ur. 1994-03-01,
Kowalski Zdzistaw, ur. 1992-11-29,

Malinowski Jan, ur.

1990-02-16,

Abacki Tomasz, ur. 1991-01-12,

Abacki Tomasz, ur. 1991-01-12,
Kowalski Jan, ur. 1994-03-01,
Kowalski Zdzistaw, ur. 1992-11-29,

Malinowski Jan, ur.

Malinowski Jan, ur.

1990-02-16,

1990-02-16,

Abacki Tomasz, ur. 1991-01-12,
Kowalski Zdzistaw, ur. 1992-11-29,
Kowalski Jan, ur. 1994-03-01,

"1994-03-01"
"1992-11-29"
"1990-02-16"
"1991-01-12"

~
~

ROZDZIAE C. SWIAT .NET

Zauwazmy, ze tam gdzie jawnie nie podano odpowiedniego kryterium sortowania, zostanie
uzyte sortowanie okreslone przez interfejs IComparable implementowany przez obiekt. Kazde
inne kryterium musi by¢ uzyte jawnie.

W powyzszym przyktadzie klasa udostepniajaca interfejs do sortowania zostata umieszczona
wewnatrz klasy gtéwnej, aby programista korzystajacy z niej mial Swiadomo$é jej przeznaczenia.

Mimo to sposéb wywotania sortowania nie jest zbyt elegancki:

atab.Sort(new COsoba.COsobaSortByDataUr());

Mozna uczyni¢ kod nieco przejrzystszym przez dolozenie do klasy COsoba publicznej statycz-
nej propercji zwracajacej odpowiedni obiekt:

public class COsoba : IComparable

{

class COsobaSortByDataUr : IComparer

{

public int Compare(object objl, object obj2)

{
COsoba ol =

objl as COsoba;

3. PRZEGLAD BIBLIOTEK PLATFORMY .NET

COsoba 02 = obj2 as COsoba;

return ol.dataUr.CompareTo(o02.dataUr);

}
public COsobaSortByDataUr() {}
}

public string imie;
public string nazwisko;
public DateTime dataUr;

public static IComparer SortByDataUr
{

get

{

return (IComparer)(new COsobaSortByDataUr());

}

149

Klasa implementujaca sortowanie nie musi juz by¢ publiczna, za$ sortowanie z uzyciem od-

powiedniego kryterium jest juz proste:

atab.Sort(COsoba.SortByDataUr);

Opakowywanie enumeratoréw

Intensywne korzystanie z kolekcji znaczaco wpltywa na wydajnos$é pracy programisty. Kod two-

rzony jest szybciej, jest w nim mniej pomytek i jest znacznie czytelniejszy.

Zalézmy, ze aplikacja rozwija sie pomy$lnie i w pewnym momencie pojawiaja sie dodatkowe
okolicznosci. Elementy jakiego$ kontenera powinny by¢ przegladniete, a czesé z nich, spetlniajaca
jakie$ kryteria, usunieta. Naiwnie napisaliby$my co$, co nieoczekowanie konczy sie katastrofa!

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;

namespace Example
{
public class CExample
{
public static void Main(string[] args)
{
ArrayList atab = new ArrayList();

atab.Add(5);
atab.Add(10);
atab.Add(3);

foreach (int i in atab)
if (i< 4)
atab.Remove(i);
}
}
}

C:\Example>example.exe

Unhandled Exception: System.InvalidOperationException: Collection was modified;

enumeration operation may not execute.

at System.Collections.ArrayListEnumeratorSimple.MoveNext ()

at Example.CExample.Main(Stringl[] args)

Natknelismy sie na do$é¢ spory problem - w trakcie enumeracji nie wolno modyfikowaé za-
wartosci kontenera, bowiem enumeracja traci sens, jesli - obrazowo méwiac - usuwa sie jej grunt

spod noég.

150 ROZDZIAL C. SWIAT .NET

Ten problem mozna rozwigzaé na kilka sposob6w, na przyktad w czasie enumeracji tworzac
pomocniczg liste referencji do obiektow, ktére nalezy usunaé, a potem usuwaé je w kolejnej
petli, lub korzystajac z innych petli niz foreach, gdzie istnieje mozliwos¢ wyspecyfikowania bar-
dziej subtelnych warunkéw zakonczenia iteracji, uwzgledniajacych mozliwe zmiany w zawartosci
kontenera.

Okazuje sie, ze mozna postapié jeszcze inaczej, definiujac enumerator opakowujacy .

Enumerator taki bedzie inicjowany dowolnym obiektem, ktory implementuje interfejs IFE-
numerable, a nastepnie bedzie tworzyl kopie referencji do obiektéw w zZrédtowym kontenerze.
Jezeli programista zechce obejrze¢ opakowane elementy, dostanie do reki liste tych wtadnie kopii
referencji do obiektéw z oryginalnej kolekcji.

Aby skorzystaé z iteratora opakowujacego, zamiast

foreach (int i in atab)
if (i< 4)
atab.Remove(i);

programista napisze

foreach (int i in new IterIsolate(atab))
if (i< 4)
atab.Remove(i);

Wada takiego rozwiazania jest koniecznos¢ tworzenia listy z duplikatami referencji do obiek-
toéw z oryginalnej kolekcji. Zaleta - niezwykla elegancja kodu.

/* Wiktor Zychla, 2003. IterIsolate: Eric Gunnerson */
using System;
using System.Collections;

namespace Example
{
public class IterIsolate: IEnumerable
{
internal class IterIsolateEnumerator: IEnumerator
{
protected ArrayList items;
protected int currentltem;

internal IterIsolateEnumerator (IEnumerator enumerator)
{
IterIsolateEnumerator chainedEnumerator =
enumerator as IterIsolateEnumerator;

if (chainedEnumerator !'= null)
{
items = chainedEnumerator.items;
}
else
{
items = new ArrayList();
while (enumerator.MoveNext() != false)

{

items.Add (enumerator.Current) ;
}
IDisposable disposable = enumerator as IDisposable;
if (disposable != null)

{
disposable.Dispose();
}
}
currentItem = -1;

16 Autorem pomystu jest wspéttwérca C#, Eric Gunnerson, ktérego artykul na ten temat mozna znalezé na
stronach MSDN.

3. PRZEGLAD BIBLIOTEK PLATFORMY .NET 151

}

public void Reset()
{
currentItem = -1;

}

public bool MoveNext ()
{
currentItem++;
if (currentItem == items.Count)
return false;

return true;

}

public object Current

{
get
{

return items[currentItem];

}

}

}

public IterIsolate(IEnumerable enumerable)
{
this.enumerable = enumerable;

}

public IEnumerator GetEnumerator()

{

return new IterIsolateEnumerator (enumerable.GetEnumerator());

}

protected IEnumerable enumerable;

}

public class CExample
{
public static void Main(string[] args)
{
ArrayList atab = new ArrayList();

atab.Add(5);
atab.Add(10);
atab.Add(3);

foreach (int i in new IterIsolate(atab))
if (i<4)
atab.Remove(i);

Bardzo podobnego pomystu mozna uzy¢ do rozwigzania problemu przegladania elementow
kolekcji Hashtable w ustalonej przez programiste kolejnosci. W tym celu utworzymy nowy enu-
merator opakowujacy, ktory utworzy kopie referencji i posortuje je w ustalonej kolejnosci.

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;

namespace Example
{
public class IterIsolate: IEnumerable
{
. jak wyzej
}

152

public class IterSort: IterIsolate, IEnumerable
{
internal class IterSortEnumerator:

{

IterIsolateEnumerator,

ROZDZIAE C. SWIAT .NET

IEnumerator

internal IterSortEnumerator(IEnumerator enumerator, IComparer comparer): base(enumerator)

{
if (comparer != null)
{
items.Sort (comparer) ;
}
else
{
items.Sort();
}
}
}

public

public
{
this.comparer = comparer;

}

public new IEnumerator GetEnumerator()

{

IterSort(IEnumerable enumerable): base(enumerable) {}

IterSort (IEnumerable enumerable, IComparer comparer): base(enumerable)

return new IterSortEnumerator (enumerable.GetEnumerator(), comparer);

}
IComparer comparer;

}

public class COsoba :
{

IComparable

. jak wyzej
¥

public class CExample

{
public static void Main(string[] args)
{

Hashtable hOsoby = new Hashtable();

// w kolekcji pamietamy pary : ID -> Osoba
hOsoby.Add(7, new COsoba("Jan", "Kowalski",
hOsoby.Add(10, new COsoba("Zdzistaw", "Kowalski",
hOsoby.Add(3, new COsoba("Jan", "Malinowski",
hOsoby.Add(17, new COsoba("Tomasz", "Abacki"

// przegladaj kolekcje
foreach (COsoba o in hOsoby.Values)
Console.WriteLine(o.ToString());

Console.WriteLine();

// przegladaj posortowang kolekcje

>

"1994-03-01"
"1992-11-29"
"1990-02-16"
"1991-01-12"

~
~

foreach (COsoba o in new IterSort(hOsoby.Values, COsoba.SortByDataUr))

Console.WriteLine(o.ToString());

}

}
}
C:\Example>example.exe
Kowalski Zdzistaw, ur. 1992-11-29
Kowalski Jan, ur. 1994-03-01
Abacki Tomasz, ur. 1991-01-12
Malinowski Jan, ur. 1990-02-16
Malinowski Jan, ur. 1990-02-16
Abacki Tomasz, ur. 1991-01-12

3. PRZEGLAD BIBLIOTEK PLATFORMY .NET 153

Kowalski Zdzistaw, ur. 1992-11-29
Kowalski Jan, ur. 1994-03-01

W podoby sposéb mozna utworzy¢ inne enumeratory opakowujace, na przyktad IterSelect,
ktory jako parametr przyjatby predykat przyjmujacy jako parametr obiekt z kolekcji i zwracajacy
wartosci true lub false. Podczas przegladania kolekcji taki enumerator udostepniatby tylko te
obiekty z kolekcji, dla ktérych wartosé predykatu bytaby réwna true.

public delegate bool IterSelectDelegate(object o);

public class IterSelect: IterIsolate, IEnumerable
{
internal class IterSelectEnumerator: IterIsolateEnumerator, IEnumerator
{
internal IterSelectEnumerator (IEnumerator enumerator,
IterSelectDelegate selector): base(enumerator)
{
for (int index = items.Count - 1; index >= 0; index--)
{
if (!selector(items[index]))
items.RemoveAt (index) ;

}

currentItem = items.Count;

}

public new void Reset()
{
currentItem = items.Count;

}

public new bool MoveNext ()
{
currentItem—-;
if (currentItem < 0)
return false;

return true;
}
}

public IterSelect(IEnumerable enumerable, IterSelectDelegate selector): base(enumerable)
{
this.selector = selector;

}

public new IEnumerator GetEnumerator()
{
return new IterSelectEnumerator (enumerable.GetEnumerator(), selector);

}

IterSelectDelegate selector;

Dzieki mozliwosci sktadania takich enumeratoréw, programista mégtby wiec napisac:

foreach (COsoba o in
new IterSelect(
new IterSort(hOsoby, COsoba.SortByDataUr),
COsoba.RokUrodzenia(1990)))

// posortowane obiekty COsoba z kolekcji hOsoby
// ale tylko te urodzone w 1990 roku

154 ROZDZIAE C. SWIAT .NET

3.2 Biblioteka funkcji matematycznych

Funkcje matematyczne zostaly w C# umieszczone jako statyczne w klasie System.Math. Pro-
gramista znajdzie tam takie funkcje, jak m.in.: Abs, Asin, Atan, Cos, Cosh, E (stala), Exp,
Floor, Log, Max, Min, PI (stala), Pow, Sign, Sin, Sinh, Tan, Sqrt.

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;

namespace Example
{
public class CExample
{
public static void Main(stringl] args)
{
Console.WriteLine("E = {0}", Math.E);
Console.WriteLine("Pi = {0}", Math.PI);

Console.WriteLine("E"PI
Console.WriteLine("Pi"E

{0}", Math.Pow(Math.E, Math.PI));
{0}", Math.Pow(Math.PI, Math.E));

}
}
}

C:\Example>example.exe

E = 2,71828182845905

Pi = 3,14159265358979
E°PI = 23,1406926327793
Pi"E = 22,459157718361

Podobnie tatwo dzieki klasie Random mozna uzyskac liczby losowe.

/* Wiktor Zychla, 2003 */
using System;
using System.Collections;

namespace Example
{
public class CExample
{
public static void Main(string[] args)
{

Random r = new Random();

Console.WriteLine("Sekwencja losowych liczb catkowitych: ");
for (int i=0; i<10; i++)
Console.WriteLine(r.Next());

Console.WriteLine("Sekwencja losowych liczb zmiennoprzecinkowych: ");
for (int i=0; i<10; i++)
Console.WriteLine(r.NextDouble());
}
}
}

C:\Example>example.exe

Sekwencja losowych liczb catkowitych:
1537211907

1960381545

1107103792

1638000156

206550390

4349299

1902247774

493693260

357003656

1461388247

Sekwencja losowych liczb zmiennoprzecinkowych:

3. PRZEGLAD BIBLIOTEK PLATFORMY .NET 155

0,359765542372952
0,615490057792277
0,185565924358352
0,0885926261956769
0,67311383582331
0,495275298829784
0,700976026105218
0,496796116464211
0,58237144610955
0,495158822506274

3.3 Biblioteki wejscia/wyjscia

Tyle ile réznych jezykéw - tyle réznych podej$é do zagadnienia obstugi wejscia / wyjscia. Pro-
jektanci jezyka staja przed trudnym zadaniem zaprojektowania przystepnego iterfejsu progra-
mowania do obstugi réznego rodzaju obiektéw (pliki, konsola, polaczenia sieciowe itd.) i r6znego
rodzaju rodzajéw przekazywania danych (tekstowy, binarny, buforowany, dostep sekwencyjny i
swobodny itd.).

Struktura systemu plikéw

Zanim przejdziemy do przekazywania danych z i do strumieni reprezentujacych obiekty wejscia /
wyjscia, zajmiemy sie operacjami na strukturze systemu plikéw. Biblioteka udostepnia tu 3 klasy:
File, Directory i Path. Zadna z tych klas nie pozwala tworzyé swojej instancji, udostepniaja
one tylko statyczne metody, z ktorych korzysta programista.

Klasa Directory stuzy do bezposrednich operacji na plikach i katalogach. Udostepnia m.in.
nastepujace metody:

CreateDirectory Tworzenie katalogu.
Delete Usuwanie katalogu.
Exists Sprawdzanie czy katalog istnieje.
GetCurrentDirectory Zwraca biezacy katalog.
GetFiles Zwraca liste nazw plikéw w katalogu.
GetDirectories Zwraca liste podkatalogéw w katalogu.
GetFileSystemEntries Zwraca liste wszystkich elementéw w katalogu.
GetParent Zwraca nazwe katalogu poziom wyzej niz wskazany.
GetLogicalDrives Zwraca liste dyskow logicznych w systemie.
Move Przesuwa katalog w systemie plikow.
SetCurrentDirectory Ustawia biezacy katalog.

Klasa File udostepnia metody do operacji na plikach, m.in.:
Copy Kopiowanie plikow.
Create Tworzenie nowych plikéw.
Delete Usuwanie plikow.

Exists Sprawdzanie czy plik istnieje.

156 ROZDZIAL C. SWIAT .NET

GetAttributes Zwraca atrybuty pliku.
Open Otwiera plik.
SetAttributes Ustawia atrybuty pliku.
Klasa Path udostepnia metody do obstugi nazw plikéw w systemie plikow, m.in.:
ChangeExtension Zmiana rozszerzenia nazwy pliku.
GetDirectoryName Cze$é okreslajaca nazwe katalogu w $ciezce.
GetExtension Rozszerzenie pliku.
GetFileName Nazwa pliku (bez $ciezki).
GetFileNameWithoutExtension Nazwa pliku (bez Sciezki i rozszerzenia).
GetFullPath Pelna nazwa pliku.
GetTempName Nazwa tymczasowego pliku.
DirectorySeparatorChar Separator katalogéw w nazwach plikow (w Windows ”)
PathSeparator Separator Sciezek w nazwach plikéw (w Windows 7;”).

VolumeSeparatorChar Separator woluminu w nazwach plikéw (w Windows ”:”)

Dodatkowa, ustugows funkcje spetniaja dwie klasy, FileInfo i DirectoryInfo. Za pomoca
obiektéw tych klas mozna uzyskaé szczegdtowe informacje na temat plikow i folderdw.
Przyktad prostego programu:

/* Wiktor Zychla, 2003 */
using System;
using System.IO;

namespace Example

{
public class CExample
{
public static void Main(string[] args)
{
string[] fileNames =
Directory.GetFiles(Directory.GetCurrentDirectory(), "*.exe");
foreach (string s in fileNames)
{
FileInfo fi = new FileInfo(s);
Console.WriteLine(fi.FullName);
Console.WriteLine(" rozmiar\t{0}", fi.Length);
Console.WriteLine(" utworzony\t{0}", fi.CreationTime);
Console.WriteLine(" atrybuty\t{0}", fi.Attributes);
}
}
}
}

C:\Example>example.exe
C:\Example\example.exe

rozmiar 3584

utworzony 2003-03-22 19:47:55
atrybuty Archive

3. PRZEGLAD BIBLIOTEK PLATFORMY .NET 157

Obstuga danych w strumieniach

Interfejsy nowoczesnych jezykéw programowania zwykle uzywaja abstrakcyjnej reprezentacji
danych przesyltanych do i z urzadzen wejscia / wyjscia w postaci strumieni. Udana prébe zbu-
dowania jednolitego interfejsu strumieni podjeto przy projektowaniu C++.

‘ MemoryStream, FileStream, NetworkStream ‘

\V4
‘ CryptoStream, BufferedStream ‘

\V
‘ StreamReader, StreamWriter, BinaryReader, Binary Writer ‘

Tabela C.3: Sktadanie réznych funkcji strumieni

W C# istnieje klasa Stream, ktora, oprécz udostepniania kilku prostych metod, spelnia
funkcje klasy bazowej dla specjalizowanych klas do obstugi réznych strumieni:

MemoryStream dostarcza mechanizméw do operacji na danych w pamieci
FileStream dostarcza mechanizméw do operacji na plikach
IsolatedStorageFileStream wirtualny system plikéw z kontrolg dostepu

NetworkStream dostarcza mechanizméw do operacji sieciowych

Dodatkowe strumienie mogg stanowi¢ warstwe posrednia w komunikacji z wyzej wymienio-
nymi strumieniami:

CryptoStream pozwala szyfrowac i deszyfrowaé dane przesyltane z i do strumienia

BufferedStream pozwala przyspieszy¢ dostep do strumienia przez wysytanie wiekszych porcji
danych

W zaleznosci od tego jakiego rodzaju dostepu do strumienia oczekuje programista, moze on
wybiera¢ miedzy:

StreamReader, StreamWriter pozwala na dostep do strumieni traktowanych jako napisy

BinaryReader, BinaryWriter pozwala na dostep do strumieni traktowanych jak bajty

Te trzy rodzaje funkcji tworza niejako trzy niezalezne warstwy obstugi strumieni, za$ progra-
mista moze dowolnie sktada¢ funkcje z kolejnych warstw. Oznacza to, ze tak naprawde istnieje
kilkadziesiat réznych mozliwosci ich skladania (tabela C.3).

Warstwa pierwsza udostepnia najprostszy interfejs, w ktérym do strumienia mozna kierowac i
czytac tylko pojedynicze bajty. Warstwa druga umozliwia natozenie szyfrowania lub buforowania
na strumien. Warstwa trzecia pozwala na wysylanie do strumienia catych napiséw, liczb i innych
obiektow.

Sprobujmy wiec na przyktad utworzyé strumien plikowy, na niego natozyé¢ funkcje zapisu
tekstu w Unicode i zapisa¢ do pliku jaki$ tekst.

158 ROZDZIAL C. SWIAT .NET

/* Wiktor Zychla, 2003 */
using System;

using System.Text;

using System.IO;

namespace Example

{
public class CExample
{
public static void Main(string[] args)
{
FileStream fs = new FileStream("plik.txt", FileMode.Create);
StreamWriter sw = new StreamWriter(fs, Encoding.Unicode) ;
sw.WriteLine("Chrzasz brzmi w Zyrardéwku");
sw.Close();
fs.Close();
}
}
}

Szyfrowanie strumieni w locie

Biblioteka wejscia / wyjscia .NET pozwala na umieszczenie strumienia szyfrujacego miedzy
strumieniem, a obiektem pozwalajacym czyta¢ badz pisa¢ dane tego strumienia. Jest to naprawde
proste i wygodne - z perspektywy programisty zachowanie sie strumienia jest nadal takie samo,
mimo to dane trafiaja do strumienia po przejsciu przez warstwe szyfrujaca.

Typ Nazwa

Symetryczny DES
Symetryczny — TripleDES
Symetryczny ~ RC2
Symetryczny Rijndael
Asymetryczny DSA
Asymetryczny RSA

Udostepniono kilka znanych protokotéow kryptograficznych: symetryczne uzywaja tego same-
go klucza do szyfrowania i deszyfrowania, podczas gdy asymetryczne szyfruja za pomoca kluczy
publicznych, za$ do odszyfrowania potrzebuja kluczy prywatnych. Biblioteka krytpograficzna
udostepnia metody do wspomagania tworzenia kluczy dla obu typéw protokotdw.

W przykltadzie najpierw utworzymy strumien do zapisu danych z posrednim strumieniem
szyfrujacym, a nastepnie zdekodujemy tekst z pliku. Gdyby podczas proby dekodowania uzyto
niepoprawnego hasta, to oczywiscie operacja nie powiodlaby sie. Oczywiscie zawarto$é¢ pliku z
zaszyfrowang informacja w zaden sposéb nie nadaje sie do odczytania bez zdeszyfrowania.

/* Wiktor Zychla, 2003 */

using System;

using System.IO;

using System.Security.Cryptography;
using System.Text;

namespace Example
{
public class CExample

{

static string CzytajHaslo()
{

3. PRZEGLAD BIBLIOTEK PLATFORMY .NET 159

Console.Write("podaj haslo do szyfrowania: ");

string passwd = Console.ReadLine();

if (passwd.Length != 8)

{
Console.WriteLine("Haslo musi miec 8 znakow");
Environment.Exit (0);

}

return passwd;

}

public static void Main(string[] args)

{

string password CzytajHaslo();
UnicodeEncoding UE = new UnicodeEncoding();
bytel[] key UE.GetBytes (password) ;

// zapis zaszyfrowanych danych

// cs jest strumieniem posrednim

FileStream fs = new FileStream("plik.txt", FileMode.Create);

RijndaelManaged RMCrypto = new RijndaelManaged();

CryptoStream cs = new CryptoStream(fs,
RMCrypto.CreateEncryptor (key, key),
CryptoStreamMode.Write);

StreamWriter sw = new StreamWriter(cs, Encoding.Unicode) ;

sw.WriteLine("Chrzasz brzmi w Zyrardéwku");
sw.Close();

// odczyt zaszyfrowanych danych

// gs jest strumieniem posrednim

FileStream gs = new FileStream("plik.txt", FileMode.Open);

RijndaelManaged RMCryptp = new RijndaelManaged();

CryptoStream ds = new CryptoStream(gs,
RMCryptp.CreateDecryptor (key, key),
CryptoStreamMode.Read) ;

StreamReader sq = new StreamReader(ds, Encoding.Unicode);

Console.WriteLine(sq.ReadLine());
sq.Close();
}
}
}

C:\Example>example.exe
podaj haslo do szyfrowania: qwertyui
Chrzasz brzmi w Zyrardéwku

Strumienie konsoli

Obiekt reprezentujacy konsole dysponuje informacja o strumieniach wejscia, wyjécia i btedu.
Obiekty te (Console.In, Console.Out, Console.Error)sastrumieniamitypéw TextReader
i TextWriter (klasy bazowe dla odpowiednio StreamReader, StringReader i StreamWriter,
StringWriter). Oznacza to, ze strumieni tych mozna uzy¢ w kazdym kontekscie, w ktérym uzywa
sie strumieni pochodnych.

Strumienie te moga by¢ przekierowane za pomoca metod SetIn, SetOut i SetError.

3.4 Dynamiczne tworzenie kodu

Jedna z najciekawszych mozliwoséci biblioteki .NET jest dynamiczne tworzenie kodu w czasie
dziatania aplikacji. Programista moze zazyczy¢ sobie utworzenia instancji obiektu kompilatora,
skompilowac¢ fragment kodu na dysk lub do pamieci a nawet dynamicznie dotaczy¢ taki kod do
swojej aplikacji.

Najpierw zobaczmy w jaki sposéb utworzy¢ dynamicznie obiekt kompilatora, skompilowaé
kod do postaci wykonywalnej, a nastepnie uruchomié¢ skompilowany kod jako nowy proces w

160 ROZDZIAL C. SWIAT .NET

systemie. Chcielibysmy ponadto, aby tak utworzony obiekt kompilatora przechwytywal i rapor-
towal btedy kompilacji.

/* Wiktor Zychla, 2003 */
using System;

using System.Diagnostics;
using System.IO;

using System.CodeDom;

using System.CodeDom.Compiler;

using Microsoft.CSharp;

namespace Example

{
public class CExample
{
public static void Main(string[] args)
{
string sFileName;
string sOutFileName;
Console.Write("Podaj nazwe pliku do skompilowania: ");
sFileName = Console.ReadLine();
sOutFileName =
Path.GetFileNameWithoutExtension(sFileName) + ".exe";
if (File.Exists(sFileName))
{
CSharpCodeProvider codeProvider = new CSharpCodeProvider();
ICodeCompiler icc = codeProvider.CreateCompiler();
CompilerParameters parameters = new CompilerParameters();
parameters.GenerateExecutable = true;
parameters.OutputAssembly = sOutFileName;
CompilerResults results = icc.CompileAssemblyFromFile(parameters, sFileName);
if (results.Errors.Count > 0)
{
foreach(CompilerError CompErr in results.Errors)
{
Console.WriteLine("Linia: " + CompErr.Line +
", Numer: " + CompErr.ErrorNumber);
Console.WriteLine(CompErr.ErrorText);
}
}
else
Process.Start(sOutFileName);
}
}
}
}

C:\Example>example.exe

Podaj nazwe pliku do skompilowania: test.cs
Linia: 5, Numer: CS1514

{ expected

Dynamiczne kompilowanie kodu w sposéb pokazany w powyzszym przykladzie ma jednak
kilka wad:

e podczas kompilacji tworzony jest plik wykonywalny ze skompilowanym kodem

e kompilowany kod musi by¢ w pelni samodzielny, w szczegdlnosci musi zawiera¢ funkcje
Main

e skompilowany proces podczas uruchamiania tworzy nowe okno konsoli

3. PRZEGLAD BIBLIOTEK PLATFORMY .NET 161

Aby poradzié¢ sobie z tymi problemami, po pierwsze zazyczymy sobie tworzenia kodu do pa-
mieci zamiast na dysk. Po drugie, skorzystamy z mechanizmu refleksji, dzieki ktéremu bedziemy
mogli obejrze¢ sktadniki skompilowanego do pamieci kodu. Po trzecie, wykorzystamy mechanizm
pozwalajacy na tworzenie delegatéw z obiektéw typu MethodInfo, dzieki czemu bedziemy mogli
wybraé z kompilowanego kodu tylko te metody, ktére sg interesujace.

Przygotujmy najpierw testowy plik z przykltadowymi funkcjami:

/*

test.cs

plik z przyktadowymi funkcjami, ktéry bedzie dynamicznie kompilowany
*/

using System;

namespace NSpace
{
public class CMain
{
public static int A(int n)
{
return n+n;

}

public static int B(int n)
{
return n*n;
}
}
}

A oto zmodyfikowany przyklad dynamicznego tworzenia kodu:

/* Wiktor Zychla, 2003 */
using System;

using System.Diagnostics;
using System.IO;

using System.CodeDom;

using System.CodeDom.Compiler;
using System.Reflection;

using Microsoft.CSharp;

namespace Example
{
public class CExample
{
public delegate int DF(int n);
public static DF DummyDF = new DF(FDummy) ;
public static int FDummy(int n)
{
return O;

}

public static void Main(string[] args)
{

string sFileName;

string sOutFileName;

Console.Write("Podaj nazwe pliku do skompilowania: ");
sFileName = Console.ReadLine();
sOutFileName =

Path.GetFileNameWithoutExtension(sFileName) + ".exe";

if (File.Exists(sFileName))

{
CSharpCodeProvider codeProvider = new CSharpCodeProvider();
ICodeCompiler icc = codeProvider.CreateCompiler();

162

CompilerParameters parameters = new CompilerParameters();
parameters.GenerateExecutable false;
parameters.OutputAssembly sOutFileName;

CompilerResults results =
icc.CompileAssemblyFromFile(parameters, sFileName);

if (results.Errors.Count > 0)
{
foreach(CompilerError CompErr in results.Errors)
{
Console.WriteLine("Linia: " + CompErr.Line +
", Numer: " + CompErr.ErrorNumber);
Console.WriteLine(CompErr.ErrorText);
}
}
else
{
try
{
Assembly assembly = results.CompiledAssembly;

Console.Write("Podaj nazwe typu: ");
Type t = assembly.GetType(Console.ReadLine());

Console.Write("Podaj nazwe funkcji o prototypie int F(int):

MethodInfo me = t.GetMethod(Console.ReadLine());

DF df = (DF)DF.CreateDelegate(DummyDF.GetType(), me);
Console.Write("Podaj wartos$¢ parametru (int): ");

int result = df(int.Parse(Console.ReadLine()));
Console.WriteLine(result);
}
catch (Exception ex)
{

Console.WriteLine(ex.Message);

C:\Example>example.exe

Podaj
Podaj
Podaj
Podaj
48

nazwe pliku do skompilowania: test.cs
nazwe typu: NSpace.CMain

nazwe funkcji o prototypie int F(int): A
wartos¢ parametru (int): 24

C:\Example>example.exe

Podaj
Podaj
Podaj
Podaj
625

nazwe pliku do skompilowania: test.cs
nazwe typu: NSpace.CMain

nazwe funkcji o prototypie int F(int): B
wartos¢ parametru (int): 25

Cala sita tego kodu opiera sie na linii

DF df = (DF)DF.CreateDelegate(DummyDF.GetType(), me);

ROZDZIAE C. SWIAT .NET

")

Tworzony jest tutaj delegat typu DF za pomocy statycznej funkcji CreateDelegate, ktora
w tej (jednej z 4) wersji spodziewa sie parametru okreslajacego typ tworzonego delegata (tu:
domyslnego delegata typu DF utworzonego w kodzie) oraz informacji o metodzie pobranej przez
mechanizm refleks;ji.
Bardzo prosto napisaé¢ funkcje, ktéra bedzie mogta ewaluowaé wyrazenie dowolnego typu:

3. PRZEGLAD BIBLIOTEK PLATFORMY .NET

using System;

using System.CodeDom;

using System.CodeDom.Compiler;
using Microsoft.CSharp;

using System.Text;

using System.Reflection;

namespace Example

{

public class Evaluator

{

}

public static object Evaluate(Type type, string expression)

{

}

ICodeCompiler comp = (new CSharpCodeProvider().CreateCompiler());

CompilerParameters cp = new CompilerParameters();
cp.ReferencedAssemblies.Add("system.d11");
cp.ReferencedAssemblies.Add("system.data.dl1l");
cp.ReferencedAssemblies.Add("system.xml.d11");
cp.GenerateExecutable = false;
cp.GenerateInMemory = true;

StringBuilder code = new StringBuilder();
code.Append("using System; \n");
code.Append("using System.Data; \n");
code.Append("using System.Data.SqlClient; \n");
code.Append ("using System.Data.0leDb; \n");
code.Append("using System.Xml; \n");
code.Append ("namespace _Evaluator { \n");
code.Append(" public class _Evaluator { \n");

code . AppendFormat (" public {0} Foo() ", type.Name);
code.Append("{ ");
code. AppendFormat (" return ({0}); ", expression);

code.Append ("}\n") ;
code.Append ("} }");

CompilerResults cr =
comp . CompileAssemblyFromSource(cp, code.ToString());

if (cr.Errors.HasErrors)

{
StringBuilder error = new StringBuilder();
error.Append ("Error Compiling Expression: ");
foreach (CompilerError err in cr.Errors)
{
error.AppendFormat ("{0}\n", err.ErrorText);
}
throw new Exception("Error Compiling Expression: " +
error.ToString());
}

Assembly a = cr.CompiledAssembly;

object c = a.Createlnstance("_Evaluator._Evaluator");

MethodInfo mi = c.GetType().GetMethod("Foo");
return mi.Invoke(c, null);

public class CMain

{

}
}

public static void Main()

{

}

Console.Write("Wpisz wyrazenie arytmetyczne: ");
Console.WriteLine((int)Evaluator.Evaluate(typeof (int),
Console.ReadLine()));

C:\Example>example
Wpisz wyrazenie arytmetyczne: (8%(4+6))-12

68

163

164 ROZDZIAE C. SWIAT .NET

C:\Example>example
Wpisz wyrazenie arytmetyczne: 5+(

Unhandled Exception: System.Exception: Error Compiling Expression: Error Compili
ng Expression: Invalid expression term ’)°
) expected

at Example.Evaluator.Evaluate(Type type, String expression)
at Example.CMain.Main()

Zastosowania takiej metody tworzenia kodu moga by¢ bardzo szerokie. Mozna na przyktad
wyposazy¢ aplikacje w modut skryptowy, ktory pozwoli uzytkownikowi podktadaé wtasne funkcje
w miejsce dostarczanych z aplikacja. Mozna zaprojektowaé catkowicie wlasny jezyk skryptowy,
dopisaé¢ prosty kompilator miedzy tym jezykiem a C#, nastepnie kompilowaé¢ kod w jezyku
skryptowym najpierw do C#, a kod C# dynamicznie dotaczaé¢ do wlasnej aplikacji w czasie jej
dziatania.

Mozna réwniez wyobrazié sobie, ze pewne wazne fragmenty aplikacji dostarczone sg w postaci
zaszyfrowanego kodu zrédlowego, do ktorego kod odszyfrowujacy zna tylko uzytkownik. Kod taki
moglby byé odszyfrowywany i kompilowany w czasie dzialania aplikacji, zas uzytkownik miatby
pewnos¢, ze w przypadku kradziezy aplikacja bylaby dla ewentualnego zlodzieja bezuzyteczna,
gdyby nie znal hasta odszyfrowujacego.

3.5 Procesy, watki
Procesy

Dzieki bibliotece System.Diagnostics programista moze kontrolowaé¢ procesy dziatajace w syste-
mie.

using System;
using System.Diagnostics;

namespace Example
{
public class CMain

{
public static void Main()
{
Process[] pt = Process.GetProcesses();
foreach (Process p in pt)
{
Console.WriteLine(p.ProcessName.ToString());
Console.WriteLine("\t"+p.PriorityClass.ToString());
Console.WriteLine("\t"+p.MainModule.ModuleName);
Console.WriteLine("\t"+p.MainModule.ModuleMemorySize);

Procesy mozna nie tylko przegladaé, ale réwniez tworzy¢, zabijaé, czeka¢ na ich zakonczenie
oraz korzystaé¢ z mozliwoéci powloki. Ponizszy przyklad jest C#-owym odpowiednikiem przy-
ktadu ze strony 66.

using System;
using System.Diagnostics;

namespace Example
{
public class CMain

{

3. PRZEGLAD BIBLIOTEK PLATFORMY .NET 165

public static void Main()
{

Process p = new Process();

p.StartInfo.UseShellExecute = true;
p.StartInfo.Verb "print";
p.StartInfo.FileName "plik.doc";

p-Start();
p-WaitForExit();
p.Dispose(Q);

Console.WriteLine("zakonczono drukowanie");

Watki

Biblioteka System. Threading udostepnia funkcje do tworzenia i synchronizacji watkéw. Przeka-
zywanie parametrow do watkéw mozliwe jest dzieki opakowywaniu ich w pomocnicze klasy:

using System;
using System.Threading;

namespace Example
{
public class CMyThread
{
string nazwa;
int k;

public void ThreadFunc()
{
for (int i=0; i<k; i++)
{
Console.WriteLine(nazwa);
Thread.Sleep(1);
}
}

public CMyThread(string nazwa, int k)
{

this.nazwa = nazwa;

this.k k;

}
}

public class CMain

{
public static void Main()
{
string[] n = { "Jurek", "Ogérek", "Kielbasa", "Sznurek" };
int [] m=1{4,5,2,7%
for (int i=0; i<n.Length; i++)
{
CMyThread mt = new CMyThread(n[il], m[i]);
Thread t = new Thread(new ThreadStart(mt.ThreadFunc));
t.Start();
}
}
}

}

C:\Example>example
Ogérek
Kietbasa

166 ROZDZIAL C. SWIAT .NET

Kietbasa
Ogérek
Ogérek
Sznurek
Jurek
Sznurek
Ogérek
Jurek
Ogérek
Sznurek
Sznurek
Sznurek
Jurek
Sznurek
Jurek
Sznurek

Najprostszy wariant synchronizacji watkow mozliwy jest dzigki stowu kluczowemu C# lock.
Objecie jakiej$ zmiennej tg klauzula powoduje zablokowanie dostepu do tej zmiennej pozostatym
watkom na tak dlugo, az biezacy watek opusci blok lock, na przykiad:

JakisObiekt o;
lock (o)

{

}

Do synchronizacji watkéw mozna rowniez wykorzysta¢ m.in.:
e AutoResetEvent

e ManualResetEvent

e Monitor

e Mutex

3.6 XML

Tam, gdzie zachodzi koniecznosé¢ wymiany danych, tam programisci musza ustali¢ jakis sposéb
ich przekazywania. Wyobrazmy sobie scenariusz, w ktérym aplikacja A powinna udostepniaé
jakis zbiér danych aplikacji B.

Najbardziej naiwnym podejSciem byloby dodanie do aplikacji B modutu pozwalajacego na
wezytywanie danych bezposrednio w formie, w jakiej skladuje je aplikacja A. Takie rozwigzanie
nie sprawdza sie jednak wtedy, gdy format danych aplikacji A ulegnie z jakiego$ powodu zmianie
(najczesciej rozszerzeniu).

Wydawaloby sie wiec, ze rozwigzaniem byloby zaprojektowanie jakiegos formatu pliku po-
zwalajacego na przekazywanie danych miedzy aplikacjami. Takie rozwigzanie mogtoby by¢ nie-
zalezne od wewnetrznych formatéw danych aplikacji A i B. Gdyby jednak przekazywaé dane w
formie binarnej, to oczywiscie w razie checi rozszerzenia zakresu przekazywanych danych cata
zabawa zaczyna sie¢ od poczatku.

Dos¢ nieoczekiwanie rozwiazaniem tego i podobnych probleméw okazato sie zaprojektowanie
standardu XML (ang eXtended Markup Language), czyli pewnego standardu budowania plikéw
tekstowych do przesylania dowolnego typu danych. XML przyjat sie gléwnie dzigki temu, ze
uproécit przesytanie danych w sieci, gdzie informacja w formie tekstowej okazuje sie by¢ czesto
jedynym wspélnym mianownikiem dla réznego rodzaju platform bioracych udzial w komunikacji.

3. PRZEGLAD BIBLIOTEK PLATFORMY .NET 167

Sam w sobie XML jest rozszerzeniem idei HTML - o ile jednak HTML narzuca $cisle zbiér
mozliwych nazw weztéw jest Scisle ustalony, o tyle XML pozwala ustalaé je dowolnie. Tak jak pliki
HTML, tak i pliki XML moga by¢ budowane nawet w zwyklym edytorze tekstéw. Przegladarki
internetowe potrafia najczesciej przegladaé takie pliki (byla juz o tym mowa na stronie 126).

Biblioteka Systemn.Xml pozwala na manipulowanie plikami XML na 3 sposoby (a wlasciwie
2 i pdl, bo ostatni jest tylko rozszerzeniem przedostatniego):

e za pomocg obiektow System.Xml. XmlTextReader i System.Xml. XmlTextWriter
e za pomoca obiektéw DOM (klasa System.Xml. XmlDocument)
e za pomocyg obiektow z System.Xml. XPath

Pierwsze dwie mozliwoéci pozwalaja na programowe czytanie i tworzenie plikéw XML, za$

obiekty XPath wspomagaja tylko odczyt struktury XML.
Przygotujmy najpierw prosty plik z danymi:

<?xml version="1.0" encoding="windows-1250"7>
<ListaOséb nazwa="znajomi'">
<Osoba>
<Imig>Jan</Imie>
<Nazwisko>Kowalski</Nazwisko>
<DataUr>1950-02-07</DataUr>
</0Osoba>
<Osoba>
<Imie>Tomasz</Imie>
<Nazwisko>Malinowski</Nazwisko>
<DataUr>1976-10-04</DataUr>
</0soba>
<0Osoba>
<Imie>Adam</Imig>
<Nazwisko>Nowak</Nazwisko>
<DataUr>1984-02-17</DataUr>
</0soba>
</Lista0sé6b>

XmlTextReader i XmlText Writer

7 perspektywy obiektéw XmlTextReader i XmlTextWriter pliki XML sa strumieniami danych.
Odczyt zawartosci pliku XML za pomoca obiektu XmlTeztReader moze wygladaé nastepujaco:

/* Wiktor Zychla, 2003 */
using System;

using System.IO;

using System.Xml;

namespace Example
{
public class CMain
{
public static void Main()
{
FileStream fs = new FileStream("osoby.xml", FileMode.Open);
XmlTextReader xr = new XmlTextReader(fs);

while (xr.Read())

{
XmlNodeType t = xr.NodeType;
Console.WriteLine("Wezel typu {0}", t);

if (t == XmlNodeType.Element)
{
Console.WriteLine("\t<{0}>", xr.Name);
if (xr.HasAttributes)
while (xr.MoveToNextAttribute())

168 ROZDZIAL C. SWIAT .NET

Console.WriteLine("\t\t[{0}]{1}", xr.Name, xr.Value);
}
if (t == XmlNodeType.Text)
Console.WriteLine("Tekst: {0}", xr.Value);
}

xr.Close();
}
}
}

C:\Example>example.exe
Wezet typu XmlDeclaration
Wezel typu Whitespace
Wezet typu Element
<ListaOséb>
[nazwalznajomi

Wezet typu Whitespace
Wezel typu Element
<0soba>

Wezel typu Whitespace
Wezet typu Element
<Imie>

Wezet typu Text
Tekst: Jan

Wezel typu EndElement
Wezet typu Whitespace
Wezel typu Element
<Nazwisko>

Wezel typu Text
Tekst: Kowalski

Wezet typu EndElement
Wezel typu Whitespace
Wezet typu Element
<DataUr>

Wezet typu Text
Tekst: 1950-02-07

Obiekty DOM

Obiekty DOM najpierw wezytuja zawarto$¢ XMLa do pamieci, a nastepnie buduja drzewo skta-
dniowe, ktore programista moze przegladaé rekursywnie zgodnie z jego struktura:

/* Wiktor Zychla, 2003 */
using System;

using System.IO;

using System.Xml;

namespace Example
{
public class CMain
{
public static void InfoOWezle(XmlNode node)
{
Console.WriteLine("Wezet typu {0}", node.NodeType);

if (node.NodeType == XmlNodeType.Element)
{
Console.WriteLine("\t<{0}>", node.Name);
foreach (XmlAttribute a in node.Attributes)
Console.WriteLine("\t\t[{0}]{1}", a.Name, a.Value);
}
if (node.NodeType == XmlNodeType.Text)
Console.WriteLine("Tekst: {0}", node.Value);

foreach (XmlNode child in node.ChildNodes)
InfoOWezle(child);

3. PRZEGLAD BIBLIOTEK PLATFORMY .NET 169

public static void Main()

{
XmlDocument xml = new XmlDocument();
xml.Load("osoby.xml");
InfoOWezle(xml);
}
}

}

C:\Example>example.exe
Wezet typu Document
Wezet typu XmlDeclaration
Wezet typu Element
<ListaOséb>
[nazwalznajomi

Wezet typu Element
<0Osoba>

Wezet typu Element
<Imie>

Wezet typu Text

Tekst: Jan

Wezet typu Element
<Nazwisko>

Wezel typu Text

Tekst: Kowalski

Wezel typu Element
<DataUr>

Wezel typu Text

Tekst: 1950-02-07

XPath

Jeszcze jeden krok dalej ida obiekty z klasy X Path, za pomoca ktérych mozna tatwiej nawigowaé
po strukturze obiektu XmlDocument. Obiekt XPathNavigator umozliwia wybor konkretnego
wezta, zas XPathNodelterator pozwala na nawigacje po sasiednich weztach.

Aby uproscié przykltad, przesunmy informacje o osobach z podweziéw do atrybutéw weziéw.

<?xml version="1.0" encoding="windows-1250"7>
<ListaOséb nazwa="znajomi'">
<0Osoba Imig="Jan" Nazwisko="Kowalski" DataUr="1950-02-07"/>
<0Osoba Imig="Adam" Nazwisko="Nowak" DataUr="1992-12-23"/>
<Osoba Imig="Tomasz" Nazwisko="Malinowski" DataUr="1979-10-01"/>
</Lista0sé6b>

Dzieki mozliwosci nawigacji po strukturze mozna tatwiej odczytywac tylko interesujace obiek-
ty.

/* Wiktor Zychla, 2003 */
using System;

using System.IO;

using System.Xml;

using System.Xml.XPath;

namespace Example

{
public class CMain
{
public static void InfoOOsobie(XPathNavigator node)
{
Console.WriteLine("Osoba");
Console.WriteLine("Imie:\t\t" + node.GetAttribute("Imie", ""));
Console.WriteLine("Nazwisko:\t" + node.GetAttribute("Nazwisko", ""));

Console.WriteLine("Data ur.:\t" + node.GetAttribute("DataUr", ""));

170

}

public static void Main()

{
XmlDocument xml = new XmlDocument();
xml.Load("osoby.xml");

XPathNavigator n = xml.CreateNavigator();

XPathNodeIterator i = n.Select("//ListaOséb/0Osoba");

while (i.MoveNext())
InfoOOsobie(i.Current);
}
}
}

C:\Example>example

Osoba

Imie: Jan
Nazwisko: Kowalski
Data ur.: 1950-02-07
Osoba

Imie: Adam
Nazwisko: Nowak
Data ur.: 1992-12-23
Osoba

Imie: Tomasz
Nazwisko: Malinowski
Data ur.: 1979-10-01

Automatyczne tworzenie kodu do tadowania XML

ROZDZIAE C. SWIAT .NET

Pliki XML przechowujace dane maja najczesciej prosta strukture. Czy nie mozna wykorzystaé
tego spostrzezenia do zautomatyzowania tworzenia kodu parsujacego plik XML?

Okazuje sig, ze jest to mozliwe. W sktad programéw narzedziowych, udostepnianych z .NET
Framework SDK znajduje si¢ niepozorne narzedzie o nazwie xsd.exe. To ono wladnie pozwala

znacznie uprosci¢ proces tworzenia kodu dla danych XML.

Punktem wyjscia beda dane. Zaczynamy od zaprojektowania struktury o dowolnej pojem-
nosci informacyjnej. Na przyklad takiej (nazwimy te dane dane.xml):

<?xml version="1.0" encoding="windows-1250"7>
<ListaOsob xmlns=’MojeDane’>
<0Osoba obyw_polskie="T">
<Imie>Jan</Imie>
<Nazwisko>Kowalski</Nazwisko>
<DataUr>1950-02-07</DataUr>
</0soba>
<0Osoba obyw_polskie="T">
<Imie>Tomasz</Imie>
<Nazwisko>Malinowski</Nazwisko>
<DataUr>1976-10-04</DataUr>
</0soba>
<0Osoba obyw_polskie="T">
<Imie>Adam</Imie>
<Nazwisko>Nowak</Nazwisko>
<DataUr>1984-02-17</DataUr>
</0soba>
</Lista0sob>

Nowym elementem w tej definicji jest atrybut xmlns w gléwnym wezle danych, ktéry wszyst-
kie dane przypisuje do przestrzeni nazw MojeDane. Bedzie to wazne wtedy, kiedy bedziemy

weryfikowali poprawnos¢ otrzymanych danych.

Nastepny krok polega na uruchomieniu xsd.exe i wskazaniu pliku XML jako parametru.
Efektem bedzie plik XSD, zawierajacy w sobie informacje o strukturze podanego pliku XML.

3. PRZEGLAD BIBLIOTEK PLATFORMY .NET 171

<?xml version="1.0" encoding="utf-8"7>
<xs:schema id="ListaOsob" targetNamespace="MojeDane"
xmlns:mstns="MojeDane" xmlns="MojeDane" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"
attributeFormDefault="qualified" elementFormDefault="qualified">
<xs:element name="ListaOsob" msdata:IsDataSet="true" msdata:Locale="pl-PL">
<xs:complexType>
<xs:choice maxOccurs="unbounded">
<xs:element name="Osoba'">
<xs:complexType>
<xs:sequence>
<xs:element name="Imie" type="xs:string" minOccurs="0" msdata:0rdinal="0" />
<xs:element name="Nazwisko" type="xs:string" minOccurs="0" msdata:Ordinal="1" />
<xs:element name="DataUr" type="xs:string" minOccurs="0" msdata:0Ordinal="2" />
</xs:sequence>
<xs:attribute name="obyw_polskie" form="unqualified" type="xs:string" />
</xs:complexType>
</xs:element>
</xs:choice>
</xs:complexType>
</xs:element>
</xs:schema>

Tak przygotowany opis struktury danych moze postuzyé¢ do automatycznego wygenerowania
kodu, ktory bedzie potrafil wezytywaé pliki XML. Wystarczy ponownie uruchomié xsd.exe,
tym razem z przetacznikiem classes i jako parametr podaé plik XSD. Efektem bedzie plik
zawierajacy w sobie kod C#.

// ---
// <autogenerated>

// This code was generated by a tool.

// Runtime Version: 1.0.3705.0

//

// Changes to this file may cause incorrect behavior and will be lost if
// the code is regenerated.

// </autogenerated>

/7 - -

//

// This source code was auto-generated by xsd, Version=1.0.3705.0.

//

using System.Xml.Serialization;

/// <remarks/>

[System.Xml.Serialization.XmlTypeAttribute (Namespace="MojeDane")]

[System.Xml.Serialization.XmlRootAttribute("ListaOsob",
Namespace="MojeDane", IsNullable=false)]

public class ListaOsob {

/// <remarks/>
[System.Xml.Serialization.XmlElementAttribute("Osoba")]
public ListaOsobOsobal[] Items;

}

/// <remarks/>
[System.Xml.Serialization.XmlTypeAttribute (Namespace="MojeDane")]
public class ListaOsobOsoba {

/// <remarks/>
public string Imie;

/// <remarks/>
public string Nazwisko;

/// <remarks/>
public string DataUr;

/// <remarks/>
[System.Xml.Serialization.XmlAttributeAttribute(

172 ROZDZIAE C. SWIAT .NET

Form=System.Xml.Schema.XmlSchemaForm.Unqualified)]
public string obyw_polskie;

Jak wida¢ kod ten zawiera klasy ListaOsob i ListaOsobOsoba, ktérych sktadowe odpowia-
daja relacjom miedzy odpowiednimi weztami opisanymi w strukturze XML. Wystarczy jedynie
dopisa¢ kod do deserializacji obiektu!”:

using System;

using System.IO;

using System.Xml;

using System.Xml.Serialization;

public class CMain
{
public static void Main()
{
XmlSerializer xS = new XmlSerializer (typeof(ListaOsob));

FileStream fs = new FileStream("dane.xml", FileMode.Open);
ListaOsob ds = (ListaOsob)xS.Deserialize(fs);

foreach (ListaOsobOsoba o in ds.Items)
{
Console.WriteLine(String.Format("{0}, {1}, {2}",
o.Imie, o.Nazwisko, o.DatalUr));
}
}
}

Calo$¢ mozna juz skompilowaé i uruchomié:

C:\Example>csc.exe example.cs dane.cs

Microsoft (R) Visual C# .NET Compiler version 7.10.3052.4

for Microsoft (R) .NET Framework version 1.1.4322

Copyright (C) Microsoft Corporation 2001-2002. All rights reserved.

C:\Example>example

Jan, Kowalski, 1950-02-07
Tomasz, Malinowski, 1976-10-04
Adam, Nowak, 1984-02-17

Podsumujmy: dysponujac danymi w postaci XML mogliémy automatycznie wygenerowaé
opis struktury danych w postaci pliku XSD, zas ten postuzyl do automatycznego wygenerowania
kodu C#. Po dopisaniu kilku linijek kodu deserializujacego obiekt, otrzymaliSmy mozliwosé
tatwego tadowania pliku XML i przenoszenia jego zawarto$ci do programu.

Weryfikacja poprawnosci danych XML

Okazuje sie, ze schemat XSD nadaje sie nie tylko do automatycznego generowania kodu odpo-
wiednich klas do przechowywania danych w programie, ale moze by¢ wykorzystany do dyna-
micznej walidacji poprawnosci danych XML.

Do tego celu wykorzystamy obiekt typu XmlValidatingReader. Podczas tadowania doku-
mentu sprawdza on poprawnos¢ danych, a $cisle - zgodnosé ze specyfikacja zawarta w strukturze
XSD. Ewentualne btedy lub ostrzezenia sa zgltaszane za pomocs zdarzenia ValidationEven-
tHandler.

1"Mechanizm serializacji danych opisano doktadniej w rozdziale 3.9

3. PRZEGLAD BIBLIOTEK PLATFORMY .NET 173

using System;

using System.IO;

using System.Xml;

using System.Xml.Schema;

namespace Example
{
public class CMain
{
public static void Main()
{

XmlDocument xml = new XmlDocument();

XmlTextReader tr = new XmlTextReader("dane.xml");
XmlValidatingReader reader = new XmlValidatingReader(tr);

reader.ValidationType = ValidationType.Schema;
reader.ValidationEventHandler += new ValidationEventHandler (ValidationHandler);

xml.Load(reader);

Console.WriteLine("Wczytano plik.");

public static void ValidationHandler(object sender, ValidationEventArgs args)
{
Console.WriteLine("*Btad walidacji*");
Console.WriteLine("\tWaznosc: {0}", args.Severity);
Console.WriteLine("\tInfo: {0}", args.Message);

Efekt uruchomienia powyzszego programu moze by¢é w pierwszej chwili do$é zaskakujacy:
kazda linia pliku z danymi powoduje zgloszenie ostrzezenia o braku schematu do walidacji. Dzieje
sie tak dlatego, ze nigdzie nie skojarzyliSmy pliku z danymi (dane.xml) z plikiem zawierajacym
schemat struktury (dane.xsd). Poza tym, ze fizycznie moga znajdowaé sie w jednym folderze,
nic tych plikéw nie laczy.

Aby plik XML byt walidowany przy uzyciu schematu XSD, nalezy odpowiednig informacje
zaszy¢ we wnetrzu pliku XML.

<?xml version="1.0" encoding="windows-1250"7>

<ListaOsob xmlns=’MojeDane’
xmlns:MojWalidator="http://www.w3.org/2001/XMLSchema-instance’
MojWalidator:schemalLocation=’MojeDane dane.xsd’>

</Lista0sob>

Tak osygnowany plik XML bedzie juz poprawnie walidowany i kazde odstepstwo od schematu
bedzie wylapywane jako blad.

Doktadne zapoznanie sie z mozliwo$ciami schematow XSD umozliwia bardzo szczegdtowe
zapanowanie nad regutami walidacji dokumentéw XML. Jest to bardzo przydatne w sytuacji,
kiedy producent danych nie jest znany, nie jest wiarygodny badZ po prostu struktura danych
ulega modyfikacji w czasie zycia aplikacji.

3.7 Komunikacja miedzy procesami

Biblioteka System.Net udostepnia komplet funkcji wspomagajacych komunikacje za pomoca me-
chanizméw sieciowych. Programista znajdzie tu nie tylko obiektowe interfejsy dla gniazd, ale
rowniez wyspecjalizowane funkcje do bezposredniej komunikacji z wybranymi ustugami siecio-
wymi.

174 ROZDZIAE C. SWIAT .NET

/* Wiktor Zychla, 2003 */
using System;

using System.IO0

using System.Net;

namespace SimpleHttpReader

{
public class CMain
{
public static void Main()
{
Uri uri = new Uri("http://www.ii.uni.wroc.pl");
WebRequest req = WebRequest.Create(uri);
WebResponse resp = req.GetResponse();
Stream stream = resp.GetResponseStream() ;
StreamReader sr = new StreamReader(stream);
string s = sr.ReadToEnd();
Console.Write(s);
}
}
}

Aby przekonacé sie jak latwo oprogramowaé gniazda, napiszmy .NETowe odpowiedniki ser-
wera i klienta z rozdziatu 4.
Kod serwera:

/* Wiktor Zychla, 2003 */
// prosty modut serwera
// uzycie: server.exe
using System;

using System.IO;

using System.Net;

using System.Net.Sockets;
using System.Threading;

namespace TcpSever
{
public class CClientThread
{
const string serverMsg = "Tu serwer. Odpowiadam.";
Socket clientSocket;

public CClientThread(Socket clientSocket)
{

this.clientSocket = clientSocket;
}

public void ClientThreadFunc()

{
NetworkStream nS new NetworkStream(clientSocket);
StreamReader sR = new StreamReader(nS);
StreamWriter sW = new StreamWriter(nS);

while(true)
{
// odbierz wiadomo§é
string clientMessage = sR.ReadLine();
if (clientMessage !'= null)
Console.WriteLine("Otrzymano wiadomosé: {0}", clientMessage);
else
break;

// odeslij odpowiedz
sW.WriteLine(serverMsg);
sW.Flush();

}

sR.Close();

3. PRZEGLAD BIBLIOTEK PLATFORMY .NET 175

sW.Close();
}
}

public class CServer

{
public const int DEFAULT_PORT = 5000;

public static void Main()

{
TcpListener tcplListener = new TcpListener(DEFAULT_PORT);
tcplistener.Start() ;

Console.WriteLine("Serwer nastuchuje.");
Console.WriteLine("Adres: {0}, port: {1}", Dns.GetHostName(), DEFAULT_PORT);

while (true)

{
Thread.Sleep(1);
if (tcpListener.Pending())
{
Socket socketForClient = tcpListener.AcceptSocket();
string clientName =
String.Format("{0} [{1}]",
Dns.GetHostByAddress(((IPEndPoint)socketForClient.RemoteEndPoint) .Address).HostName,
((IPEndPoint)socketForClient.RemoteEndPoint) .Address.ToString()
);
Console.WriteLine("Zaakceptowano polaczenie: serwer {0}", clientName);
CClientThread ct = new CClientThread(socketForClient);
Thread t = new Thread(new ThreadStart(ct.ClientThreadFunc));
t.Start();
}
}

Kod klienta:

/* Wiktor Zychla, 2003 */
// prosty modut klienta

// uzycie: klient.exe -s:IP
using System;

using System.IO;

using System.Net;

using System.Net.Sockets;
using System.Threading;

namespace TcpClientNS
{
public class CClient
{
const int DEFAULT_COUNT=5;
const int DEFAULT_PORT =5000;
const string DEFAULT_MESSAGE="Tu klient. Witam.";

static string szServer;

static void sposob_uzycia()

{
Console.WriteLine("client.exe -s:IP");
Environment.Exit(1);

}
static void WalidacjaLiniiPolecen(string[] args)
{

int i;

if (args.Length < 1)

176 ROZDZIAL C. SWIAT .NET

{
sposob_uzycia();

}

for (i=0; i<args.Length; i++)
{
if (args[i][0] == ’-’)
{
switch(args[i] [1].ToString() .ToLower())
{
case "s" : if (args[i].Length > 3)
{
szServer = args([i].Substring(3);
};
break;
default : sposob_uzycia(); break;
}
}
}
}

public static void Main(string[] args)
{

WalidacjaLiniiPolecen(args);

TcpClient socketForServer = new TcpClient(szServer, DEFAULT_PORT);
NetworkStream nS = socketForServer.GetStream();

StreamWriter sW = new StreamWriter(nS);

StreamReader sR = new StreamReader(nS);

for (int i=0; i<DEFAULT_COUNT; i++)

{

sW.WriteLine(DEFAULT_MESSAGE);

sW.Flush();

string message = sR.ReadLine();

if (message != null)

Console.WriteLine("Serwer odpowiada: {0}", message);

}
sR.Close();
sW.Close();

Jak widaé, opakowanie gniazd w obiektowe klasy TecpListener i TcpClient (przeznaczone do
komunikacji przez TCP/IP), znacznie upraszcza kod odpowiedzialny za wysylanie i odbieranie
danych.

3.8 Wyrazenia regularne

Biblioteki do obstugi wyrazen regularnych sg standardowo dotaczane do wspétczesnych jezykow
programowania. Szczycg sie nimi zwlaszcza jezyki skryptowe, ale jak zobaczymy w kolejnych
przyktadach, wszystko zalezy od dobrej biblioteki.

Czym sa wyrazenia regularne

Pojecie ” wyrazenia reqularne” zwiazane jest z przetwarzaniem tekstu. Wyrazenia regularne two-
rzg pewien szczegdlny jezyk, niezalezny od zadnego jezyka programowania, za pomoca ktorego
definiujemy wzorce, wykorzystywane nastepnie do wyszukiwania, usuwania, czy zamieniania
fragmentow tekstu. Wyrazenia regularne znakomicie upraszaja proces parsowania na przyktad
stron HTML, plikéw XML, logéw systemowych itd.

3. PRZEGLAD BIBLIOTEK PLATFORMY .NET 177

Jezyk wyrazen regularnych

Ponizsza tabela podsumowuje wybrane zasady budowania wyrazen regularnych.

Wyrazenie Opis
. Kazdy znak za wyjatkiem \n
[znaki] Pojedynicze znaki z listy

[znakA-znakB] Znaki z podanego zakresu

Znak tworzacy stowo, réwnowaznie [a-zA-Z_0-9]
Znak nie tworzacy stowa

Znak bialy, réwnowaznie [\n\r\t\f]
Znak inny niz biaty

Cyfra, réwnowaznie [0-9]

Nie-cyfra

Na granicy slowa

Nie na granicy stowa

Zero lub wiecej

Jeden lub wiecej

Zero lub jeden

{n} Dokladnie n-razy

Co najmniej n-razy

Co najmniej n ale nie wigcej niz m

Wo oA ®e g4

A
S S
Sw—f
——

() Podwyrazenie
(?<nazwa>) Podwyrazenie jako nazwa
| Alternatywa

Tak naprawde zaprojektowanie odpowiedniego czesto nie jest latwe i wymaga po prostu
troche wprawy.

Dzielenie tekstu

Pierwszym przyktadem zastosowania wyrazen regularnych jest dzielenie tekstu. Tekst jest dzie-
lony w miejscach, ktére dopasowuja sie do zadanego wyrazenia regularnego.

/* Wiktor Zychla, 2003 */

using System;

using System.Text;

using System.Text.RegularExpressions;

class CExample

{
public static void Main()
{
string sSplit = "Ala ma kota a kot ma Ale";
Regex r = new Regex("[J+");
foreach(string s in r.Split(sSplit))
Console.Write(s+",");
}
}

C:\example>example
Ala,ma,kota,a,kot,ma,Ale,

178 ROZDZIAL C. SWIAT .NET

Wyszukiwanie wzorca

Wyszukiwanie zadanego wyrazeniem regularnym wzorca w zadanym tekécie mozliwe jest dzigki
obiektom Match i MatchCollection.

/* Wiktor Zychla, 2003 */

using System;

using System.Text;

using System.Text.RegularExpressions;

class CExample
{
public static void Main()
{
string sFind = "Dobrze jest dojsc do domu radosnie i wydobrzec do rana";
Regex r = new Regex("(do)|(a)");

for (Match m = r.Match(sFind); m.Success; m = m.NextMatch())
Console.Write("’{0}’ na pozycji {1}\n", m.Value, m.Index);
}
}

C:\example>example
’do’ na pozycji 12
’do’ na pozycji 18
’do’ na pozycji 21
’a’ na pozycji 27

’do’ na pozycji 28
’do’ na pozycji 39
’do’ na pozycji 47
’a’ na pozycji 51

’a’ na pozycji 53

Edycja, usuwanie tekstu

Dzieki metodzie Replace wyrazen regularnych mozna uzyé¢ do zastepowania tekstu.

/* Wiktor Zychla, 2003 */

using System;

using System.Text;

using System.Text.RegularExpressions;

class CExample

{
public static void Main()
{
string sFind = "Dobrze jest dojsc do domu radosnie i wydobrzec do rana";
Regex r = new Regex("(do)|(a)");
Console.Write(r.Replace(sFind, ""));
}
}

C:\example>example
Dobrze jest jsc mu rsnie i wybrzec rn

3.9 Serializacja

O serializacji méwimy wtedy, gdy instancja obiektu jest sktadowana na nosniku zewnetrznym.
Mechanizm ten wykorzystywany jest rowniez do transferu zawartosci obiektéw miedzy odlegtymi
srodowiskami. Oczywiscie tatwo wyobrazi¢ sobie mechanizm zapisu zawartosci obiektu przygo-
towany przez programiste, ale serializacja jest mechanizmem niezaleznym od postaci obiektu i
od tego, czy programista przewidzial mozliwosé zapisu zawartosci obiektu czy nie.

3. PRZEGLAD BIBLIOTEK PLATFORMY .NET 179

Serializacja binarna

Aby zawarto$¢ obiektu mogta byé sktadowana w postaci binarnej, klasa musi spetnia¢ kilka
warunkéw:

e Musi by¢ oznakowana artybutem Serializable
e Musi implementowaé interfejs ISerializable
e Musi mie¢ specjalny konstruktor do deserializacji

/* Wiktor Zychla, 2003 */

using System;

using System.IO;

using System.Runtime.Serialization;

using System.Runtime.Serialization.Formatters.Binary;
using System.Runtime.Serialization.Formatters.Soap;

namespace NExample
{
[Serializable()]
public class CObiekt : ISerializable
{
int v;
DateTime d;
string s;

public CObiekt(int v, DateTime d, string s)
{
this.v = v; this.d = d; this.s = s;

}

// konstruktor do deserializacji
public CObiekt(SerializationInfo info, StreamingContext context)

{
v = (int)info.GetValue("v", typeof(int));
d = (DateTime)info.GetValue("d", typeof(DateTime));
s = (string)info.GetValue("s", typeof(string));

}

// serializacja
public void GetObjectData(SerializationInfo info,
StreamingContext context)
{
info.AddValue("v", v);
info.AddValue("d", d);
info.AddValue("s", s);

}
public override string ToString()
{
return String.Format("{0}, {1:d}, {2}", v, d, s);
}

}

public class CMain
{
static void SerializujBinarnie()

{

Console.WriteLine("Serializacja binarna");

CObiekt o = new CObiekt(5, DateTime.Now, "Ala ma kota");
Console.WriteLine(o);

// serializuj

Stream s = File.Create("binary.dat");
BinaryFormatter b = new BinaryFormatter();
b.Serialize(s, o);

180 ROZDZIAL C. SWIAT .NET

s.Close();

// deserializuj
Stream t = File.Open("binary.dat", FileMode.Open);
BinaryFormatter ¢ = new BinaryFormatter();

CObiekt p = (CObiekt)c.Deserialize(t);
t.Close();
Console.WriteLine("Po deserializacji: " + p.ToString());
}
public static void Main()
{
SerializujBinarnie();
}
}

}

c:\Example>example.exe

Serializacja binarna

5, 2003-04-24, Ala ma kota

Po deserializacji: 5, 2003-04-24, Ala ma kota

Serializacja SOAP

Serializacja binarna ma jak wida¢ wady (wymaga specjalnie przygotowanej klasy), ma réwniez
zalety (jest szybka, plik wynikowy zajmuje niewiele miejsca).

Alternatywne podejscie mozliwe jest dzieki mechanizmom SOAP (Simple Object Access Pro-
tocol). SOAP jest protokotem do wymiany danych, opartym o no$nik XML, niezalezny od sys-
temu operacyjnego. Serializacja SOAP jest wolniejsza niz serializacja binarna, wynik zajmuje
wiecej miejsca (w koncu to plik XML), jednak w ten sposéb mozna serializowa¢ dowolne obiekty.

/* Wiktor Zychla, 2003 */

using System;

using System.IO;

using System.Runtime.Serialization;

using System.Runtime.Serialization.Formatters.Binary;
using System.Runtime.Serialization.Formatters.Soap;

namespace NExample
{
[Serializable()]
public class CObiekt
{
int v;
DateTime d;
string s;

public CObiekt(int v, DateTime d, string s)
{
this.v = v; this.d = d; this.s = s;

}

public override string ToString()
{
return String.Format("{0}, {1:d}, {2}", v, d, s);
}
}

public class CMain

{
static void SerializujSOAP()
{

Console.WriteLine("Serializacja SOAP");

CObiekt o = new CObiekt(5, DateTime.Now, "Ala ma kota");
Console.WriteLine(o);

3. PRZEGLAD BIBLIOTEK PLATFORMY .NET 181

// serializuj

Stream s = File.Create("binary.soap");
SoapFormatter b = new SoapFormatter();
b.Serialize(s, o);

s.Close();

// deserializuj

Stream t = File.Open("binary.soap", FileMode.Open);
SoapFormatter ¢ = new SoapFormatter();
CObiekt p = (CObiekt)c.Deserialize(t);
t.Close();
Console.WriteLine("Po deserializacji: " + p.ToString());

}

public static void Main()

{
SerializujSO0AP();

}

}

}

c:\Example>example.exe

Serializacja binarna

5, 2003-04-24, Ala ma kota

Po deserializacji: 5, 2003-04-24, Ala ma kota

3.10 Wotanie kodu niezarzadzanego

Wspolpraca z juz istniejacymi bibliotekami jest bardzo waznym elementem platformy .NET.
Programista moze nie tylko wotaé funkcje z natywnych bibliotek, ale réwniez korzystaé z biblio-
tek obiektowych COM.

/* Wiktor Zychla, 2003 */
using System;
using System.Runtime.InteropServices;

namespace NExample

{
public class CMain
{
[D11Import ("user32.d1l", EntryPoint="MessageBox")]
public static extern int MsgBox(int hWnd, String text,
String caption, uint type);
public static void Main()
{
MsgBox(0, "Witam", "", 0);
}
}
}

Wyglada to dos¢ prosto, jednak w rzeczywisto$ci wymaga starannego przekazania parame-
trow do funkcji napisanej najczedciej w C, a nastepnie odebrania wynikéw. Kazdy typ w Swiecie
.NET ma domyslnie swojego odpowiednika w kodzie niezarzadzanym, ktéry bedzie uzywany
w komunikacji miedzy oboma swiatami. Na przykiad domyslny sposéb przekazywana zmiennej
zadeklarowanej jako string to LPSTR (wskaZnik na tablice znakéw). Programista moze dosé
szczegbtowo zapanowaé¢ nad domyélnymi konwencjami dzieki atrybutowi MarshalAs.

/* Wiktor Zychla, 2003 */
using System;
using System.Runtime.InteropServices;

182

namespace NExample

{

public class CMain

{

ROZDZIAE C. SWIAT .NET

[D11Import("user32.d1l", EntryPoint="MessageBox")]
public static extern int MsgBox(int hWnd,

public stat
{

MsgBox(0, "Witam", "", 0);

}
}
}

[MarshalAs (UnmanagedType .LPStr)]
String text,

String caption, uint type);

ic void Main()

Aby ustali¢ w ten sposéb typ wartosci zwracanej z funkcji nalezaloby napisac:

[D11Import("user32.d1l", EntryPoint="MessageBox")]
[return: MarshalAs(UnmanagedType.I4)]
public static extern int MsgBox(int hWnd,

Mozliwos¢ tak doktadnego wplywania na postaé¢ parametréw jest szczegdlnie przydatna w ty-
powym przypadku przekazywania jakiej$ struktury do jakiejs funkcji, na przyktad z Win32API.
Przyktadowa struktura z Win32API

typedef struct tagLOGFONT

{
LONG
LONG
LONG
LONG
LONG
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

1fwidth

1fItali
1fUnder

1fHeight;

1fEscapement;
1fOrientation;
1fWeight;

C;
line;

1fStrikeOut;
1fCharSet;
1f0utPrecision;
1fClipPrecision;
1fQuality;
1fPitchAndFamily;

TCHAR 1fFaceName [LF_FACESIZE];

} LOGFONT;

powinna by¢ przettumaczona tak, aby zachowaé kolejnos¢ utozenia pdl oraz ograniczong
dlugos¢ napisu.

[StructLayout (LayoutKind.Sequential)]
public class LOGFONT

{
public
public
public
public
public
public
public
public
public
public
public
public
public
public

int
int
int
int
int
byte
byte
byte
byte
byte
byte
byte
byte

const int LF_FACESIZE

1fHeight;
1fWidth;
1fEscapement;
1fOrientation;
1fWeight;
1fItalic;
1fUnderline;
1fStrikeQOut;
1fCharSet;
1f0OutPrecision;
1fClipPrecision;
1fQuality;
1fPitchAndFamily;

32;

3. PRZEGLAD BIBLIOTEK PLATFORMY .NET 183

[MarshalAs (UnmanagedType.ByValTStr, SizeConst=LF_FACESIZE)]
public string lfFaceName;

Czasami nawet konieczne jest doktadne wyznaczenie potozenia wszystkich pdl struktury.

[StructLayout (LayoutKind.Explicit, Size=16, CharSet=CharSet.Ansi)]

public class MySystemTime

{
[FieldOffset (0)]public ushort wYear;
[FieldOffset(2)]public ushort wMonth;
[FieldOffset(4)]public ushort wDayOfWeek;
[FieldOffset(6)]public ushort wDay;
[FieldOffset(8)]public ushort wHour;
[FieldOffset (10)]public ushort wMinute;
[FieldOffset (12)]public ushort wSecond;
[FieldOffset(14)public ushort wMilliseconds;

Funkcje zwrotne

Funkcje Win32Api, ktére zwracaja wiecej niz jeden element, najczesciej korzystaja z mechani-
zmu funkcji zwrotnych. Programista przekazuje wskaznik na funkcje zwrotna, ktora jest wywo-
lywana dla kazdego elementu na licie wynikéw (tak dziala na przyklad EnumWindows, czy
EnumDesktops).

BOOL EnumDesktops {
HWINSTA hwinsta,
DESKTOPENUMPROC 1lpEnumFunc,
LPARAM 1Param

}

Parametr typu HWINSTA mozna przekazaé¢ jako IntPtr, zas LPARAM jako int. Wskaznik na
funkcje

BOOL CALLBACK EnumDesktopProc (
LPTSTR 1lpszDesktop, LPARAM 1lParam
)

nalezy zamieni¢ na delegata

delegate bool EnumDesktopProc(
[MarshalAs (UnmanagedType.LPTStr)]
string desktopName, int 1Param

)

Definicja funkcji EnumDesktops bedzie wiec wygladaé tak:

[D11Import("user32.d11"), CharSet = CharSet.Auto)]
static extern bool EnumDesktops (

IntPtr windowStation,

EnumDesktopProc callback,

int 1Param

3.11 Odsmiecacz

Mechanizm od$miecania funkcjonuje samodzielnie, bez kontroli programisty. W szczegdlnych
sytuacjach od$miecanie moze by¢ wymuszone przez wywotanie metody obiektu od$miecacza:

GC.Collect();

184 ROZDZIAE C. SWIAT .NET

Nalezy pamietaé o tym, ze destruktory obiektéow sa wykonywane w osobnym watku, dlatego
zakonczenie metody Collect nie oznacza, ze wszystkie destruktory sa juz zakonczone. Mozna
oczywiscie wymusi¢ oczekiwanie na zakonczenie si¢ wszystkich czekajacych destruktoréow:

GC.Collect();
GC.WaitForPendingFinalizers();

Dziatanie odémiecacza jest do$¢ proste. W momencie, w ktérym aplikacji brakuje pamieci,
odémiecacz rozpoczyna przegladanie wszystkich referencji od zmiennych statycznych, global-
nych i lokalnych, oznaczajac kolejne obiekty jako uzywane. Wszystkie obiekty, ktére nie zostana
oznaczone, moga zosta¢ usuniete, bowiem zaden aktualnie aktywny obiekt z nich nie korzysta.

Taki sposdb postepowania, mimo ze poprawny, bytby doéé¢ powolny. Dlatego w rzeczywistosci
wykorzystuje sie dodatkowo pojecie tzw. generacji. Chodzi o to, ze obiekt tuz po wykreowaniu
nalezy do zerowej generacji obiektow, czyli obiektéw ”"najmtodszych”. Po ”przezyciu” odsmieca-
nia, obiektom inkrementuje si¢ numery generacji. Kiedy od$miecacz zabiera sie za przegladanie
obiektéw, zaczyna od obiektéw najmlodszych, dopiero jesli okaze sig, ze pamieci nadal jest zbyt
mato, usuwa obiekty coraz starsze.

Idea ta ma proste uzasadnienie - obiektami najmlodszymi najczedciej beda na przyktad
zmienne lokalne funkcji czy blokéw kodu. Te zmienne powinny by¢ usuwane najszybciej. Zmienne
statyczne, kilkukrotnie wykorzystane w czasie dzialania programu, beda usuwane najpoznie;j.

using System;

public class CObiekt

{
private string name;
public CObiekt(string name) { this.name = name; }
override public string ToString() { return name; }
}
namespace Example
{
public class CMainForm
{

const int IL = 3;

public static void Main()

{
Console.WriteLine("Maksymalna generacja odsmiecacza " + GC.MaxGeneration);
CObiekt[] t = new CObiekt[IL];
Console.WriteLine("Tworzenie obiektow.");
for (int i=0; i<IL; i++)
{
t[i] = new CObiekt("obiekt " + i);
Console.WriteLine("{0}, generacja {1}", t[i], GC.GetGeneration(t[i]));
}
// sprébuj usuwaé nieuzywane obiekty
GC.Collect();
GC.WaitForPendingFinalizers();
Console.WriteLine("Usuwanie obiektow.");
for (int i=0; i<IL; i++)
{
Console.WriteLine("{0}, generacja {1}", t[i], GC.GetGeneration(t[i]));
t[i] = null;
GC.Collect();
GC.WaitForPendingFinalizers();
}
}

3. PRZEGLAD BIBLIOTEK PLATFORMY .NET 185

}

C:\Example>example

Maksymalna generacja odsmiecacza 2
Tworzenie obiektow.

obiekt O, generacja O

obiekt 1, generacja O

obiekt 2, generacja 0O

Usuwanie obiektow.

obiekt O, generacja 1

obiekt 1, generacja 2

obiekt 2, generacja 2

3.12 DirectX.NET
Czym jest DirectX.NET

Pojawienie sie w 1995 pierwszej wersji DirectX, przeznaczonej dla nowo zaprojektowanego sys-
temu operacyjnego Windows 95, oznaczato ostateczne otwarcie si¢ $wiata Windows na zaawan-
sowane aplikacje multimedialne. Celem projektantéw DirectX bylo stworzenie jednolitego in-
terfejsu programowania, ktéry pozwoliltby programistom tworzyé kod dajacy sie uruchomié na
dowolnie skonfigurowanym PC-cie.

Niemal od samego poczatku DirectX byl przez programistéw mocno krytykowany. Krytyka
byla szczegélnie zjadliwa, gdy poréwnywano DirectX do OpenGL - mimo dosé¢ duzych réznic
technologicznych, programistom trudno bylo wyttumaczy¢ dlaczego kod w DirectX musi by¢ tak
brzydki i zagmatwany w poréwnaniu z analogicznym kodem w OpenGL.

Pojawienie si¢ platformy .NET i jezyka C# dawalo nadzieje na zmiane tej sytuacji. Jednak
okazalo sig, ze programisci owszem, moga korzystaé¢ z DirectX, ale wymaga to warstwy posred-
niej miedzy DirectX 8 zbudowanym w modelu COM, a kodem zarzadzanym. Dopiero pojawienie
sie DirectX 9 oznacza prawdziwy przelom. Zgodnie z obietnicami, Microsoft dotaczyt do najnow-
szej wersji DirectX 9.0 zestaw bibliotek, umozliwiajacych korzystanie z DirectX bezposrednio z
poziomu kodu zarzadzanego. Biblioteki te nazwano DirectX.NET.

Mozliwos¢é bezposredniego operowania obiektami DirectX z poziomu kodu zarzadzanego ma
mnéstwo zalet, m.in.:

e kod w pelni zarzadzany jest znacznie prostszy, interfejs Direct X.NET jest bardzo intuicyjny

e kod zarzadzany oznacza brak zmartwien zwigzanych z obstuga bledéw i zarzadzaniem
pamiecia

e brak posredniej warstwy miedzy COM a kodem zarzadzanym oznacza wicksza szybkosé
kodu DirectX

DirectX.NET jest nareszcie porzadnym interfejsem zorientowanym obiektowo. Do tej pory
interfejs DirectX byt przedziwna mieszaning funkcji globalnych, makr i klas, a wszystko to
podlane bylo ciezkostrawnym sosem modelu COM.

Dos¢ juz magicznych funkcji do operacji na obiektach. Teraz zamiast:

D3DXMATRIX turnLeft;
D3DXMatrixRotationY(&turnLeft, -10.0);

napiszemy:

Matrix turnLeft = Matrix.RotationY(-10.0f);

Dos¢ juz magicznych stalych, teraz zamiast:

186 ROZDZIAL C. SWIAT .NET

_device->SetRenderState (D3DRS_LIGHTING, true);

napiszemy:

_device.RenderState.Lighting = true;

Dos¢ ciaglych HRESULT6w i makr SUCCEEDED/FAILED. Teraz bledy zgtaszane sa za pomo-
ca wyjatkow. Doéé tysiecy typow danych, jak choéby D3DCOLOR - biblioteki DirectX.NET sa
zintegrowane z biblioteka standardowa .NET, a to oznacza ze teraz uzyjmy po prostu Sys-
tem. Drawing. Color.

A jak jest z wydajnoscia? Zaskakujaco dobrze - zarzadzany DirectX jest niewiele lub pra-
wie wcale wolniejszy od niezarzadzanego. Decydujace znaczenie dla predkosci dzialania kodu
ma najczesciej i tak wydajnosé akceleratora, zas predkosé wykonywania sie samego kodu jest
poréwnywalna.

Struktura DirectX.NET

Zarzadzane biblioteki DirectX sg wspélne dla wszystkich jezykow platformy .NET. Nalezy pa-
mietaé o tym, ze tylko w C4++ mozna tworzy¢ kod DirectX ”po staremu”, czyli nie korzystajac
z obiektowych bibliotek zarzadzanych.

DirectX.NET sklada sie z nastepujacych komponentow:

Direct3D - interfejs do programowania efektéw 3D
DirectDraw - niskopoziomowy dostep do grafiki 2D

DirectInput - obstuga réznych urzadzen wejéciowych, tacznie z pelnym wsparciem technologii
force-feedback.

DirectPlay - wsparcie dla gier sieciowych gier wieloosobowych
DirectSound - tworzenie i przechwytywanie dzwigki

Audio Video Playback - kontrola nad odtwarzaniem zasobdéw audio i video

Instalacja DirectX.NET

Biblioteki Direct X.NET instalowane sa automatycznie podczas instalacji DirectX 9. Ich obecno$é
mozna zbadaé zagladajac do katalogu Microsoft. NET w katalogu systemowym Windows. Oprécz
katalogu Framework, gdzie domy$lnie instaluje sie .NET Framework, powinien by¢ tam réwniez
katalog Managed DirectX. Programisci powinni pamieta¢ o wybraniu odpowiedniej wersji Di-
rectX 9: oprocz wersji standardowej, w DirectX 9 SDK znajduje sie specjalna wersja umozliwia-
jaca réwniez Sledzenie kodu DirectX z poziomu $rodowiska (po zainstalowaniu SDK obie wersje
znajduja si¢ odpowiednio w ./DX9SDK/SDKDev/Retail lub ./DX9SDK/SDKDev/Debug).

Natychmiast po zainstalowaniu DirectX9 SDK mozna zajrzeé do katalogu ./Samples, gdzie
znajduja sie przyktadowe programy w C++, C# i VB.NET. Spora czes¢ programéw pojawia sie
we wszystkich tych jezykach, mozna wiec poréwnaé nie tylko przejrzystosé kodu, ale i predkosé
dziatania. Przyktadéw jest duzo i sg naprawde interesujace.

Programy DirectX.NET moga by¢ kompilowane zaréwno z poziomu srodowiska Visual Studio
.NET, bezpoérednio z linii polecen ale takze z poziomu na przyktad Sharp Developa. Dla celéow
kompilacji z linii polecen przygotujmy prosty skrypt (nazwijmy go compile.bat):

csc.exe "/1ib:C:\WINNT\Microsoft.NET\Managed DirectX\v4.09.00.0900"
/r:Microsoft.DirectX.d1ll 1

3. PRZEGLAD BIBLIOTEK PLATFORMY .NET 187

X Dolphin¥5: Tweening Verte:

Filz :
12.22 fps (404x349), XBR8GEBBEE (D16)
HAL (sw vp): ATl Technologies Inc. 3D RAGE PRO AG

Rysunek C.5: Jeden z przyktadowych programéw z DirectX 9 SDK

188 ROZDZIAL C. SWIAT .NET

Skrypt ten bedziemy wolaé z parametrem zawierajacym nazwe kompilowanego programu.
Jedli kompilowany program bedzie wymagal referencji do wigkszej ilosci bibliotek, wystarczy
doda¢ je jako kolejne parametry.

Pierwszy program w DirectX.NET

Pierwszy i najprostszy programem jaki napiszemy bedzie tworzytl powierzchnie DirectDraw i
kopiowal jej zawartos¢ do okna. Tak naprawde bedzie nam potrzebna jedynie instancja obiektu
urzadzenia DirectDraw oraz obiektu opisujacego powierzchnie DirectDraw.

private Device draw = null;
private Surface primary null;

Oba obiekty sa tworzone i kojarzone - urzadzenie z oknem, a powierzchnia z urzadzeniem:

draw = new Device();
draw.SetCooperativeLevel (this, CooperativeLevelFlags.Normal);

SurfaceDescription description = new SurfaceDescription();
description.SurfaceCaps.PrimarySurface = true;
primary = new Surface(description, draw);

Poniewaz powierzchnia DirectDraw jest obiektem, wszelkie operacje takie jak rysowanie,
blokowanie czy zamiana stron sa po prostu metodami odpowiedniego obiektu. Prosty ksztalt
narysujemy wiec za pomocg metody:

primary.DrawCircle(....);

a tekst za pomocag metody:

primary.DrawText(...);

Interfejs obiektowy sprawdza sie zwlaszcza w przypadku Srodowisk z autouzupelnianiem
kodu - tam programista nie musi nawet zaglada¢ do dokumentacji biblioteki, poniewaz wszystkie
metody obiektu pojawiag sie natychmiast po wpisaniu kropki po nazwie obiektu.

Ponizszy przyklad mozna bez trudu rozbudowaé o prosta animacje, doda¢ podwdjne bufo-
rowanie oraz wyswietlanie obrazu na pelnym ekranie. Proponuje potraktowaé to jako ¢wiczenie,
zerkajac w razie potrzeby do przyktadow z SDK.

/* Wiktor Zychla, 2003 */

using System;

using System.Drawing;

using System.ComponentModel;

using System.Windows.Forms;

using Microsoft.DirectX;

using Microsoft.DirectX.DirectDraw;

namespace DirectXTutorial

{
public class DirectDrawForm : System.Windows.Forms.Form
{
private Device draw = null;
private Surface primary = null;
private Clipper clip = null;
static void Main()
{
Application.Run(new DirectDrawForm());
}

public DirectDrawForm()

3. PRZEGLAD BIBLIOTEK PLATFORMY .NET

this.ClientSize = new System.Drawing.Size(292, 266);

this.Name = "DirectDraw w oknie";
this.Text = "DirectDraw w oknie";
this.Resize += new System.EventHandler (this.DDForm_SizeChanged);

this.SizeChanged += new System.EventHandler (this.DDForm_SizeChanged) ;

this.Paint +=

new System.Windows.Forms.PaintEventHandler(this.DDForm_Paint);

}

private void DDForm_Paint(object sender, System.Windows.Forms.PaintEventArgs e)

{

}

private void DDForm_SizeChanged(object sender, System.EventArgs e)

{

}

draw = new Device();

draw.SetCooperativeLevel (this, CooperativeLevelFlags.Normal);

CreateSurfaces();

Draw();

Draw();

private void Draw()

{

}

if (primary == null) return;
if (WindowState == FormWindowState.Minimized) return;

Point p = this.PointToScreen(new Point(0, 0));
primary.ColorFill(Color.Blue);
primary.ForeColor = Color.White;

primary.DrawText(p.X, p.Y, "Pierwszy program w DirectX.NET", false);

private void CreateSurfaces()

{

SurfaceDescription description = new SurfaceDescription();

description.SurfaceCaps.PrimarySurface = true;
primary = new Surface(description, draw);
clip = new Clipper(draw) ;

clip.Window = this;

primary.Clipper = clip;

Direct3D

189

Direct3D jest najciekawsza czescia Direct X.NET. W kazdej kolejnej wersji DirectX programisci
dostaja do rak coraz potezniejsze narzedzia do tworzenia grafiki 3D. W wersji 9 mozliwoéci sa
przeogromne: od tworzenia prostych obiektéw, modelowania Swiatla, tekstur, przez manipulacje
siatkami obiektéw (vertex shading) az do zaawansowanego nakladania tekstur (pizel shading).
Aby przekonaé sie jak sprawuje si¢ obiektowy interfejs Direct3D, napiszemy prosty przyktad.
Z pliku zaladujemy opis siatki obiektu 3d (mesh), dodamy 2 $wiatla, kamere i na koniec ozywimy
calos¢ dodajac jakis ruch.

/* Wiktor Zychla, 2003 */

using System;

using System.Drawing;

using System.Windows.Forms;

using Microsoft.DirectX;

using Microsoft.DirectX.Direct3D;

namespace DirectXTutorial

{

190 ROZDZIAL C. SWIAT .NET

=10 x|

Rysunek C.6: Tréjwymiarowy $wiat Direct3D

public class DirectXForm : Form

{
Device device;
Mesh mesh;
int meshParts = 0;

Material material;
float rotationAngle = O;
PresentParameters pp;

public DirectXForm()

{
this.Size = new Size (300, 300);
this.Text = "DirectX.NET";

}
bool InitializeGraphics()
{
try
{
pp = new PresentParameters();
pp.Windowed = true;
pp.SwapEffect = SwapEffect.Discard;
pp.EnableAutoDepthStencil = true;
pp.AutoDepthStencilFormat = DepthFormat.D16;
device = new Device(0, DeviceType.Hardware, this,
CreateFlags.SoftwareVertexProcessing, pp);
device.DeviceReset += new EventHandler(OnDeviceReset);
InitializeD3D0Objects();
return true;
}
catch (DirectXException)
{
return false;
}
}

void InitializeD3DObjects()

PRZEGLAD BIBLIOTEK PLATFORMY .NET

CreateMesh();
CreateMaterials();
CreateLights();
InitializeView();

}

void OnDeviceReset(object o, EventArgs e)

{
InitializeD3DObjects();
}

protected override void OnKeyPress(System.Windows.Forms.KeyPressEventArgs

{
if ((int) (byte)e.KeyChar == (int)Keys.Escape)
this.Close(); // zakorncz
}

void CreateMesh()

{
//mesh = Mesh.Teapot(device);
//meshParts = 1;

ExtendedMateriall[] m = null;

mesh = Mesh.FromFile("heli.x", O, device, out m);
meshParts = m.Length;
}

void CreateMaterials()

{
material = new Material();
material.Ambient = Color.FromArgb(0, 80, 80, 80);
material.Diffuse = Color.FromArgb(0, 200, 200, 200);
material.Specular = Color.FromArgb(0, 255, 255, 255);
material.SpecularSharpness = 128.0f;

}

void CreateLights()

{
Light 1ightO = device.Lights[0];
Light lightl = device.Lights[1];

light0.Type = LightType.Directional;
lightO.Direction = new Vector3(-1, 1, 5);
lightO0.Diffuse = Color.Blue;
lightO.Enabled = true;

lightO.Commit () ;

lightl.Type = LightType.Spot;

lightl.Position = new Vector3(-10, 10, -50);
lightl.Direction = new Vector3(10, -10, 50);
lightl.InnerConeAngle = 0.5f;
lightl.0uterConeAngle 1.0f;

lightl.Diffuse Color.LightBlue;
lightl.Specular = Color.White;

lightl.Range = 1000.0f;
lightl.Falloff = 1.0f;
lightl.AttenuationO = 1.0f;

lightl.Enabled = true;
lightl.Commit();

device.RenderState.Lighting = true;
device.RenderState.DitherEnable = false;
device.RenderState.SpecularEnable = true;

device.RenderState.Ambient = Color.FromArgb(0, 20, 20, 20);

}

void InitializeView()

{

191

192 ROZDZIAE C. SWIAT .NET

Vector3 eyePosition = new Vector3(0, 0, -20);
Vector3 direction = new Vector3(0, 0, 0);
Vector3 upDirection = new Vector3(0, 1, 0);

Matrix view = Matrix.LookAtLH(eyePosition, direction, upDirection);
device.SetTransform(TransformType.View, view);

float fieldOfView = (float)Math.PI/4;

float aspectRatio = 1.0f;
float nearPlane = 1.0f;
float farPlane = 500.0f;

Matrix projection = Matrix.PerspectiveFovLH(fieldOfView,
aspectRatio, nearPlane, farPlane);
device.SetTransform(TransformType.Projection, projection);

}

void AdvanceFrame()
{
rotationAngle += 0.02f;
rotationAngle %= Geometry.DegreeToRadian(360);

Matrix rotateX = Matrix.RotationX(rotationAngle);
Matrix rotateY = Matrix.RotationY(rotationAngle);
Matrix world = Matrix.Multiply(rotateX, rotateY);
device.SetTransform(TransformType.World, world);

}

void Render()
{
device.Clear(ClearFlags.Target | ClearFlags.ZBuffer,
Color.Black.ToArgb(), 1.0f, 0);
device.BeginScene() ;
device.Material = material;

for (int i=0; i<meshParts; i++)
mesh.DrawSubset (i) ;

device.EndScene();
device.Present();

}
public static void Main()
{
using (DirectXForm dxForm = new DirectXForm())
{
if (!dxForm.InitializeGraphics())
{
MessageBox.Show("Blad inicjowania Direct3D.");
return;
}
dxForm.Show() ;
DateTime start = DateTime.Now;
int frame = 0;
while (dxForm.Created)
{
frame++;
dxForm.AdvanceFrame() ;
dxForm.Render() ;
dxForm.Text = String.Format("FPS: {0:N}",
frame/((TimeSpan) (DateTime.Now-start)) .TotalSeconds);
Application.DoEvents() ;
}
}
}

4. APLIKACJE OKIENKOWE 193

Przyjrzyjmy sie przyktadowemu fragmentowi, ktéry tworzy macierze widoku i perspektywy
i po raz kolejny zwroémy uwage jak elegancko spisuje sie tutaj model obiektowy DirectX.NET:

Vector3 eyePosition = new Vector3(0, 0, -20);
Vector3 direction = new Vector3(0, 0, 0);

Vector3 upDirection = new Vector3(0, 1, 0);

Matrix view = Matrix.LookAtLH(eyePosition, direction, upDirection);
device.SetTransform(TransformType.View, view);

float fieldOfView (float)Math.PI/4;

float aspectRatio = 1.0f;
float nearPlane = 1.0f;
float farPlane = 500.0f;

Matrix projection = Matrix.PerspectiveFovLH(fieldOfView, aspectRatio,
nearPlane, farPlane);
device.SetTransform(TransformType.Projection, projection);

Na uwage zastuguje takze nieco inna niz w typowej aplikacji okienkowej konstrukcja petli
glownej programu, dzieki ktérej uzyskuje sie maksymalna mozliwa wydajnos¢ animacji.
Otoz w zwyktlej aplikacji okienkowej w C# w funkcji Main pisze sie najczesciej po prostu:

Application.Run(new fMain());

Jednak przy takiej konstrukcji aby uzyska¢ jakikolwiek ruch musielibySmy utworzy¢ zegar,
ustawi¢ go na jaki$ kwant czasu i podczas obstugi zdarzenia zegara tworzy¢ kolejnag ramke ani-
macji. Takie rozwiazanie ma duza wade: zakladamy bowiem ze kwant czasu zaprogramowanego
zegara odpowiada mniej wiecej mozliwosci tworzenia plynnego obrazu przez maszyne. O wiele
lepiej byloby tworzyé¢ obraz natychmiast po tym, kiedy skonczy sie tworzenie poprzedniej ramki.

W pierwszej chwili wydaje sie, ze wymagatoby to zejScia az na poziom petli obstugi komu-
nikatéw, jednak nieoczekiwane, jest to mozliwe w C# na poziomie kodu obiektowego:

using (DirectXForm dxForm = new DirectXForm())

{
dxForm.Show() ;

while (dxForm.Created)
{
dxForm.AdvanceFrame () ;
dxForm.Render () ;

Application.DoEvents();
}
}

Podobnie jak w przypadku DirectDraw, proponuje ten prosty przykiad potraktowaé jako
szablon do dalszych eksperymentéw.

4 Aplikacje okienkowe

Jak widzieliémy w poprzednich rozdziatach, programowanie Windows nie polega wylacznie na
tworzeniu okien, jednak z pewnoscig to wlasnie temu zagadnieniu programista poswieca zwykle
sporo czasu. Od dobrej biblioteki wspierajacej tworzenie okien i wtasnych komponentéw naleza-
toby oczekiwaé prostoty i spojnosci. Z perspektywy historycznej mozna powiedzieé, ze Win32Api
jest interfejsem spojnym jednak do$¢ zmudnym. W kolejnych latach powstawaly wiec kolejne wy-
specjalizowane bibilioteki, wspierajace tworzenie aplikacji okienkowych. Duza populanosé zdobyt
sobie réwniez Visual Basic, w ktérym projektowanie interfejsu uzytkownika bylo wyjatkowo pro-
ste, jednak interfejs programowania byl bardzo niespdjny - czesto podobne czynnoéci w réznych

kontekstach realizowane byly za pomoca zupelnie réznych mechanizméw!®.

18Visual Basic z czaséw przed VB.NET jest réwniez doéé staby jako jezyk programowania, poniewaz ma ubogi
i nieprzemys$lany model obiektowy.

194 ROZDZIAE C. SWIAT .NET

Biblioteka System.Windows.Forms, ktéra umozliwia tworzenie aplikacji okienkowych w
swiecie .NET jest zaroéwno prosta jak i spdjna. Nie sprawi klopotu ani nowicjuszowi, ktory
chcialby nauczyé sie tworzyé okna jak najszybciej, ani profesjonaliscie, ktory znajac utomnosci
innych interfejséw szybko nauczy sie korzystaé z zaawansowanych mechanizméw biblioteki Sys-
tem. Windows. Forms. Tworzenie interfejsu uzytkownika jest réwnie proste jak w ”starym” Visual
Basicu, za$ kontrola, jaks programista ma nad oprogramowywanym interfejsem, doréwnuje tej,
jaka daje Win32Api.

System.Windows.Forms, jako interfejs w pelni obiektowy, najbardziej przypomina bi-
blioteki okienkowe Javy. Dla programisty najwazniejsze jest to, ze caly opis komponentu (okna,
kontrolki) jest czescia kodu, dzieki czemu kod nie jest w zaden sposéb zwiazany z jakim$ srodowi-
skiem developerskim. Przy odrobinie wprawy mozna z powodzeniem pisa¢ programy okienkowe
uzywajac dowolnego edytora tekstu, nawet zwyktego Notatnika.

Interfejs obiekty oznacza réwniez, ze funkcjonalnoéé kazdego komponentu mozna bardzo
tatwo rozszerzyé¢ tworzac w razie potrzeby klase potomng dziedziczaca z niego. Programista
moze réwniez w latwy sposéb tworzyé wilasne komponenty wizualne (kontrolki), do ktérych
moze zaprojektowaé wtasne zdarzenia.

4.1 Tworzenie okien

Przypomnijmy sobie najprostszy program ze strony 18, ktory tworzyl zwyktle, proste okno na
pulpicie. Jego odpowiednik w $wiecie .NET wyglada tak:

/* Wiktor Zychla, 2003 */
using System;
using System.Windows.Forms;

namespace Example

{
public class CMainForm : Form
{
public CMainForm()
{
this.Text = "Okna w Swiecie .NET";
}
public static void Main()
{
Application.Run(new CMainForm());
}
}
}

Réznica w przejrzystosci programu jest kolosalna! Interfejs biblioteki System.Windows.Forms
jest w pelni obiektowy. Utworzenie okna polega po prostu na utworzeniu klasy dziedziczacej z
klasy Form. Klasa ta zamyka w sobie calg funkcjonalno$é jakiej potrzeba aby obstuzy¢ proste
okno: obiekt ktéry utworzyliSmy w przyktadowym programie powyzej ma kilkadziesiat propercji
i metod oraz obstuguje kilkadziesiat zdarzen.

Powyzszy kod moze w pierwszej chwili wydawaé sie dosé¢ zaskakujacy, bowiem nie ma tu
nigdzie petli obstugi komunikatéw. Okazuje sie, ze petla obstugi komunikatéw jest ukryta w
funkcji Run klasy Application. Dodatkowym, opcjonalnym parametrem metody Run jest
obiekt, bedacy glidwnym oknem aplikacji. Aplikacja automatycznie zakonczy sie, kiedy gléwne
okno aplikacji zostanie zniszczone.

Oczywiscie taka konstrukcja utrudnia nieco sterowanie aplikacja wtedy, gdy powinna ona
zajmowadl sie czym$ oprécz przetwarzania komunikatéw. Na stronie 25 widzieliémy jak radzié
sobie z takim problemem w Win32Api (zamiast GetMessage uzyliSmy PeekMessage), zas na
stronie 193 pokazano jak wyglada analogiczna konstrukcja w $wiecie NET.

4. APLIKACJE OKIENKOWE 195

T

Pole tekstowe

Rysunek C.7: Proste okno w éwiecie .NET

Widaé réwniez, ze programista w przeciwienstwie do Win32API nie musi samodzielnie reje-
strowa¢ klasy okna w systemie. Wlasciwosci klasy okna opisuje definicja klasy, zaé sama operacja
rejestrowania klasy okna w systemie odbywa sie bez udzialu programisty'”.

4.2 Okna potomne

W obiektowym swiecie System.Windows.Forms, kazdy obiekt dziedziczacy z klasy Control
(klasa Form dziedziczy z klasy Control i jest od niej odleglta o 4 pokolenia) ma propercje
Controls, ktéra zwraca kolekcje okien potomnych wzgledem tego obiektu. Oznacza to, ze okna
potomne moga by¢ latwo tworzone w czasie dziatania programu. Te okna potomne, ktore po-
winny by¢ widoczne od razu po utworzeniu okna mozna utworzy¢ po prostu w konstruktorze
okna macierzystego.

Najwygodniej jest uczyni¢ okna potomne polami sktadowymi klasy opisujacej okno macie-
rzyste. Wtedy wszystkie inne sktadowe klasy okna macierzystego maja dostep do okien potom-
nych. Okna potomne sg rowniez obiektami, podlegaja wiec doktadnie takim samym prawom jak
wszystkie obiekty - musza by¢ jawnie skonstruowane, sa odSmiecane itd.

/* Wiktor Zychla, 2003 */
using System;

using System.Drawing;
using System.Windows.Forms;

namespace Example
{
public class CMainForm : Form

{
Button DbtOK;
TextBox pTxt;

public CMainForm()

{
bt0K = new Button();
btOK.Location = new Point(25, 20);
btOK.Size = new Size(150, 25);
btOK.Text = "Nacisnij mnie";
pTxt = new TextBox();

19W g$wiecie .NET definicja okna jest klasg. Aby takie okno moglo pojawié sie w systemie, w systemie rejestro-
wana jest oczywiscie klasa okna. Nie nalezy jednak myli¢ tych dwéch pojeé i dlatego wprowadzimy dwa rézne
okredlenia: klasqg okna bedziemy nazywaé obiekt systemowy, opisujacy wtasciwosci okna i rejestrowany w systemie
za pomoca funkcji RegisterClass, za$ klasq opisujgcg okno, bedziemy nazywaé definicje klasy dziedziczacej z
klasy Form, opisujacej wlasciwoséci okna w C#.

196 ROZDZIAL C. SWIAT .NET

pTxt.Location = new Point(25, 60);

pTxt.Size = new Size(150, 40);
pTxt.Multiline = true;
pTxt.Text = "Pole tekstowe";

this.Controls.AddRange(new Control[] { btOK, pTxt });

this.Text = "Okno";
this.Size = new Size(200, 200);
}

public static void Main()
{
Application.Run(new CMainForm());
}
}
}

Tworzac okna mozna zej$¢ az na poziom réwny funkcji CreateWindow, na ktérym mozna
utworzy¢ okno podajac nazwe klasy okna, jego styl i rozmiary.

/* Wiktor Zychla, 2003 */
using System;

using System.Drawing;
using System.Windows.Forms;

namespace Example
{
public class CMainForm : Form
{
const int WS_VISIBLE = 0x10000000;
const int WS_CHILD = 0x40000000;

public CMainForm()
{
CreateParams cp = new CreateParams();
cp.ClassName = "EDIT";
cp.Style = WS_CHILD | WS_VISIBLE;
cp.Parent = this.Handle;
cp.Width = 150;
cp.Height = 25;
cp.X = 20;
cp.Y = 20;

NativeWindow t = new NativeWindow();
t.CreateHandle(cp);

this.Text = "Okno";
this.Size = new Size(200, 200);
}

public static void Main()
{
Application.Run(new CMainForm());
}
}
}

4.3 Zdarzenia

W rozdziale 2.13 na stronie 108 widzieliémy w jaki sposéb C# rozwiazuje problem zdarzen.
Dzigki temu, ze zdarzenie jest tak naprawde lista odpowiednich delegatéw, zajscie zdarzenia
moze $ledzi¢ dowolna iloéé¢ stuchaczy.

Taki model doskonale sprawda sie¢ w aplikacjach okienkowych, gdzie tak naprawde istotne
sg wiladnie reakcje na zdarzenia zglaszane do okien aplikacji. Aby okna reagowaly na dziala-
nia uzytkownika, wystarczy wiec pod odpowiednie zdarzenia ”przypia¢”ich stuchaczy. Zdarzenia

4. APLIKACJE OKIENKOWE

197

udostepniane przez komponenty wizualne dosé¢ dobrze odpowiadajg komunikatom, jakie kompo-
nenty te moglyby obstugiwaé.

/* Wiktor Zychla, 2003 */
using System;

using System.Drawing;
using System.Windows.Forms;

namespace Example

{

public class CMainForm : Form

{

Button DbtOK;
TextBox pTxt;

public CMainForm()

{

}

bt0OK = new Button();
btOK.Location = new Point(25, 20);
btOK.Size = new Size(150, 25);
btOK.Text = "Nacisnij mnie";
pTxt = new TextBox();
pTxt.Location = new Point(25, 60);
pTxt.Size = new Size(150, 40);
pTxt.Multiline = true;

pTxt.Text = "Pole tekstowe";

// dodaj zdarzenia
btOK.Click += new EventHandler(btOk_Click);
pTxt.KeyPress += new KeyPressEventHandler(pTxt_KeyPress);

this.Controls.AddRange(new Control[] { btOK, pTxt });

this.Text = "Okno";
this.Size = new Size(200, 200);

void bt0k_Click(object sender, EventArgs e)

{
}

MessageBox.Show("Kliknieto przycisk");

void pTxt_KeyPress(object sender, KeyPressEventArgs e)

{

}

this.Text = e.KeyChar.ToString();

public static void Main()

{

}

Application.Run(new CMainForm());

Wiéréd wazniejszych zdarzen warto wymienié:

Click
DoubleClick
Enter
KeyDown
KeyPress
KeyUp

198 ROZDZIAL C. SWIAT .NET

e Leave

e MouseDown
e MouseHover
e MouseUp

e Move

e Paint

e Resize

e Validating
e Validated

Parametry zdarzen

Przy tak duzej ilosci zdarzen pojawiaja sie rézne problemy. Na przyklad - rézne zdarzenia
mogg mieé¢ roézne ilosci parametréw. Informacja o nacisnieciu klawisza powinna nies¢ ze soba
informacje o tym klawiszu, zas informacja o naci$nieciu przycisku myszy powinna méwié¢ ktéry
przycisk zostal nacisniety i jaka jest pozycja wskaznika w oknie. Ponadto, gdyby jedna i ta
sama funkcja zostala przypisana do obstugi réznych zdarzen réznych komponentéow, to wewnatrz
funkcji obstugujacej to zdarzenie zdecydowanie powinno daé sie okresli¢ ten komponent, ktory
spowodowal powstanie zdarzenia.

Na szczescie te problemy rozwigzano dosé elegancko. Przyjeto konwencje, wedle ktérej obiekt
bedacy zréodlem zdarzenia przekazuje sie zawsze jako pierwszy parametr do delegata reagujacego
na zajscie zdarzenia, za$ parametry zdarzenia przekazuje sie w obiektach klas dziedziczacych z
klasy EventArgs jako drugi parametr tych delegatéow. Na przyklad zdarzenie naci$nigcia kla-
wisza przekazuje swoje parametry w obiekcie typu KeyPressEvent Args, zas zdarzenia myszy
w obiektach typu MouseEventArgs.

Oznacza to, ze wszyscy delegaci bedacy stuchaczami zdarzen zwiazanych z obstuga kompo-
nentéw wizualnych maja bardzo podobna posta¢. Nazwy tych delegatéw i nazwy ich parametréw
odpowiadajg nazwom odpowiednich zdarzen.

delegate void EventHandler(object sender, EventArgs e);
delegate void KeyPressEventHandler(object sender, KeyPressEventArgs e);

Pokrywanie funkcji obstugi zdarzen

Oprécz mozliwosci przypinania stuchaczy do odpowiednich zdarzen, istnieje mozliwos$¢ przecia-
zenia funkcji wirtualnych dziedziczonych z klasy Control, bedacych reakcjami na zdarzenia. W
tym przypadku funkcja ma juz tylko jeden parametr, okreslajacy parametry zdarzenia.

/* Wiktor Zychla, 2003 */
using System;

using System.Drawing;
using System.Windows.Forms;

namespace Example
{
public class CMyButton : Button
{
protected override void OnClick(EventArgs e)

{

4. APLIKACJE OKIENKOWE

base.0OnClick(e);
MessageBox.Show("Kliknieto mnie!");

}
}

public class CMainForm : Form

{

public CMainForm()

{

CMyButton btOK;

btOK

btOK.
btOK.
btOK.

this.
this.

this.
}

= new CMyButton();

Location = new Point(25, 20);

Size
Text

= new Size(150, 25);
= "Nacisnij mnie";

Controls.Add(btOK);

Text
Size

"Okno" ;
= new Size(200, 200);

public static void Main()

{

Application.Run(new CMainForm());

}
}
}

199

Nic nie stoi na przeszkodzie, aby réwnolegle dodaé funkcje reagujace na to samo zdarzenie
do odpowiedniej listy delegatéw (przy okazji zwréémy uwage na to w jakiej kolejnosci wywolaja
sie oba zdarzenia. Od czego to zalezy?):

/* Wiktor Zychla, 2003 */
using System;
using System.Drawing;

using System.Windows.Forms;

namespace Example

{

public class CMyButton : Button

{

protected override void OnClick(EventArgs e)

{

base.OnClick(e);
MessageBox.Show("Kliknieto mnie!");

}
}

public class CMainForm : Form

{

public CMainForm()

{

CMyButton btOK;

btOK

btOK.
btOK.
btOK.

btOK.
this.
this.
this.

}

public

= new CMyButton();

Location = new Point(25, 20);

Size
Text

= new Size(150, 25);
= "Nacisnij mnie";

Click += new EventHandler(btOK_Click);

Controls.Add(btOK);

Text
Size

void

= "Okno";
= new Size(200, 200);

btOK_Click(object sender, EventArgs e)

200 ROZDZIAL C. SWIAT .NET

{
MessageBox.Show("I znéw mnie kliknieto!");

}

public static void Main()
{
Application.Run(new CMainForm());
}
}
}

Powstaje wiec pytanie: gdzie w takim razie okresla¢ reakcje na zdarzenia, czy przeciazajac
odpowiednig funkcje czy dokladajac delegata do listy stuchaczy zdarzenia?

Odpowiedz whrew pozorom jest do$¢ prosta: przeciazanie funkcji obstugi zdarzenia powinno
stosowad sie tylko tam, gdzie reakcja na zdarzenie powinna by¢ taka sama dla wszystkich instancji
tworzonego komponentu i w dodatku powinna by¢ jego trwala wlasciwoscia. Takiej funkeji nie
mozna juz bowiem odwotaé.

Jedli za$ reakcja na zdarzenie ma byé wewnetrzna sprawg jakiejs konkretnej instancji kom-
ponentu, tam reakcja ta powinna byé¢ delegatem na lidcie stuchaczy zdarzenia.

4.4 Okna dialogowe

Skoro okna w éwiecie .NET sg instancjami odpowiednich klas, to tworzenie nowych okien jest
tak proste jak wykreowanie nowych obiektéw. Po wykreowaniu okno moze byé pokazane jako
modalne za pomoca metody ShowDialog lub jako niemodalne za pomoca Show.

/* Wiktor Zychla, 2003 */
using System;

using System.Drawing;
using System.Windows.Forms;

namespace Example
{
public class CSecondaryForm : Form
{
public CSecondaryForm()
{
this.Text = "Okno dialogowe";
}
}

public class CMainForm : Form
{
public CMainForm()
{
Button btOK;

btOK = new Button();

btOK.Location = new Point(25, 20);
btOK.Size = new Size(150, 25);
btOK.Text = "Pokaz okno dialogowe";
btOK.Click += new EventHandler(btOK_Click);
this.Controls.Add(btOK);

this.Text
this.Size

n Ukno n ;
new Size(200, 200);

}

public void btOK_Click(object sender, EventArgs e)
{
CSecondaryForm f = new CSecondaryForm();
f.ShowDialog();
}

4. APLIKACJE OKIENKOWE 201

public static void Main()
{
Application.Run(new CMainForm());
}
}
}

Klasa opisujaca okno moze mie¢ dowolng ilos¢ konstruktoréw, ktérych mozna uzyé do prze-
kazania parametréw nowo tworzonym oknom.

4.5 Subclassowanie okien

Czesto przechwytywanie zdarzen nie wystarcza, a programista chciatby siegnaé glebiej, az na
poziom komunikatéw.

Obstuga komunikatéw wlasnych okien

Obstuga komunikatow nie nastrecza zadnych klopotéw jesli to programista tworzy klase opisu-
jaca okno. Wystarczy po prostu przeciazy¢ metode WndProc.

/* Wiktor Zychla, 2003 */
using System;

using System.Drawing;
using System.Windows.Forms;

namespace Example
{
public class CMainForm : Form

{
const int WM_LBUTTONDBLCLK = 0x0203;

protected override void WndProc(ref Message m)
{
switch (m.Msg)
{
case WM_LBUTTONDBLCLK : MessageBox.Show("Dwuklik!"); break;
}
base.WndProc(ref m);

}

public CMainForm()

{
this.Text
this.Size

}

n Ukno n ;
new Size(200, 200);

public static void Main()
{
Application.Run(new CMainForm());
}
}
}

Struktura Message przechowuje w sobie wszystkie parametry komunikatu (LParam, WPa-
ram, itd.), ma réwniez metode GetLParam, ktéra stuzy do rzutowania parametru przekaza-
nego w LParam na wskazany typ.

Warto zwrdci¢ uwage na konieczno$é wywotania funkcji WndProc z klasy bazowej. Bez tego
wywolania okno nie utworzy sie, bowiem zabraknie mu wiekszosci potrzebnej funkcjonalnoéci.

202 ROZDZIAE C. SWIAT .NET

Obstuga komunikatéw istniejgcych okien

Przedstawiona w poprzednim podrozdziale technika nie nadaje sie do obstugi komunikatéw w juz
istniejacych komponentach, na przyklad TextBox czy Button. Moznaby co prawda przeciazy¢
juz istniejacy komponent i dodaé¢ obstuge komunikatéw do klasy potomnej, ale interesujaca
bytaby mozliwoéé taka jak opisana na stronie 31, czyli dodawanie wtasnej funkcji obstugi do juz
istniejacego okna.

Okazuje sie, ze i taki scenariusz jest mozliwy, wymaga jedynie utworzenia klasy dziedziczacej
z klasy NativeWindow i skojarzenia uchwytéw okien.

/* Wiktor Zychla, 2003 */
using System;

using System.Drawing;
using System.Windows.Forms;

namespace Example

{
public class CSubclass : NativeWindow
{
const int WM_LBUTTONDBLCLK = 0x0203;
protected override void WndProc(ref Message m)
{
switch (m.Msg)
{
case WM_LBUTTONDBLCLK : MessageBox.Show("Dwuklik!"); break;
}
base.WndProc(ref m);
}
public CSubclass() {}
}
public class CMainForm : Form
{
CSubclass subclass = new CSubclass();
TextBox t;

public CMainForm()
{

t = new TextBox();
this.Controls.Add(t);

// subclassing okna potomnego
subclass.AssignHandle(t.Handle);

this.Text = "Okno";
this.Size = new Size(200, 200);
}

public static void Main()
{
Application.Run(new CMainForm());
}
}
}

4.6 Komponenty wizualne

Biblioteka System.Windows.Forms udostepnia szereg gotowych komponentéw. Wszystkie
wladciwosci obiektow sg odpowiednimi sktadowymi klas opisujacych te obiekty. Oprocz typo-
wych sktadowych, przynaleznych wszystkim obiektom dziedziczacym w klasy Control, kazdy
komponent ma szereg wlasnych, jemu tylko wtasciwych sktadowych. Na przyktad pole tekstowe
ma wlasciwo$¢ MaxLength, pozwalajaca ustali¢ maksymalng dtugosé wprowadzanego napisu,

4. APLIKACJE OKIENKOWE 203

czy propercje AcceptsEnter, decydujaca o tym, czy naci$niecie klawisza Enter w obrebie pola
tekstowego dotaczy do wprowadzanego tekstu znak przejscia do nowej linii, czy tez spowoduje
przejécie do kolejnego komponentu w oknie.

ComboBox, ListBox

Oba komponenty, ComboBox i List Box, maja bardzo podobne zastosowanie i bardzo podobny
interfejs stuzacy do oprogramowywania ich. Udostepniaja one kolekcje Items, ktéra przechowuje
elementy pokazywane na listach tych komponentéw. W najprostszym scenariuszu napisaliby$my
po prostu:

ComboBox cbItems;

cbItems.Add("napis 1");
cbItems.Add("napis 2");
cbItems.Add("napis 3");

Pojawia sie jednak pytanie: w jaki sposob aplikacja moze byé¢ poinformowana o wyborze
konkretnego elementu przez uzytkownika? Przypomnijmy sobie, ze na poziomie Win32API z
kazdym elementem ComboBoxa mozna skojarzyé¢ 32-bitowa warto$é, ktéra moze stuzyé do
identyfikowania elementéw (moze na przyklad przechowywaé identyfikator bazodanowy elementu
na liscie)?.

W bibliotece okienkowej .NET elementami ComboBoxa i ListBoxa moga by¢ dowolne obiekty,
nie tylko napisy. Jedli do listy zostaje dodany obiekt innego typu niz string, na liscie pojawia
sie jego reprezentacja napisowa, za$ na liScie zapamietana jest referencja do obiektu.

Aby zasymulowaé¢ mozliwoéé¢ jaka daje Win32API, czyli umieszczanie na liscie napiséw i
kojarzenie z kazdym z nich wartosci 32-bitowej, mozna postuzy¢ sie pomocnicza klasa, ktora
bedzie przechowywaé¢ pary: napis i warto$¢ 32-bitowa. Zauwazmy jednak, ze programista nie
jest ograniczony do jednej wartoéci skojarzonej z napisem, poniewaz jest to tylko i wylacznie
kwestig zaprojektowania odpowiedniej klasy.

/* Wiktor Zychla, 2003 */
using System;
using System.Windows.Forms;

namespace Example
{
public class MyComboBoxItem
{
string text;
int id;

public string Text
{

get { return text; }
}

public int ID
{

get { return id; }
}

public MyComboBoxItem(string text, int id)
{

this.text = text;

this.id = id;

2OWartog¢ ta mozna ustalié badz pobraé za pomoca par komunikatéw CB_SETITEMDATA,
CB_GETITEMDATA oraz LB_.SETITEMDATA, LB. GETITEMDATA.

204 ROZDZIAE C. SWIAT .NET

}

public override string ToString()
{
return text;
}
}

public class CMainForm : Form
{

ComboBox cbltems;

public CMainForm()

{
cbItems = new ComboBox();
cbItems.Items.Add(new MyComboBoxItem("ala", 17));
cbItems.Items.Add(new MyComboBoxItem("ma", 24));
cbItems.Items.Add(new MyComboBoxItem("kota", 19));
cbItems.Items.Add(new MyComboBoxItem("!", 78));
cbItems.SelectedIndexChanged +=
new EventHandler(cbItems_SelectedIndexChanged) ;
this.Controls.Add(cbltems);
}
void cbItems_SelectedIndexChanged(object sender, EventArgs e)
{
if (cbItems.SelectedItem != null)
{
MyComboBoxItem myItem = cbItems.SelectedItem as MyComboBoxItem;
MessageBox.Show(String.Format("Wybrano element: {0} - {1}",
myItem.Text, myItem.ID));
}
}
public static void Main()
{
Application.Run(new CMainForm());
}
}
}
ToolTip

Wyéwietlaniem podpowiedzi zajmuje sie obiekt typu ToolTip. Podpowiedzi moga sktadaé sie z
kilku linii tekstu.

/* Wiktor Zychla, 2003 */
using System;

using System.Drawing;
using System.Windows.Forms;

namespace Example

{

public class CMainForm : Form

{
Button b;

public CMainForm()

{
b = new Button();
b.Text = "Kliknij mnie";
this.Controls.Add(b);

ToolTip tTip = new ToolTip();
tTip.SetToolTip(b, "Podpowiedz\r\nwielolinijkowa");
}

public static void Main()

4. APLIKACJE OKIENKOWE 205

. Mazwisko | Daka urndzenia:
Adamn | Malinowski | 1975-02-13

Jan Kowalski | 1971-05-05

Zhignicw | Abacki | 1872-05-11

Rysunek C.8: ListView potrafi sam sortowaé¢ elementy umieszczone na lidcie

{
Application.Run(new CMainForm());
}
}
}

ListView

Komponent List View jest bardzo przydatny i w zwiazku z tym czesto wykorzystywany w aplika-
cjach Windowsowych. Potrafi pokazywaé elementy w 4 réznych widokach?!'. Najczesciej korzysta
sie z widoku szczegdtowego, w ktérym ListView staje sie wielokolumnowa lista elementow.

Inaczej niz w przypadku ComboBoxa, elementy ListView sa typu ListViewItem. Jezeli
programista chce skojarzy¢ wtasng informacje z elementem listy, powinien skorzysta¢ z propercji
Tag elementu, ktéra moze przechowaé referencje na dowolny obiekt. ROwniez inaczej niz w
przypadku ComboBoxa, kazdy element ListView moze mie¢ wlasny kolor tta i tekstu.

ListView wyrdznia sie sposrdd innych komponentéw tym, ze potrafi samodzielnie sortowaé
swoje elementy. Wymaga to zdefiniowania klasy implementujacej interfejs IComparer i przy-
pisania obiektu tej klasy do propercji ListViewItemSorter komponentu ListView.

/* Wiktor Zychla, 2003 */
using System;

using System.Collections;
using System.Drawing;
using System.Windows.Forms;

namespace Example
{
// klasa do poréwnywania elementéw ListView
// wg. wskazanej kolumny
public class MyLVItemSorter : IComparer
{

21 Cztery mozliwosci prezentowania elementéw listy przez List View najszybciej mozna zobaczyé w Eksplorerze
Windows, ktory do pokazywania elementéw systemu plikow uzywa wtasnie ListView i pozwala przetgczaé sie
pomiedzy wszystkimi dostepnymi widokami.

206

int kolumna; // kolumna wg. ktérej sortujemy

public MyLVItemSorter(int kolumna)
{
this.kolumna = kolumna;

}

public int Compare(object ol, object 02)
{
ListViewItem 11 = ol as ListViewItem;
ListViewItem 12 = 02 as ListViewItem;

return string.Compare(11.SubItems[kolumna].Text,
12.SubItems[kolumna].Text);
}
}

public class CMainForm : Form

{
ListView lstItems;

void InitListViewElements()

{

ROZDZIAE C. SWIAT .NET

string[] sHeaders = new string[] { "Imie¢", "Nazwisko", "Data urodzenia" };

ListViewItem 1i;

// nagtéwki
1stItems.Columns.Clear();
foreach (string s in sHeaders)
1stItems.Columns.Add(s, 60, HorizontalAlignment.Left);

// elementy

1i = 1stItems.Items.Add("Jan");
1i.SubItems.Add("Kowalski");
1i.SubItems.Add("1971-05-05");

1i = 1stItems.Items.Add("Adam");
1i.SubItems.Add("Malinowski");
1i.SubItems.Add("1975-02-13");

1i = lstItems.Items.Add("Zbigniew");
1i.SubItems.Add("Abacki");
1i.SubItems.Add("1972-05-11");

// dopasuj szerokosci kolumn
foreach (ColumnHeader ch in lstItems.Columns)
ch.Width = -2;
}

// po kliku w kolumne ListView ustal sortowanie wg. tej kolumny
void LV_ColumnClick(object sender, ColumnClickEventArgs e)
{

lstItems.ListViewItemSorter = new MyLVItemSorter(e.Column);

}

public CMainForm()
{
1stItems = new ListView();
1stItems.Dock = DockStyle.Fill;
1stItems.FullRowSelect = true;
1stItems.GridLines = true;
1stItems.View = System.Windows.Forms.View.Details;

1stItems.ColumnClick += new ColumnClickEventHandler(LV_ColumnClick);

this.Controls.Add(lstItems);

InitListViewElements();
}

public static void Main()

4. APLIKACJE OKIENKOWE 207

b Y
- Podwezet 0

- Podwezet 1

- Podwezet 2

- Podwezet 3

- Podwezet 4

- Podwezet 5

- Podwezet &

- Podwezet 7

- Podwezet 5

- Podwezet 9

- Podwezet 10

- Podwezet 11

- Podwezet 12

- Podwezet 13

- Podwezet 14

- Podwezet 15 ;!

Rysunek C.9: TreeView pozwala pokazaé zaleznosci miedzy obiektami

{

Application.Run(new CMainForm());

TreeView

Komponent TreeView zyskal nowy, obiektowy interfejs, w ktorym kazdy wezel ma kolekcje
Nodes, przechowujaca jego podwezly.

7 komponentem tym wiaze si¢ klasyczny problem: jak radzi¢ sobie z wypelnianiem struktury
TreeView, jesli powinien on przechowywaé bardzo duzo danych? Oczywiscie zainicjowanie catego
drzewa w konstruktorze okna macierzystego moze nie wchodzi¢ w gre, wtasnie z powodu duzej
ilosci danych.

Problem ten rozwiazuje sie zwykle tak, ze inicjuje sie tylko jeden poziom drzewa, poziom
gltéwny, dodajac przy okazji tym weztom, ktére maja przechowywadé jakies podwezly, tylko jeden,
bardzo specjalny ”pusty” podwezel, oznaczony w propercji Tag w jakis okreslony sposob.

Nastepnie nalezy dodaé¢ funkcje obstugi zdarzenia BeforeExpand, ktére pojawia sie, gdy
uzytkownik prébuje "rozwija¢” wezel drzewa przy pomocy symbolu ”+” umieszczonego przy
wezle. Wewnatrz funkcji obstugi zdarzenia nalezy sprawdzi¢, czy rozwijany wezel ma tylko jeden
podwezel i to w dodatku ten specjalnie oznakowany. Jesli tak - nalezy ten podwezetl usunaé
i dobudowaé¢ kolejny poziom drzewa, znéw dodajac specjalne ”puste” podwezly okreslonym
weztom.

W ten sposéb drzewo budowane jest zawsze "na zyczenie”, przy czym dobudowywany jest
zawsze tylko ten poziom drzewa, ktory jest akurat potrzebny.

/* Wiktor Zychla, 2003 */
using System;

using System.Collections;
using System.Drawing;
using System.Windows.Forms;

208 ROZDZIAL C. SWIAT .NET

namespace Example
{

public class CMainForm : Form

{

TreeView tvItems;

void InitTVElements()
{

TreeNode treeRoot = new TreeNode("Opis struktury");
treeRoot.ForeColor = Color.Blue;

TreeNode treeSubNode;

for (int i=0; i<45; i++)

{
treeSubNode = new TreeNode(String.Format("Podwezet {0}", i));
treeRoot .Nodes.Add(treeSubNode);

}

tvItems.Nodes.Add(treeRoot);
}

public CMainForm()
{

tvItems = new TreeView();
tvItems.Dock = DockStyle.Fill;

this.Controls.Add(tvItems);

InitTVElements();
}

public static void Main()
{
Application.Run(new CMainForm());
}
}
}

4.7 Rozmieszczanie okien potomnych

Dobrze zaprojektowany interfejs uzytkownika powinien by¢ czytelny i przejrzysty. Jednak przy
odrobinie wprawy i do$wiadczenia mozna sobie z tym poradzi¢. O wiele trudniej jest zaprojek-
towaé interfejs tak, aby pozostawal spéjny gdy okno zmienia swoje rozmiary, na przyktad gdy
jest rozciggane przez uzytkownika.

Istnieja dwa mozliwe rozwiazania: mozna albo zabroni¢ zmian rozmiaru okna (przez usta-
wienie propercji FormBorderStyle na FormBorderStyle.FixedDialog) albo reagowaé¢ na
zmiane rozmiaru okna i dopasowywac¢ rozmiary okien potomnych do rozmiaru okna macierzy-
stego. Oczywiscie nie zawsze mozna po prostu zabroni¢ zmian rozmiaru okna. Czy w zwiazku z
tym .NET wspomaga jako$ proces rozmieszczania okien potomnych przy zmianie rozmiaru okna
macierzystego? Otéz tak.

Kotwice i dokowanie

Najprostszy sposéb dopasowywania rozmiaréw okna potomnego do rozmiaréw okna macierzy-
stego to tzw. kotwicowanie. Wystarczy nadaé¢ oknu potomnemu wtasciwosé bycia zaczepionym
ktoregos z bokow okna macierzystego, aby okno potomne zachowywato odlegtoéé od odpowied-
niego boku podczas zmiany rozmiaréw okna macierzystego.

/* Wiktor Zychla, 2003 */
using System;

using System.Drawing;
using System.Windows.Forms;

4. APLIKACJE OKIENKOWE 209

pole tekstawe]

ke e

Rysunek C.10: Okna potomne zadokowane w obrebie okna macierzystego

namespace Example

{
public class CMainForm : Form
{
Button b;
public CMainForm()
{
b = new Button();
b.Text = "Kliknij mnie";
b.Location = new Point(40, 40);
b.Anchor = AnchorStyles.Bottom |
AnchorStyles.Top |
AnchorStyles.Left |
AnchorStyles.Right;
this.Controls.Add(b);
}
public static void Main()
{
Application.Run(new CMainForm());
}
}
}

Okna potomne mozna réwniez dokowad, czyli przywiazywaé na state do ktorego$ z bokéw lub
calego obszaru okna macierzystego. Dokowanie jest szczegllnie przydatne w przypadku dwdoch
okien potomnych, bowiem jedno z nich mozna zadokowaé do ktoregos z bokéw, a drugie do
catego obszaru okna. Oba okna potomne zajmg wtedy caly obszar okna macierzystego i beda
poprawnie dostosowywaé sie do zmian jego rozmiaru.

Nalezy jedynie pamietac o tym, aby to okno potomne, ktére powinno wypelnia¢ obszar okna
macierzystego bylo umieszczone "na wierzchu”, czyli nad oknem zadokowanym do ktéregos z
bokéw.

/* Wiktor Zychla, 2003 */
using System;

using System.Drawing;
using System.Windows.Forms;

namespace Example

210

{

public class CMainForm : Form

{

}
}

Button b;
TextBox t;

public CMainForm()

{
b
b.Text
b.Dock
t

t.Multiline
t.Dock

this.Controls.
this.Controls.

}

new Button();
"Kliknij mnie";
DockStyle.Left;

new TextBox();
true;
DockStyle.Fill;

3>

Add(t);
Add(b)

public static void Main()

{

Application.Run(new CMainForm());

}

Panele

ROZDZIAE C. SWIAT .NET

Sytuacja, w ktérej okno macierzyste ma tylko dwa okna potomne jest niezwykle rzadka. Zasto-
sowanie pokazanej powyzej metody wydaje sie by¢ wiec dos¢ ograniczone. Okazuje sie jednak,
ze istnieje specjalny typ komponentu, Panel, ktéry z jednej strony zachowuje sie jak okno po-
tomne, bowiem jest komponentem umieszczanym wewnatrz jakiego$ okna dialogowego, z drugiej
strony zachowuje sie jak okno macierzyste, bowiem ma swoja wtasng kolekcje okien potomnych,
ktore sa kotwicowane i dokowane wzgledem obszaru Panela, a nie okna macierzystego.

Mozna wiec uzywaé paneli do podzialu okna macierzystego na drobniejsze fragmenty, w ob-
rebie ktorych mozna dokonywaé odpowiednich ustalen rozmieszczenia okien potomnych. Panele
mozna zagniezdzac.

/* Wiktor Zychla, 2003 */
using System;
using System.Drawing;

using System.Windows.Forms;

namespace Example

{

public class CMainForm : Form

{

Panel P;
Button Dbi;
Button b2;
TextBox t;

public CMainForm()

{

// panel zadokowany do lewej, a w nim dwa przyciski

P
p.Dock

bl
bl.Text
bl.Dock

b2
b2.Text
b2.Dock

new Panel();
DockStyle.Left;

new Button();
"Kliknij mnie";
DockStyle.Top;

new Button();
"Kliknij mnie";
DockStyle.Fill;

4. APLIKACJE OKIENKOWE 211

p.Controls.Add(b2);
p-Controls.Add(bl);

// pole tekstowe wypelnia obszar okna

t = new TextBox();
t.Multiline = true;
t.Dock = DockStyle.Fill;

this.Controls.Add(t);
this.Controls.Add(p);
}

public static void Main()
{
Application.Run(new CMainForm());
}
}
}

Splittery

Splittery sa elementami graficznymi w postaci poziomych lub pionowych ”belek” | pozwalajacych
uzytkownikowi zmieni¢ rozmiary okien potomnych. Splitteréw uzywa sie tam, gdzie uzywa sie
dokowania.

/* Wiktor Zychla, 2003 */
using System;

using System.Drawing;
using System.Windows.Forms;

namespace Example

{
public class CMainForm : Form
{
Panel p; // zawiera bl i b2
Button bi;
Button b2;
TextBox t;

Splitter si1; // rozdziela bl i b2
Splitter s2; // rozdziela p i t

public CMainForm()

{
// panel zadokowany do lewej, a w nim dwa przyciski
P = new Panel();

p.Dock = DockStyle.Left;
bl = new Button();
bl.Text = "Kliknij mnie";
bl.Dock = DockStyle.Top;
s1 = new Splitter();
s1.Dock = DockStyle.Top;
b2 = new Button();
b2.Text = "Kliknij mnie";
b2.Dock = DockStyle.Fill;

p-Controls.Add(b2);
p.Controls.Add(sl); // splitter rozdziela b2 i bl
p.Controls.Add(bl);

// pole tekstowe wypelnia obszar okna
s2 = new Splitter();
s2.Dock = DockStyle.Left;

212 ROZDZIAE C. SWIAT .NET

t
t.Multiline
t.Dock

new TextBox();
true;
DockStyle.Fill;

this.Controls.Add(t);
this.Controls.Add(s2); // splitter rozdziela t i p
this.Controls.Add(p);

}

public static void Main()
{
Application.Run(new CMainForm());
}
}
}

4.8 GDI+

Tak jak w Win32API istnieja funkcje GDI, tak w Swiecie .NET istnieje biblioteka GDI+, ktéra
udostepnia obiektowy interfejs do funkcji GDI.

Uzywajac GDI+ programista musi pamieta¢ o jednej bardzo waznej rzeczy. Ot6z zainicjowa-
nie obiektu graficznego, takiego jak pedzel, szczotka, font, obiekt typu Graphics itd., spowoduje
utworzenie odpowiedniego elementu w systemie, do ktérego uchwyt bedzie przechowywany we-
wnatrz obiektu.

Interfejs GDI skonstruowany jest jednak tak, ze gdy element graficzny przestaje by¢ potrzeb-
ny, powinien by¢ usuniety, aby system mogt zwolnié zasoby zwiazane z nim. W GDI4 rozwiazano
ten problem tak, ze wszystkie obiekty graficzne implementuja interfejs IDisposable, zas zasoby
systemowe sg zwracane w metodzie Dispose. Warto w tym miejscu przypomnieé¢ sobie wiec
cukierek syntaktyczny ze strony 95, dzieki ktéremu programista nie musi pamieta¢ o wywotaniu
metody Dispose.

Obiekt Graphics

W GDI do narysowania czegokolwiek potrzebny byt kontekst urzadzenia. W GDI+ analogiczng
role pelni obiekt typu Graphics.

Obiekt ten jest dostarczany do wszystkich funkcji obstugujacych zdarzenia zwiazane z ry-
sowaniem w parametrze typu PaintEventArgs i jest to pewna analogia do obstugi zdarzenia
WM _PAINT w Win32API.

Obiekt ten moze byé¢ réwniez utworzony w dowolnej chwili dziatania aplikacji za pomoca
statycznych funkcji FromHdc, FromHwnd czy FromImage.

Obiekt Graphics potrafi wykona¢ wiekszo$¢ operacji zwiazanych z rysowaniem (wymagaja
wskazania pedzla jako jednego z parametréw), m.in.:

e DrawArc

DrawBezier

DrawEllipse

Drawlcon

DrawlImage

DrawLine

DrawPath

4. APLIKACJE OKIENKOWE 213

e DrawPie
e DrawRectangle

e DrawString

oraz kilka funkcji zwiazanych z wypelnianiem obszaréw (wymagaja szczotki jako parametru),
m.in:

FillEllipse

FillPie

FillRectangle

FillRegion

Kolory

W kazdym miejscu, w ktorym potrzebne jest okreslenie koloru, nalezy skorzysta¢ z obiektu Co-
lor. Klasa kolor ma predefiniowane okoto 140 nazw koloréw, dostepnych jako statyczne propercje,
na przyktad Color.Black, Color.AliceBlue, czy Color.Red. Oprocz tego istnieje klasa Sys-
temColors, ktora udostepnia wartosci kolorow przypisanych elementom interfejsu graficznego
Windows. Mamy tu wiec m.in. SystemColors.ActiveBorder, SystemColors.Control, czy
SystemColors.WindowText (w sumie okoto 25 predefiniowanych koloréw).

W kazdej chwili programista moze utworzy¢ wlasny kolor, opisujac jego sktadowe:

Color c = Color.FromArgb(40, 50, 60);

Czcionki

Konstruktor obiektu Font pozwala na okreslenie parametrow czcionki m.in.: wielkosci, stylu,
zestawu znakoéw. Ponizszy przyklad jest interesujacy réwniez z innego powodu: czcionka jest
tworzona i usuwana, za$ obiekt Graphics nie jest usuwany. Jak to wytlumaczy¢?

Ot6z zauwazmy, ze obiekt typu Graphics jest dostarczony jako parametr w zmiennej typu
PaintEvent Args. Oznacza to, ze jest on konstruowany gdzie$ indziej. Réwniez gdzies indziej
moze by¢ wiec wykorzystywany. Usuniecie go przez Dispose mogloby w szczegdlnym przypadku
objawi¢ si¢ trudnym do zdiagnozowania bledem.

W przeciwienstwie do obiektu Graphics, czcionka jest konstruowana lokalnie i powinna by¢
usunieta po uzyciu.

/* Wiktor Zychla, 2003 */
using System;

using System.Drawing;
using System.Windows.Forms;

namespace Example
{
public class CMainForm : Form

{
public CMainForm() {}

protected override void OnPaint(PaintEventArgs e)
{

Graphics g = e.Graphics;

using (Font f = new Font("Courier", 24, FontStyle.Italic))
{

214 ROZDZIAE C. SWIAT .NET

g.DrawString("Przykiad GDI+", f, Brushes.Black, 0, 0);
}
}

public static void Main()
{
Application.Run(new CMainForm());
}
}
}

Pedzle, szczotki

GDI+ dostarcza catego zestawu gotowych pedzli i szczotek w obiektach Pens i Brushes. W
kazdym miejscu kodu mozna z nich skorzystaé, a jest to o tyle latwe, ze nazwano je po prostu
nazwami koloréw. Mamy wiec na przyklad piéro czarne Pens.Black czy szczotke niebieska
Brushes.Blue.

Oprécz gotowych pidr i szczotek, programista moze tworzy¢ wlasne. Konstruktor piéra przyj-
muje jako parametr kolor i opcjonalnie grubos$é piéra:

/* Wiktor Zychla, 2003 */
using System;

using System.Drawing;
using System.Windows.Forms;

namespace Example
{
public class CMainForm : Form
{
public CMainForm() {}

protected override void OnPaint(PaintEventArgs e)
{

Graphics g = e.Graphics;

using (Pen p = new Pen(Color.FromArgb(40, 50, 130), 5))
{
g.DrawLine(p, 0, 0, 50, 50);
}
}

public static void Main()
{
Application.Run(new CMainForm());
}
}
}

W przypadku szczotek mozliwosci jest troche wiecej. Istnieje klasa bazowa Brush, z ktorej
wyprowadzono klasy umozliwiajace tworzenie réznego rodzaju szczotek: SolidBrush, Hatch-
Brush, LinearGradientBrush, PathGradientBrush czy TextureBrush.

Zobaczmy na przyklad jak za pomoca szczotki gradientowej wyposazyé okno w automatycz-
nie odrysowywane gradientowe tlo:

/* Wiktor Zychla, 2003 */
using System;

using System.Drawing;

using System.Drawing.Drawing2D;
using System.Windows.Forms;

namespace Example
{
public class CMainForm : Form

{

}
}

APLIKACJE OKIENKOWE

Rysunek C.11: Gradientowe tto uzyskane dzieki odpowiedniej szczotce

public CMainForm() {}

protected override void OnPaint(PaintEventArgs e)
{

Graphics g = e.Graphics;

using (LinearGradientBrush 1lgb =
new LinearGradientBrush(this.ClientRectangle, Color.Green,
Color.LightGreen, -45f, false))
{
g.FillRectangle(1gb, this.ClientRectangle);
}
}

protected override void OnResize(EventArgs e)
{

Invalidate();
}

public static void Main()
{
Application.Run(new CMainForm());

}

Obrazki

215

Tworzenie obrazkéw mozliwe jest dzieki dwém klasom: Image i dziedziczacej z niej Bitmap.
Obrazek moze by¢ utworzony dynamiczne badz zaladowany z pliku (Image.FromFile). Ob-
razek w pamieci mozna poddaé¢ réznym operacjom, mozna nawet utworzy¢ obiekt Graphics
dzieki funkcji Graphics.FromImage i rysowa¢ na powierzchni obrazka za pomoca funkcji z
GDI+.
Gotowy obrazek mozna zapisa¢ za pomoca metody Save, wybierajac przy okazji jeden z
dostepnych formatéow m.in. GIF, BMP, PNG, JPG.
Zawarto$¢ obrazka mozna dzieki funkcji DrawImage obiektu Graphics narysowa¢ w kon-

216 ROZDZIAE C. SWIAT .NET

Rysunek C.12: Zegarek w C# z podwojnym buforowaniem grafiki

tekscie, na ktéry wskazuje obiekt Graphics lub umiesci¢ w komponencie typu PictureBox,
ktory moze byé umieszczony w oknie. Komponent PictureBox sam dba o automatycznie od-
Swiezanie swojej zawartosci, programista nie musi wiec odrysowywaé zawartoéci obrazka gdy
okno wymaga od$wiezenia.

Podwé6jne buforowanie

GDI+ udostepnia mozliwos¢ automatycznego podwodjnego buforowania wyswietlanej grafiki.
Dzieki temu obraz rysowany jest na niewidocznej stronie graficznej i jest blyskawicznie przeno-
szony na powierzchnie okna. Podwdéjne buforowanie umozliwia catkowite wyeliminowanie efektu
“migania” obrazu podczas rysowania.

Aktywowanie podwdjnego bufowania wymaga jedynie 3 lini kodu w konstruktorze okna:

/* Wiktor Zychla, 2003 */
this.SetStyle(ControlStyles.UserPaint, true);
this.SetStyle(ControlStyles.AllPaintingInWmPaint, true);
this.SetStyle(ControlStyles.DoubleBuffer, true);

4.9 Zegary

Oprogramowanie zegaréw jest bardzo proste, poniewaz wystarczy utworzy¢ obiekt typu Timer,
przypia¢ funkcje do listy stluchaczy zdarzenia Tick i ustali¢ interwal czasu miedzy kolejnymi
zgloszeniami zdarzenia.

/* Wiktor Zychla, 2003 */
using System;

using System.Drawing;
using System.Windows.Forms;

namespace Example
{

public class CMainForm : Form

{

Timer timer;

4. APLIKACJE OKIENKOWE 217

public CMainForm()
{
timer = new Timer();
timer.Tick += new EventHandler(Timer_Tick);
timer.Interval = 50;
timer.Start();

this.SetStyle(ControlStyles.UserPaint, true);
this.SetStyle(ControlStyles.AllPaintingInWmPaint, true);
this.SetStyle(ControlStyles.DoubleBuffer, true);

void Timer_Tick(object sender, EventArgs e)
{

this.Invalidate();
}

protected override void OnPaint(PaintEventArgs e)
{
Graphics g = e.Graphics;
using (Font f = new Font("LED", 48))
{
StringFormat sf = new StringFormat();
sf.Alignment StringAlignment.Center;
sf.LineAlignment = StringAlignment.Center;

g.Clear(SystemColors.Control);
g.DrawString(DateTime.Now.ToLongTimeString(), f, Brushes.Black,
this.Width / 2, this.Height / 2, sf);
}
}

public static void Main()
{
Application.Run(new CMainForm());
}
}
}

4.10 Menu
Tworzenie menu

Tworzenie menu mozliwe jest dzieki dwoém typom danych:
MainMenu ktoéry stuzy do tworzenia menu dla okna dialogowego
ContextMenu ktory stuzy do tworzenia menu kontekstowych dla okien

/* Wiktor Zychla, 2003 */
using System;

using System.Drawing;
using System.Windows.Forms;

namespace Example
{
public class CMainForm : Form

{
TextBox tb;

void InitMenus()

{
// MainMenu
MainMenu mainMenu = new MainMenu();

MenuItem mPlik = new MenuIltem("Plik");
Menultem mPlikZakoncz = new Menultem("Zakoricz");

218 ROZDZIAE C. SWIAT .NET

mPlikZakoncz.Click += new EventHandler(mPlikZakoncz_Click);

mPlik.MenuIltems.Add(mPlikZakoncz);
mainMenu.Menultems.Add(mPlik);

this.Menu = mainMenu;

// ContextMenu

ContextMenu cMenu = new ContextMenu();
Menultem mZakoncz = new Menultem("Zakoncz");
cMenu.Menultems.Add(mZakoncz);

this.tb.ContextMenu = cMenu;

}

void mPlikZakoncz_Click(object sender, EventArgs e)

{
this.Close();
}

public CMainForm()

{
tb = new TextBox();
this.Controls.Add(tb);

InitMenus();

}

public static void Main()
{
Application.Run(new CMainForm());
}
}
}

Obiekt typu ContextMenu, reprezentujacy menu kontekstowe, ma jeszcze jedng interesu-
jaca wlasciwosé. Otéz ma on metode Show, ktéra po prostu pokazuje menu kontekstowe przy
wskazanym oknie potomnym. Jest to bardzo wygodne wtedy, kiedy menu kontekstowe powinno
zostaé¢ ujawnione w jakiej$ nietypowej sytuacji.

Wyobrazmy sobie na przyktad scenariusz, w ktérym kazdemu elementowi drzewa TreeView
powinno odpowiadaé jakies inne menu kontekstowe, zalezne od tego, co zawiera wskazany ele-
ment. Zamiast przywiazywac jakie$s konkretne menu kontekstowe do obiektu TreeView, pro-
gramista moze po prostu przechwyci¢ zdarzenie klikniecia mysza w wezet drzewa, sprawdzié
czy kliknieto prawy klawisz myszy i dopiero wtedy wykorzysta¢ metode Show do pokazania
odpowiedniego menu kontekstowego.

Wtasne funkcje rysowania menu

Wyglad menu mozna uatrakcyjni¢ dzieki mozliwosci okreslenia wlasnych funkcji odpowiedzial-
nych za rysowanie elementéw menu. Programista musi jedynie doda¢ funkcje obstugi zdarzen
Drawltem, odpowiedzialnej za rysowanie i Measureltem, odpowiedzialnej za okredlanie ob-
szaru zajmowanego przez element menu??.

W ponizszym przykladzie zmieniamy sposob rysowania tylko tych pozycji menu, ktére wi-
doczne sa na pasku menu w oknie. W analogiczny sposéb mozna jednak okreslié¢ sposéb rysowania
pozycji rozwijalnych, dodajac na przyktad mozliwos¢ rysowania ikon obok pozycji menu itp.

/* Wiktor Zychla, 2003 */
using System;

using System.Drawing;
using System.Windows.Forms;

22Kilku innym komponentom wizualnym réwniez mozna zmieniaé¢ wyglad w taki sposéb.

4. APLIKACJE OKIENKOWE 219

namespace WinForms_Dodatki
{
public class C_XMainMenu : System.Windows.Forms.MainMenu
{
private void topMenu_DrawItem(object sender,
System.Windows.Forms.DrawItemEventArgs e)
{
Rectangle mRect =
new Rectangle(e.Bounds.X, e.Bounds.Y, e.Bounds.Width, e.Bounds.Height);
Rectangle mRect2 =
new Rectangle(e.Bounds.X, e.Bounds.Y, e.Bounds.Width+1l, e.Bounds.Height+1);

if ((e.State & DrawItemState.Selected) != 0)
{
e.Graphics.FillRectangle(new SolidBrush(SystemColors.Control), mRect);
e.Graphics.DrawRectangle (
new Pen(new SolidBrush(SystemColors.ControlDark), 1), mRect);

}
else
if ((e.State & DrawItemState.HotLight) != 0)
{
e.Graphics.FillRectangle(new SolidBrush(SystemColors.ControlLightLight), mRect);
e.Graphics.DrawRectangle (
new Pen(new SolidBrush(SystemColors.ControlDark), 1), mRect);
}
else
{
e.Graphics.FillRectangle(new SolidBrush(SystemColors.Control), mRect2);
}
MenuItem mItem = (Menultem)sender;
Font mFont = new Font("MS Sans Serif", 10);

StringFormat sFormat = new StringFormat();

sFormat.Alignment StringAlignment.Center;
sFormat.LineAlignment = StringAlignment.Center;

e.Graphics.DrawString(mItem.Text, mFont, new SolidBrush(Color.Black), mRect, sFormat);

mFont .Dispose();

}

private void topMenu_Measureltem(object sender,
System.Windows.Forms.MeasureItemEventArgs e)

{
MenuItem mItem = (Menultem)sender;
Font mFont = new Font("MS Sans Serif", 10);
SizeF sizeF = e.Graphics.MeasureString(mItem.Text, mFont);

e.ItemWidth = (int)sizeF.Width;

mFont .Dispose();

}

public C_XMainMenu(Menu mMenu)

{
foreach (Menultem mItem in mMenu.Menultems)
{

Menultem newMenultem = mItem.CloneMenu();

ApplyMenuProperties (newMenultem);
this.Menultems.Add (newMenultem) ;
}
}

private void ApplyMenuProperties(Menultem mItem)

{
if (IsTopMenu(mItem))
{

220 ROZDZIAE C. SWIAT .NET

mItem.OwnerDraw = true;
mItem.Drawltem +=

new System.Windows.Forms.DrawItemEventHandler (this.topMenu_DrawItem) ;
mItem.Measureltem +=

new System.Windows.Forms.MeasureItemEventHandler (this.topMenu_MeasureItem);

}

foreach (Menultem subMenu in mItem.Menultems)
ApplyMenuProperties(subMenu);
}

private static bool IsTopMenu(Menultem mItem)
{
if (mItem.Parent == null) return true;
return mItem.Parent == mItem.GetMainMenu();
}
}
}

Klasa C_XMainMenu okreslona jest tak, ze w kodzie inicjujacym menu nalezy po prostu
napisac:

MainMenu mainMenu;

C_XMainMenu cxMainMenu = new C_XMainMenu(mainMenu);
this.Menu = cxMainMenu;

4.11 Schowek

Dostep do schowka systemowego mozliwy jest dzieki obiektowi Clipboard. W schowku mozna
umieéci¢ dowolny obiekt lub sprawdzié¢ czy znajduje sie tam obiekt okreslonego typu.

Ponizszy przyktad umieszcza w schowku napis, a nastepnie wydobywa go stamtad. Dane
przekazane do schowka w ten sposéb sg dostepne dla wszystkich aplikacji w systemie, podobnie
dane pobierane ze schowka moga pochodzi¢ z dowolnej aplikacji w systemie.

/* Wiktor Zychla, 2003 */
using System;

using System.Drawing;
using System.Windows.Forms;

namespace Example
{
public class CMainForm : Form
{
public CMainForm()
{
// umie§¢ dane w schowku
Clipboard.SetDataObject("Tekst przesytany do schowka", true);

// wydobadz dane ze schowka

IDataObject ido = Clipboard.GetDataObject();

if (ido.GetDataPresent(typeof(string)))

{
string s = ido.GetData(typeof(string)) as string;
MessageBox.Show(s);

}

}

public static void Main()
{
Application.Run(new CMainForm());
}
}
}

4. APLIKACJE OKIENKOWE 221

4.12 Drag & drop
4.13 Tworzenie wtasnych komponentéow

Jedna z najciekawszych mozliwo$ci nowoczesnych technologii informatycznych jest mozliwosé
definiowania wtasnych komponentéw wizualnych. Kiedy nie byto jeszcze technologii NET wtasne
komponenty mozna bylo tworzy¢ w technologii COM, uzywajac do tego Visual Basica lub C++.

Mozliwosci .NET jeszcze bardziej utatwiaja caly ten proces. Tak naprawde wystarczy utwo-
rzy¢ klase dziedziczaca z UserControl i juz moze ona funkcjonowaé jako komponent wizualny.
Taki wlasny komponent moze na przyktad sktadaé¢ sie z dowolnej ilosci juz istniejacych kom-
ponentéw i automatyzowaé pewne zaleznoéci miedzy nimi, moze tez tworzy¢ catkowicie nowe
mozliwosci interfejsowe.

Do czego moze przydawaé si¢ mozliwosé tworzenia wlasnych komponentéw?

Wyobrazmy sobie na przyktad, ze standardowy komponent ComboBox chcielibySmy wypo-
sazy¢ w automatyczne dopasowywanie elementu na lidcie do tekstu wpisywanego przez uzytkow-
nika. Zwykly ComboBox tego nie potrafi, ale mozna utworzy¢ wtasny komponent i dodaé reakcje
na odpowiednie zdarzenia, by uzyskaé¢ porzadana funkcjonalnosé. Mozna taki problem rozwia-
zaé bez tworzenia nowego komponentu, tyle ze gdyby chcie¢ uzy¢ takiego ComboBoxa wiecej niz
raz, utworzenie jednego komponentu wielokrotnego uzycia, po prostu ogromnie upraszcza zycie
programisty.

Wyobrazmy sobie réwniez, ze chcieliby$my mie¢ zupelnie nowy komponent wizualny, siatke,
z mozliwoscia dodawania wierszy i kolumn i to taka, zeby kazda komoérka mogla mieé¢ inny
kolor, czcionke wyréwnanie czy orientacje tekstu. Takiego komponentu standardowo w bibliotece
komponentéw .NET nie ma. Moznaby jednak utworzy¢ witasny komponent, doda¢ mu jakie$
struktury danych do przechowywania danych, doda¢ jakie$ propercje, metody i zdarzenia, tak
aby mozna bylo sterowaé takim komponentem z poziomu kodu konkretnego okna, w ktérym
bytby on osadzony, a nastepnie przecigzy¢ catkowicie metode OnPaint, dzigki czemu wizualna
zawarto$¢ komponentu moglaby by¢ tworzona catkowicie dowolnie, bez zadnego zwiazku z juz
istniejacymi komponentami.

Najprostszy komponent

Zaczniemy od bardzo prostego przykiladu komponentu, ktéry bedzie tylko wypisywal tekst w
swoim obszarze. Komponent taki jset oknem lezacym gdzies w jakims$ innym oknie. Wewnatrz
kodu moze wiec dowiedzieé¢ sie jakie sg jego biezace rozmiary za pomocg propercji Width i He-
ight. Réwniez propercje takie jak Font, Text, BackColor czy ForeColor sa, jako dziedziczone
z klasy UserControl, dostepne dla klienta komponentu.

Klient komponentu (czyli kod, ktéry korzysta z tego komponentu) traktuje wiec nowo zapro-
jektowany komponent jak kazdy inny - moze ustala¢ rozmiary komponentu, jego kotwicowanie
czy dokowanie oraz uzywacé wszystkich potrzebnnych propercji, zdarzen i metod (tak prosty kom-
ponent nie ma zadnych sensownych sktadowych poza tymi dziedziczonymi z UserControl).

W $rodowisku wizualnym tak zaprojektowany komponent po umieszczeniu w bibliotece
obiektowej (takie jest ograniczenie na przyktad VisualStudio) mégtby by¢ umieszczony na przy-
borniku z komponentami i umieszczany na oknach jak kazdy inny komponent z przybornika!

/* Wiktor Zychla, 2003 */
using System;

using System.Drawing;
using System.Windows.Forms;

namespace Example
{
public class CKomponent : UserControl

{

222

ROZDZIAL C. SWIAT .NET

Komponent 2

Rysunek C.13: Najprostszy komponent

public CKomponent() {}

protected override void OnPaint(PaintEventArgs e)

{
StringFormat sf = new StringFormat();
sf.Alignment = StringAlignment.Center;
sf.LineAlignment = StringAlignment.Center;
e.Graphics.Clear(this.BackColor);
e.Graphics.DrawString(this.Text, this.Font, Brushes.Black,
this.Width / 2, this.Height / 2, sf);
}
protected override void OnResize(EventArgs e)
{
Invalidate();
}
}

public class CMainForm : Form

{

CKomponent ckl, ck2;

public CMainForm()

{
ckl

ckl.
ckl.
ckl.
ckl.
.Dock

ckl

ck2

ck2.
ck2.
.Dock

ck2

Text

new CKomponent () ;
"Komponent 1";

BackColor = Color.Red;

Font
Size

Text
Font

new Font("Tahoma", 18);
new Size(50, 50);

= DockStyle.Fill;

new CKomponent () ;
"Komponent 2";

= new Font("Courier", 32);
= DockStyle.Top;

this.Controls.AddRange (new Control[] { ckl, ck2 });

4. APLIKACJE OKIENKOWE

}

public static void Main()

{

}
}

Application.Run(new CMainForm());

Komponent zlozony

223

Komponent moze zawiera¢ w sobie dowolng ilo$¢ innych komponentéw i wewnatrz swojego kodu
przechwytywaé ich zdarzenia.

/* Wiktor Zychla, 2003 */
using System;

using System.Drawing;
using System.Windows.Forms;

namespace Example

{

public class CKomponent

{

Button bl, b2;

public CKomponent ()

{

}

public void bt_Click(object sender, EventArgs e)

{

}
}

bl
bl
bl
bil.

b2
b2
b2.
b2
b2.

this.Controls.AddRange(new Control[]l { b1, b2 });

MessageBox.Show(((Control)sender).Text);

.Dock

new Button();

.Text = "1";
.Dock
Click += new EventHandler(bt_Click);

DockStyle.Fill;

new Button();

.Text = "2";

new Size(40, 40);
DockStyle.Right;

Size

Click += new EventHandler(bt_Click);

public class CMainForm : Form

{

CKomponent ckl, ck2;

public CMainForm()

{

}

ckl

ckl.
ckl.
ckl.
ckl.

ckl

ck2

ck2.
ck2.

ck2

this.Controls.AddRange(new Control[] { cki1, ck2 });

new CKomponent () ;
Text = "Komponent 1";
BackColor = Color.Red;

Size = new Size(50, 50);
.Dock = DockStyle.Fill;

= new CKomponent();
Text = "Komponent 2";
Font = new Font("Courier",
.Dock = DockStyle.Top;

public static void Main()

{

: UserControl

Font = new Font("Tahoma", 8);

12);

Application.Run(new CMainForm());

224 ROZDZIAE C. SWIAT .NET

Definiowanie wlasnych zdarzen

Zestaw zdarzen udostepnianych przez komponenty réwniez moze by¢ rozbudowany. Wyobrazmy
sobie, ze chcieliby$my mieé¢ komponent, ktory zawieralby ComboBox i maly przycisk z napisem
”+” 7z boku. Chcielibyémy, aby uzytkownik mogt uzy¢ tego przycisku do dodawania nowych
elementéw do ComboBoxa. Z punktu widzenia logiki tego komponentu zdarzenie oznaczajace
che¢ dodania nowego elementu mogtoby jednak pojawiaé sie réwniez wtedy, kiedy uzytkownik
wpisalby w pole tekstowe ComboBoxa jaki$ tekst spoza tekstow dostepnych na liscie. To juz
az dwa przypadki, kiedy takie zdarzenie mogloby sie pojawic.

Mozemy wiec zaprojektowaé nowe zdarzenie. Nazwiemy je AddNewText. By¢ moze w
toku prac okazalobysie, ze zdarzenie takie powinno mieé jakie§ dodatkowe parametry. Zapro-
jektowalibyémy wtedy nowa klase, AddNewTextEvent Args i zmodyfikowalibyémy deklaracje
zdarzenia. Nalezaloby jedynie pamieta¢ o zachowaniu konwencji: odpowiedni delegat powinien
mie¢ dwa parametry, z czego pierwszy powinien wskazywaé na zrodlo zdarzenia, drugi powinien
dziedziczy¢ z klasy Event Args, rozszerzajac ja o dodatkowe parametry zdarzenia.

Zauwazmy, ze kod klienta korzysta z tego zdarzenia tak samo jak z kazdego zdarzenia. Z
punktu widzenia kodu nie ma réznicy miedzy naszym nowym zdarzeniem, a juz istniejacymi
zdarzeniami.

/* Wiktor Zychla, 2003 */
using System;

using System.Drawing;
using System.Windows.Forms;

namespace Example
{
public class CComboBox : UserControl

{
ComboBox cb;
Button bt;

// wtasne zdarzenie definiowane przez komponent
public event EventHandler AddNewText;

public CComboBox()

{
cb = new ComboBox();
cb.Dock = DockStyle.Fill;
bt = new Button();
bt.FlatStyle = FlatStyle.Popup;
bt.Text = "+";
bt.Dock = DockStyle.Right;
bt.Click += new EventHandler(bt_Click);
this.Controls.AddRange(new Control[] { cb, bt });
}
protected override void OnResize(EventArgs e)
{
bt.Size = new Size(this.Height, this.Height);
}

// przechwyé klik w przycisk i na zewnatrz wystaw jako AddNewText
void bt_Click(object sender, EventArgs e)
{
// sprawdz czy sg jacy$ stuchacze
if (AddNewText != null)
AddNewText (this, new EventArgs());

4. APLIKACJE OKIENKOWE

}
}

public class CMainForm :

{

CComboBox cbi;

public CMainForm()

{

}

cbl

Form

new CComboBox();

cbl.Size = new Size(150, 20);

cbl.AddNewText += new

EventHandler(cb_AddNewText);

this.Controls.Add(cbl);

void cb_AddNewText(object sender, EventArgs e)

{

}

MessageBox.Show("Zgtoszono zdarzenie AddNewText!");

public static void Main()

{

}
}
}

Application.Run(new CMainForm());

4.14 Typowe okna dialogowe

Okna wyboru plikéw

225

Standardowo, programista ma do dyspozycji okno wyboru pliku do otwarcia i zamkniecia (Open-
FileDialog i SaveFileSialog). Oba dzialaja bardzo podobnie - po ustaleniu wtasciwosci nalezy
wywota¢ metode do pokazania okna i przechwyci¢ rezultat, wskazujacy na to czy przypadkiem
uzytkownik nie anulowal okna. Lista wybranych plikéw dostepna jest dzieki propercji FileNa-
me(s].

/* Wiktor Zychla, 2003 */

using
using
using

System;
System.Drawing;
System.Windows.Forms;

namespace Example

{

public class CMainForm :

{

public CMainForm()

{

}

OpenFileDialog of =
of .InitialDirectory =

Environment.GetFolderPath(Environment.SpecialFolder.ProgramFiles);

of .Title =
of .Filter =

of .Multiselect =

DialogResult res = of.

Form

new OpenFileDialog();

"Wybierz plik do otwarcia...";
"Moje pliki (*.xyz) |*.xyz|"+
"Wszystkie pliki (k.*)|*.*";
true;

ShowDialog() ;

if (res == DialogResult.O0K)
foreach (string fileName in of.FileNames)
MessageBox.Show("Wybrano plik " + fileName);

public static void Main()

{

Application.Run(new CMainForm());

226

Okno wyboru czcionki

/* Wiktor Zychla, 2003 */
using System;

using System.Drawing;
using System.Windows.Forms;

namespace Example
{
public class CMainForm :
{
public CMainForm()
{

Form

FontDialog fd new FontDialog();
fd.ShowColor true;
fd.ShowEffects = true;

DialogResult res = fd.ShowDialog();
if (res == DialogResult.O0K)
MessageBox.Show("Wybrano czcionke: " + fd.Font.ToString()
}

public static void Main()
{
Application.Run(new CMainForm());
}
}
}

Okno wyboru koloru

/* Wiktor Zychla, 2003 */
using System;

using System.Drawing;
using System.Windows.Forms;

namespace Example
{
public class CMainForm :
{
public CMainForm()
{

Form

ColorDialog cd = new ColorDialog();
cd.AllowFullOpen true;

DialogResult res = cd.ShowDialog();
if (res == DialogResult.O0K)
MessageBox.Show("Wybrano kolor: " + cd.Color.ToString());
}

public static void Main()
{
Application.Run(new CMainForm());
}
}
}

ROZDZIAE C. SWIAT .NET

5. CIEKAWOSTKI .NET 227

5 Ciekawostki .NET

5.1 Blad od$smiecania we wczesnych wersjach Frameworka

Odémiecacz, jako kluczowy element $rodowiska uruchomieniowego, powinien radzi¢ sobie w wielu
roznych sytuacjach. Ciekawostka jst fakt, ze w pierwszej wersji .NET Frameworka od$miecacz
czasami nie potrafil radzi¢ sobie z usuwaniem niepotrzebnej pamieci.

Przyktadowy program prébowal w petli rezerwowaé sobie coraz wiekszy fragment pamieci,
zaczynajac od bloku 10MB i zwickszajac wielkosé bloku o 10kB w kazdej iteracji. Rezerwowany
wewnatrz petli blok powinien byé oznaczony jako nieuzywany, tak sie jednak nie dzialo. W
konsekwencji program dziatal tak dlugo, az skonczyla sie dostepna w systemie pamieé, po czym
konezyl sie z wyjatkiem Out of memory.

Problem zostat usuniety w poprawce SP2 do Frameworka 1.0. Nie wystepuje we Frameworku
1.1.

/* Wiktor Zychla, 2003 */
using System;

class Test

{
public static void Main(string [] args)
{
for (int tries=0; tries < 200; tries++)
{
int iNElements = 10000000 + tries*10000;

try
{

byte [1 aMyMem = new byte [iNElements-1];
}

catch (Exception e)

{
Console.WriteLine (e);
Console.WriteLine (iNElements);
return;

5.2 Dostep do prywatnych metod klasy

Mimo, ze CLS dos¢ mocno broni sie przed dostepem do prywatnych sktadowych obiektéw, istnie-
je sposéb na dostep do prytwatnych metod. Okazuje sie, ze przydaje sie tu mechanizm refleksji.
Sposéb ten, z oczywistych powodéw, nie nadaje sie¢ do wydobywania informacji o prywatnych
polach klas. Metody sa bowiem skladowymi statycznymi i sa czeScia opisu klasy. Pola za$ sa
sktadowymi dynamicznymi, unikalnymi dla kazdej nowej instancji obiektu.

/* Wiktor Zychla, 2003 */
using System;
using System.Reflection;

namespace Example

{

// Klasa z metodg prywatng
public class ClassA
{
private void metodaPrywatna()
{

Console.WriteLine("Metoda prywatna.");

228 ROZDZIAE C. SWIAT .NET

}
}

public class CMain
{
static void Main()
{
ClassA classA

Type type

new ClassA();
classA.GetType();

foreach (MethodInfo method in type.GetMethods(
BindingFlags.Instance | BindingFlags.NonPublic))
{

if (method.Name == "metodaPrywatna")

{
method.Invoke(classA, new object[] {});

5.3 Informacje o systemie
Informacje o konfiguracji systemu

Informacje o konfiguracji systemu dostepne sa dzieki propercjom i metodom klasy Environ-
ment. Istnieje m.in. mozliwosé uzyskania informacji:

CommandLine - parametry linii polecen

CurrentDirectory - biezaca $ciezka

GetEnvironment Variables - zmienne systemowe
GetFolderPath - lokalizacja specjalnych folderéw systemowych
GetLogicalDrives - lista napedéw logicznych w systemie
MachineName - nazwa komputera

SystemDirectory - folder systemowy

Version - wersja systemu

Informacje o $rodowisku graficznym

Dostep do informacji o konfiguracji srodowiska graficznego mozliwy jest dzieki klasie Syste-
mInformation. Dostepne sa m.in. nastepujace informacje :

ComputerName - nazwa komputera
MonitorCount - liczba monitoréw
MouseButtons - liczba przyciskéw myszy

MouseWheelPresent - dodatkowa mozliwo$é myszy (obecnosé kétka)

oraz mnostwo propercji opisujacych rozmiary obiektow graficznych: kursora, ikon, czcionki
menu, rozmiaru ekranu itd.

5. CIEKAWOSTKI .NET 229

Informacje o $rodowisku uruchomieniowym

Istnieje réwniez mozliwos¢ zasiegniecia informacji o érodowisku uruchomieniowym. Stuzy do tego
klasa RuntimeEnvironment z biblioteki System.Runtime.InteropServices. Udostepnia
informacje:

GetRuntimeDirectory - Sciezka, w ktérej zainstalowano $rodowisko uruchomieniowe

GetSystemVersion - wersja srodowiska uruchomieniowego

5.4 Wlasny ksztalt kursora myszy

W szczegdlnych przypadkach mozna zmieni¢ ksztatt kursora myszy. Biblioteki .NET udostep-
niaja klase Cursors, ktéra udostepnia wiekszo$¢ typowych kursoréw systemowych. Co jednak
zrobié¢, gdy typowe ksztalty nie wystarczaja?

Ot6z mozna skorzystaé¢ z mozliwosci przeksztatcenia dowolnej bitmapy na kursor myszy:

// twérz bitmape, mozna uzyé juz istniejacej

Bitmap b = new Bitmap(30, 15);

Graphics g = Graphics.FromImage (b);

g.DrawString ("NAPIS", this.Font, Brushes.Black, 0, 0);

// uchwyt do ikony utworzonej z bitmapy
IntPtr ptr = b.GetHicon();

// zamien na ikone lub kursor
Icon i = Icon.FromHandle (ptr);
Cursor ¢ = new Cursor(ptr);

// przypisz kursor oknu
this.Cursor = c;

5.5 Wlasne ksztalty okien

Windows potrafi wykorzysta¢ maski bitowe do definiowana ksztaltow okien. W Swiecie .NET
nieregularne okna mozna definiowa¢ dzieki obiektom GraphicsPath, na przyktad:

// elipsoidalny ksztalt okna
GraphicsPath gP = new GraphicsPath();

gP.AddEllipse (O, O, this.Width, this.Height);
this.Region = new Region (gP);

5.6 Podwodjne buforowanie grafiki w GDI+

W GDI+ istnieje mozliwos¢ wlaczenia automatycznego podwdjnego buforowania wyswietlanej
grafiki. Obraz zyskuje dzieki temu na ptynnoéci, co jest szczegdlnie przydatne gdy obraz odswie-
zany jest doéé¢ czesto.

SetStyle(ControlStyles.UserPaint, true);
SetStyle(ControlStyles.AllPaintingInWmPaint, true);
SetStyle(ControlStyles.DoubleBuffer, true);

230 ROZDZIAL C. SWIAT .NET

5.7 Sprawdzanie uprawnien uzytkownika

Jedli podczas pracy aplikacji zachodzi potrzeba sprawdzenia, czy uzytkownik ma uprawnienia
administratora mozna postuzy¢ sie nastepujacym kodem:

using System.Security;
using System.Security.Permissions;
using System.Security.Principal;

WindowsPrincipal wid = new WindowsPrincipal(WindowsIdentity.GetCurrent());
bool isAdmin = wid.IsInRole(WindowsBuiltInRole.Administrator);

5.8 Ikona skojarzona z plikiem

System operacyjny Windows z niektérymi rozszerzeniami plikéw kojarzy aplikacje, stuzace do ich
otwierania. Menedzery plikéw pokazujac liste plikow, pokazuja tez ikony skojarzone z plikami,
czyli ikony aplikacji stuzacych do otwierania tych plikéw.

Biblioteki .NET nie udostepniaja bezposrednio funkcji do wydobywania ikon skojarzonych z
plikami, nalezy wiec siegnaé¢ do Win32API:

public class ExtractIcon
{
[D11Import("Shell32.d11")]
private static extern int SHGetFilelInfo
(
string pszPath,
uint dwFileAttributes,
out SHFILEINFO psfi,
uint cbfilelnfo,
SHGFI uFlags
)3

[StructLayout (LayoutKind.Sequential)]

private struct SHFILEINFO

{

public SHFILEINFO(bool b)

{
hIcon=IntPtr.Zero;ilcon=0;dwAttributes=0;szDisplayName="";szTypeName="";
}

public IntPtr hIcon;

public int ilIcon;

public uint dwAttributes;

[MarshalAs (UnmanagedType.LPStr, SizeConst=260)]
public string szDisplayName;

[MarshalAs (UnmanagedType.LPStr, SizeConst=80)]
public string szTypeName;

};

private ExtractIcon() {}

private enum SHGFI

{

SmallIcon = 0x00000001,
LargeIcon = 0x00000000,
Icon = 0x00000100,
DisplayName = 0x00000200,
Typename = 0x00000400,
SysIconIndex = 0x00004000,
UseFileAttributes = 0x00000010
}

public static Icon GetIcon(string strPath, bool bSmall)
{

SHFILEINFO info = new SHFILEINFO(true);

int cbFileInfo = Marshal.SizeOf (info);

SHGFI flags;

5. CIEKAWOSTKI .NET

}
}

if (bSmall)
flags = SHGFI.Icon|SHGFI.SmallIcon|SHGFI.UseFileAttributes;

else

flags = SHGFI.Icon|SHGFI.LargeIcon|SHGFI.UseFileAttributes;

SHGetFileInfo(strPath, 256, out info, (uint)cbFileInfo, flags);
return Icon.FromHandle(info.hIcon);

5.9 WMI

231

WMI (ang. Windows Management Instrumentation) jest mechanizmem umozliwiajacym dia-
gnozowanie stanu komputera i systemu operacyjnego w jednorodny sposéb: WMI udostepnia
obiekt, ktéry interfejsem przypomina baze danych. Aby uzyskaé interesujace informacje, nalezy
po prostu zada¢ odpowiednie zapytanie w jezyku SQL, odwotujac sie¢ do odpowiedniego obiektu
WMI.

Mozliwosci WMI sg naprawde duze. Zadajac odpowiednie zapytanie mozna dowiedzie¢ sie
mnéstwo szczegotéw takich jak np. marka producenta plyty gléownej, czestotliwosé taktowania
procesora, numer wersji BIOSu i wiele, wiele innych.

WMI jest dostepne w Windows poczawszy od Windows 2000. W Windows 98 musi by¢
doinstalowane przez uzytkownika.

using System;
using System.Management;
namespace WMI

{

}

class CExample

{

}

static void Main(string[] args)

{

}

ManagementObjectSearcher queryl =
new ManagementObjectSearcher ("SELECT * FROM win32_OperatingSystem")

ManagementObjectCollection queryCollectionl = queryl.Get();

foreach(ManagementObject mo in queryCollectioni)

{
Console.WriteLine("Name : " + mo["name"].ToString());
Console.WriteLine("Version : " + mo["version"].ToString());
Console.WriteLine("Manufacturer : " + mo["Manufacturer"].ToString());
Console.WriteLine("Computer Name : " +mo["csname"].ToString());
Console.WriteLine("Windows Directory : " + mo["WindowsDirectory"].ToString());

}

queryl = new ManagementObjectSearcher ("SELECT * FROM win32_Processor")
queryCollectionl = queryl.Get();
foreach(ManagementObject mo in queryCollectioni)
{
Console.WriteLine(mo["Caption"].ToString());
Console.WriteLine (mo["CurrentClockSpeed"] .ToString());
}

queryl = new ManagementObjectSearcher ("SELECT * FROM win32_BIOS")
queryCollectionl = queryl.Get();
foreach(ManagementObject mo in queryCollectionl)
{
Console.WriteLine(mo["version"].ToString());

}

232 ROZDZIAE C. SWIAT .NET

6 Bazy danych i ADO.NET

6.1 Interfejsy komunikacji z bazami danych

Piszac aplikacje, ktérej zadaniem jest gromadzenie i przetwarzanie informacji, programista cze-
sto staje przed wyborem sposobu gromadzenia danych. Wspélcze$nie najczesciej wykorzystuje
sie do tego serwery baz danych, bowiem gwarantuja one, m.in bezpieczenstwo, integralnoéé¢ i
nienaruszalno$¢ danych.

Z punktu widzenia programisty, serwer baz danych jest zwyklym programem, ktéry swoje
ustugi dostepu do danych oferuje wielu klientom. Schemat takiej komunikacji jest identyczny jak
znany nam juz z poprzednich rozdzialéw schemat wymiany danych miedzy serwerem, a klientem
sieciowym: jakis protokot fizyczny pelni role nosnika informacji, za$ jakis protokot logiczny
okresla posta¢ wymienianych komunikatéow.

Interfejsy programowania baz danych zwalniajg programiste z konieczno$ci czuwania nad
szczegdlami komunikacji, pozwalaja za$ skupié¢ sie na wymianie danych miedzy klientem a ser-
werem. Jak zobaczymy w kolejnych podrozdziatach, istnieja trzy podstawowe operacje udostep-
niane przez interfejs programowania baz danych, ktorych programista musi uzy¢ do komunikacji
7z serwerem:

1. Otwarcie potaczenia z wybranym serwerem baz danych
2. Wykonanie operacji na otwartym potaczeniu
3. Zamkniecie potaczenia do bazy danych

Mozliwosci oferowane przez poszczegdlne serwery baz danych réznig sie od siebie. Mogto-
by sie wiec wydawadé, ze interfejs programowania serwera MySQL, Microsoft SQL Server, czy
Oracle musza sie od siebie rézni¢. Na szczeScie nie jest az tak zle, opracowano bowiem takie
interfejsy, ktére sa oderwane od szczegétéw implementacji konkretnego serwera i (przynajmnie;
teoretycznie) pozwalaja oprogramowaé¢ komunikacje z kazdym dostepnym serwerem baz danych
w doktadnie taki sam sposob.

ODBC

Open DataBase Connectivity jest interfejsem umozliwiajacym dostep do danych sktado-
wanych w dowolnym systemie zarzadzania bazami danych (DataBase Maganement System,
DBMS?3). ODBC jest zbudowany w oparciu o specyfikacje X/Open i ISO/IEC.

W systemie Windows za komunikacje z systemami zarzadzania baz danych odpowiada biblio-
teka odbc32.dll. Zaimplementowano wiele sterownikéw ODBC dla réznych DBMSéw. Jesli na
rynku pojawia sie nowy system bazodanowy, to jest niemal pewne, ze bedzie on potrafit komuni-
kowaé sie¢ za pomocg ODBC. System Windows potrafi komuikowaé sie za pomoca ODBC m.in.
z MS SQL Severem, Oracle, Visual Fox Pro, czy bazami MS Access. Producenci nowych rozwia-
zan bazodanowych najczesciej sami dostarczaja odpowiednie sterowniki, tak jest na przyktad w
przypadku serwera MySQL.

OLE DB

OLE DB jest rozwinieciem idei ODBC. W teorii umozliwia dostep do dowolnych danych, nie
tylko relacyjnym DBMSéw.
Idea OLE DB polega na wspoélistnieniu trzech rodzajéw obiektéw. Sa to:

ZDBMSami sa na przyktad serwery baz danych.

6. BAZY DANYCH I ADO.NET 233

e dostawcy danych (data providers), ktorzy przechowuja i udostepniaja dane
e konsumenci danych (data consumers, ktérzy moga korzystaé¢ z danych
e skladniki ustugowe (service components), ktére przetwarzaja dane

Obiekty z kazdej z tych grup musza po prostu udostepniaé¢ pewien Scisle okreslony (przez
standard OLE DB) zbiér funkcji. Teoretycznie mozna sobie wyobrazi¢ na przyklad taki scena-
riusz, w ktérym dostawca danych przechowuje dane w pliku tekstowym, sktadnik ustugowy te
dane sortuje, zas konsument pobiera wynik.

ADO i ADO.NET

Tak naprawde programista piszacy aplikacje klienckie raczej nigdy nie bedzie zmuszony do pisa-
nia wlasnych obiektéw - dostawcéw danych, ani wlasnych ustug OLE DB. Obie te funkcje spet-
niane sg przez systemy zarzadzania bazami danych i istotne sa z punktu widzenia projektantéw
tych systeméw. Programista aplikacji klienckiej jest za to zainteresowany interfejsem progra-
mowania przeznaczonym do konsumowania danych udostepnianych przez systemy bazodanowe.
Najpopularniejszym interfejsem programowania konsumentéw danych, dodatkowo opakowuja-
cym interfejs OLE DB, jest ADO.

Interfejs ADO (ActiveX Data Objects) zostal zaprojektowany jako interfejs obiektowy,
udostepniany w modelu COM. Zdobyt duzg populano$¢ wsrdd programistéw, poniewaz szybko
powstaly komponenty ADO dla popularnych systeméw RAD (Visual Basic, Delphi, jezyki
skryptowe). Sita ADO od poczatku byta jego prostota i jednorodnos$é¢ - ADO umozliwia pisanie
aplikacji w duzym stopniu niezaleznych od sposobu sktadowania danych.

ADO.NET jest kolejnym krokiem w strone uproszczenia interfejsu klienta OLE DB, dostep-
nego dla programistéw aplikacji na platformie .NET. Dzigki ADO.NET dostep do baz danych
wyglada niemal identycznie nie tylko w réznych jezykach platformy .NET, ale jest niezalezny od
dostawcy danych. Oznacza to, ze praktycznie nie powinno mie¢ wiekszego znaczenia czy sktado-
wiskiem danych aplikacji jest MySQL, MS SQL Server czy Oracle, bowiem aplikacja komunikuje
sie z nimi wszystkimi w prawie identyczny sposéb.

Dla potaczen OLEDB, interfejs ADO.NET udostepnia szereg klas, ktérych nazwy rozpo-
czynaja sie od OleDb..., na przyktad OleDbConnection. Specjalnie dla MS SQL Servera
przygotowano specjalizowany zestaw klas przeznaczonych wylacznie dla MS SQL Servera, kté-
rych funkcjonalnosé jest identyczna, tyle ze ich nazwy rozpoczynaja sie od Sql.... Inni dostawcy
systemow baz danych podjeli te konwencje, przygotowujac specjalizowane klasy dla komunikacji
z serwerem Oracle czy MySQL.

Zaletg specjalizowanych klas jest ich szybkoéé. Na przyktad dzieki uzyciu klas Sql... aplikacja
wymienia dane z serwerem MS SQL okolo 2 razy szybciej niz za pomoca klas OleDb....

Ich wada polega za$ na tym, ze obstuguja tylko jeden typ dostawcy danych, w przeciwienstwie
do klas OleDb..., ktére sa ogdlne i jedyna réznica w dostepie do danych z réznych serwerdw
wynika z konieczno$ci nieco innego zainicjowania potaczenia do bazy danych.

6.2 Manualne zakladanie bazy danych

Sposoby wymiany danych miedzy serwerem bazy danych a aplikacja oméwimy na przyktadzie
serwera bazodanowego Microsoft SQL Server. Wymiana danych z innymi serwerami baz da-
nych wyglada identycznie od strony interfejsu programowego. Roéznice mogg pojawiaé sie tylko
wtedy, kiedy serwer bazodanowy, z ktérym komunikuje sie aplikacja, nie obstuguje pewnych
mechanizméw, ktorych spodziewa sie aplikacja.

234 ROZDZIAE C. SWIAT .NET

Przyktad rozpoczniemy od zalozenia bazy danych. Wigkszosé serweréw baz danych wspo-
maga operacje administracji specjalnymi narzedziami z wygodnym interfejsem uzytkownika?*,
jednak prawie zawsze daja mozliwosé korzystania bezposérednio z polecen jezyka SQL.

Skorzystamy wiec z tej mozliwosci, aby utworzyé¢ prosta baze danych na serwerze MS SQL
Server. Do kazdej wersji serwera SQL Server (dotyczy to nawet wersji ”Desktop”, czyli MSDE)
dotaczone jest narzedzie o nazwie osql, ktére pozwala na wydawanie polecen SQL serwerowi.

Zacznijmy od polaczenia sie ze wskazanym serwerem (nazwa (local) oznacza serwer lokalny)
jako wskazany uzytkownik. MS SQL Server moze podczas pracy uzywaé¢ wiasnych mechanizmoéow
uwierzytelniania, niezaleznych od uwierzytelniania w systemie. W takim scenariuszu admini-
strator serwera nazywa sie sa i on tworzy kolejnych uzytkownikéw i nadaje im uprawnienia do
korzystania z poszczegdlnych baz danych.

C:\MSSQL7\Binn>osql -H (local) -U sa
Password:
1>

Program OSQL nawiazal potaczenie z serwerem i oczekuje na polecenia w jezyku SQL. Uzyt-

99 .99

kownik moze poda¢ dowolng ilos¢ polecen rozdzielonych znakiem ”;” i zakonczonych poleceniem
GO, ktore spowoduje wykonanie polecen i zwrédcenie wynikéw do okna konsoli.

1> SELECT @Q@VERSION
2> GO0

Microsoft SQL Server 7.00 - 7.00.623 (Intel X86)
Nov 27 1998 22:20:07
Copy
right (c) 1988-1998 Microsoft Corporation
MSDE on Windows 4.10 (Build 1998:)

(1 row affected)

Najpierw utworzymy nowa baze danych i uczynimy ja biezaca:

CREATE DATABASE sqlTEST
GO

USE sqlTEST

GO

Nastepnie utworzymy dwie tabele z danymi, T_STUDENT i T_UCZELNIA, tworzac przy
okazji relacje jeden-do-wielu miedzy nimi (wielu studentéw moze uczeszczaé do jednej uczelni).

CREATE TABLE T_UCZELNIA
(ID_UCZELNIA INT IDENTITY(1,1) NOT NULL
CONSTRAINT PK_UCZELNIA PRIMARY KEY NONCLUSTERED,
Nazwa varchar (150) NOT NULL,
Miejscowosc varchar(50) NOT NULL)

CREATE TABLE T_STUDENT
(ID_UCZEN INT IDENTITY(1,1) NOT NULL
CONSTRAINT PK_STUDENT PRIMARY KEY NONCLUSTERED,
ID_UCZELNIA INT NOT NULL
CONSTRAINT FK_STUDENT_UCZELNIA REFERENCES T_UCZELNIA(ID_UCZELNIA),
Nazwisko varchar(150) NOT NULL,
Imie varchar(150) NOT NULL)

Majac przygotowane tabele, dodajmy jakies przykladowe dane:

24W przypadku serwera MS SQL Server, okienkowym narzedziem administracyjnym moze byé¢ nawet Microsoft
Access

6. BAZY DANYCH I ADO.NET 235

INSERT T_UCZELNIA VALUES (’Uniwersytet Wroctawski’, ’Wroctaw’)
INSERT T_UCZELNIA VALUES (’Uniwersytet Warszawski’, ’Warszawa’)
INSERT T_STUDENT VALUES (1, ’Kowalski’, ’Jan’)

INSERT T_STUDENT VALUES (1, ’Malinowski’, ’Tomasz’)

INSERT T_STUDENT VALUES (2, ’Nowak’, ’Adam’)

INSERT T_STUDENT VALUES (2, ’Kaminska’, ’Barbara’)

Sprawdzmy na wszelki wypadek poprawnos¢ wpisanych danych:

SELECT * FROM T_STUDENT WHERE ID_UCZELNIA=1

6.3 Nawigzywanie polaczenia z bazg danych

Nasza bazodanows aplikacje rozpoczniemy od napisania szkieletu kodu - préby polaczenia sie z
bazg danych. Aplikacje te bedziemy rozwija¢ o kolejne elementy komunikacji z serwerem bazy
danych.

Do nawiazania polaczenia potrzebne jest poprawne zainicjowanie obiektu typu SqlCon-
nection (w przypadku protokolu OleDb - OleDbConnection). Przyjeto pewna zasade, wedle
ktorej parametry polaczenia przekazuje sie w postaci napisu w propercji ConnectionString
obiektu potaczenia. Napis ten jest odpowiednio sformatowany i przechowuje informacje m.in. o:

e Rodzaju dostawcy protokotu OleDb Provider
e Nazwie serwera Server

e Nazwie bazy danych Database

e Nazwie uzytkownika User ID

e Hasle uzytkownika Pwd

using System;
using System.Data;
using System.Data.SqlClient;

namespace Example
{
class CExample
{
public static string BuildConnectionString(string serverName,
string dbName,
string userName,
string passWd)
{
return String.Format(
@"Server={0};Database={1};User ID={2};Pwd={3};Connect Timeout=15",
serverName, dbName, userName, passWd);

}
static void PracaZSerwerem(SqlConnection sqlConn)
{
Console.WriteLine("Polgczony z serwerem!");
}

public static void Main(string[] args)
{

SqlConnection sqlConn = new SqlConnection();

sqlConn.ConnectionString =
BuildConnectionString("(local)", "sqlTEST", "sa", String.Empty);

try
{
sqlConn.0Open();

236 ROZDZIAL C. SWIAT .NET

PracaZSerwerem(sqlConn);

sqlConn.Close();

}

catch (Exception ex)

{
Console.WriteLine(ex.Message);

}

}
}
}

6.4 Pasywna wymiana danych

Pierwszym ze sposob6w komunikacji z serwerem baz danych jaki udostepnia ADO.NET jest
komunikacja pasywna. Serwer otrzyma polecenie do wykonania i ew. zwréci wyniki, jednak po
zakonczeniu operacji to programista bedzie musial podejmowaé decyzje co do dalszej pracy
z serwerem. W tym scenariuszu dane moga zosta¢ pobrane i od tej pory serwer przestanie
interesowaé si¢ tym, co sie z nimi stalo. Jezeli po pewnym czasie program przysle serwerowi
zestaw polecen dotyczacy na przyktad aktualizacji wczedniej pobranych danych, to z punktu
widzenia serwera bedzie to niezalezna operacja.

Do realizacji pasywnej wymiany danych potrzebny jest obiekt SqlCommand, ktéry okre-
Sla parametry komendy przekazywanej serwerowi. Obiekt ten moze zadana komende wykonaé,
zwracajac zbiér rekordéw z bazy danych, wartosé skalarng lub pusty zbiér wynikéw, w zaleznosci
od postaci komendy. Komendy specyfikuje si¢ oczywiscie w jezyku SQL.

Zbior rekordéw bedacych wynikiem dziatania komendy SQL zostanie zwréocony dzieki me-
todzie ExecuteReader obiektu SqlCommand. Scislej, wynikiem dzialania tej metody bedzie
obiekt typu SqlDataReader, ktory pozwala na obejrzenie wszystkich wierszy wyniku. Obiekt
ten, dzieki indekserowi, pozwala na obejrzenie poszczegdlnych kolumn z zapytania SQL.

static void PracaZSerwerem(SqlConnection sqlConn)
{
SqlCommand sqlCmd = new SqlCommand();

sqlCmd.Connection = sqlConn;
sqlCmd.CommandText = "SELECT Imie, Nazwisko, Nazwa FROM T_STUDENT, T_UCZELNIA "+
"WHERE T_STUDENT.ID_UCZELNIA = T_UCZELNIA.ID_UCZELNIA";

SqlDataReader sqlReader = sqlCmd.ExecuteReader();
while (sqlReader.Read())
{
Console.WriteLine("{0,-12}{1,-12}{2,-20}",
(string)sqlReader["Imie"],
(string)sqlReader ["Nazwisko"],
(string)sqlReader["Nazwa"]);

C:\Example>example

Jan Kowalski Uniwersytet Wroctawski
Tomasz Malinowski Uniwersytet Wroctawski
Adam Nowak Uniwversytet Warszawski
Barbara Kaminska Uniwersytet Warszawski

Zwrocenie wartosci skalarnej jest prostsze, bowiem wystarczy po prostu przechwyci¢ wynik
dziatania metody ExecuteScalar obiektu SqlCommand.

static void PracaZSerwerem(SqlConnection sqlConn)

{
SqlCommand sqlCmd = new SqlCommand() ;

6. BAZY DANYCH I ADO.NET 237

sqlCmd.Connection
s91Cmd.CommandText

sqlConn;
"SELECT QQ@VERSION";

string version = (string)sqlCmd.ExecuteScalar();
Console.WriteLine(version);

}

Wykonanie komendy nie zwracajacej wynikéw jest najprostsze. Wystarczy wykonaé¢ metode
ExecuteNonQuery obiektu SqlCommand.

static void PracaZSerwerem(SqlConnection sqlConn)

{
SqlCommand sqlCmd = new SqlCommand() ;

sq1Cmd.Connection
sq1Cmd.CommandText

sqlConn;
"UPDATE T_STUDENT SET Imie=’Janusz’ WHERE Imie=’Jan’";

sqlCmd.ExecuteNonQuery() ;

6.5 Lokalne struktury danych

Dane przechowywane w tabelach relacyjnych bazy danych przesylane sa do aplikacji w postaci
wierszy spetniajacych kryteria odpowiedniego zapytania. Programista staje wiec przed wyborem
sposobu, w jaki aplikacja przechowa te dane do (by¢ moze) wielokrotnego uzycia.

Jest to jedno z najbardziej zlozonych zagadnien zwiazanych z programowaniem aplikacji
bazodanowych. Okazuje sie, ze istnieje wiele mozliwosci, zas kazda z nich ma swoje zalety i
swoje wady. Kazda z nich okresla pewien lokalny model danych, czyli:

e zakres danych, ktore aplikacja powinna pobieraé¢ z serwera na czas jednej sesji pracy z
programem

e zbiér struktur danych, ktérych program uzywa do przechowania danych pobranych z ser-
wera,

e sposdb w jaki aplikacja poinformuje serwer o zmianach w danych, jakich uzytkownik do-
konuje podczas sesji pracy z programem

e sposdb w jaki aplikacja reaguje na zmiany danych wprowadzane przez wielu uzytkownikéw
pracujacych jednoczesnie, czyli wsparcie dla wielodostepu do danych

Punktem wyjscia do budowania modelu struktur danych po stronie aplikacji powinien by¢
zbior klas odpowiadajacych mniej lub bardziej zbiorowi tabel w bazie danych. Jest to podej-
Scie naturalne i elastyczne. Na przyklad jesli w bazie danych istnieja tabele T UCZELNIA i
T_STUDENT, to po stronie aplikacji odpowiada¢ im bedg klasy CUczelnia i CStudent.

Zakres danych Czy podczas startu aplikacja powinna pobraé wszystkie dane z bazy danych
serwera, czy tez powinna pobieraé tyle danych, ile potrzeba do zbudowania biezacego
kontekstu?

e Aplikacja powinna pobiera¢ wszystkie dane z serwera wtedy, kiedy baza danych jest
relatywnie mata. Jezeli z szacunkéow wynika, ze w zadnej tabeli nie bedzie wiecej niz
powiedzmy sto tysiecy rekordow, a tabel jest powiedzmy nie wiecej niz pieédziesiat,
to z powodzeniem mozna podczas staru aplikacji przeczytac¢ je wszystkie. Majac kom-
plet danych, aplikacja moze sama tworzy¢ proste zestawienia i obliczenia na danych,
nie angazujac do tego procesu serwera. Aplikacja moze rowniez posiadac szybka i jed-
norodng warstwe posrednig miedzy danymi zgromadzonymi na serwerze, a danymi
udostepnianymi komponentom wizualnym w oknach.

238 ROZDZIAL C. SWIAT .NET

e Jesli z szacunkéw wynika, ze liczba danych w niektérych tabelach moze by¢ wigksza
niz kilkaset tysiecy rekordéw, to pobranie ich w catosci moze by¢ klopotliwe, z powodu
ograniczen czasowych i pamieciowych. Nalezy rozwazy¢é model, w ktérym aplikacja
pobiera tylko tyle danych, ile potrzeba do pokazania jakiego$ widoku (okna), badz
zastosowaé¢ model mieszany (czyli pobiera¢ wszystkie dane z malych tabel i aktualnie
potrzebne fragmenty wiekszych tabel.

Struktury danych Jakich struktur danych nalezy uzy¢, do przechowania danych pobieranych
z serwera?

e Jezeli struktura danych powinna odzwierciedlaé¢ relacje miedzy danymi, to mozna na
przyktad rozwazy¢ struktury drzewopodobne. Na przyktad dla naszej aplikacji moz-
naby klasy CUczelniaiCStudent zaprojektowaé tak, aby elementem klasy CUczelnia
byta kolekcja CStudenci, zas w samej aplikacji moznaby zadeklarowac kolekcje CUczelnie.

Taki projekt klas w naturalny sposéb odpowiada logicznym powiazaniom istnieja-
cym miedzy danymi, a ktére wynikaja z modelu obiektowego danych. Zainicjowanie
komponentéw wizualnych wydaje sie doéé proste, na przyktad komponent TreeView
moznaby zainicjowaé¢ wyjatkowo tatwo.

Inne relacje miedzy obiektami nalezaloby zamodelowaé¢ w podobny sposéb, kierujac
sie ogdlnymi zasadami modelowania obiektowego.

public class CUczelnia

{
public string Nazwa;
public string Miejscowosc;

public ArrayList CStudenci;
}
public class CStudent
{

public string Imie;

public string Nazwisko;

}
public class CDane

{

public static ArrayList CUczelnie;

}

e Jezeli struktura danych powinna uwypukla¢ nie tyle zaleznosci miedzy danymi, co
spos6b ich sktadowania, to mozna rozwazyé¢ model, w ktérym dane w pamieci prze-
chowywane sa w kolekcjach, bedacych doktadnymi kopiami tabel bazodanowych. Lo-
gika zalezno$ci miedzy danymi musiataby by¢ wtedy zawarta w pewnym dodatkowym
zbiorze funkcji, z koniecznoéci ”duplikujacych” pewne funkcje serwera bazodanowego.

Taka struktura bytaby jednak jednorodna i utatwiataby komunikacje zwrotna z ser-
werem.

public class CUczelnia

{
public string Nazwa;
public string Miejscowosc;

public Hashtable Studenci()
{
Hashtable hRet = new Hashtable();

foreach (CStudent student in CDane.CStudenci.Values)
if (student.ID_UCZELNIA == this.ID)

6. BAZY DANYCH I ADO.NET 239

hRet.Add(student.ID, student);

return hRet;
}
}
public class CStudent
{
public string Imie;
public string Nazwisko;

}
public class CDane

{

public static Hashtable ArrayList CUczelnie;
public static Hashtable ArrayList CStudenci;
}

Powiadamianie o zmianach W jaki sposéb aplikacja powinna powiadamiaé¢ serwer o zmia-
nach w danych, jakich dokonal uzytkownik? Jak zareagowaé, jesli uzytkownik zmodyfiko-
wal na przyktad imie Jana Kowalskiego na Janusz?

e Aplikacja moze Sledzi¢ zmiany w danych dokonywane przez uzytkownika w kolejnych
widokach. Na przyktad jesli uzytkownik oglada dane w komponencie ListView w
jakims$ oknie, to po dokonaniu kazdej zmiany aplikacja moze zapamietaé¢ ten fakt
w jakiejs dodatkowej strukturze (na przyklad w ArrayList zachowaé identyfikator
zmodyfikowanej danej). Przy prébie zamykania widoku, aplikacja moglaby zapytaé
uzytkownika o cheé zapamietania zmian w bazie danych. Do tego celu aplikacja wy-
stataby do serwera baz danych odpowiednig iloé¢ polecen UPDATE

e Aplikacja moze Sledzi¢ zmiany w danych dokonywane przez uzytkownika w samych
obiektach, na przyktad obstugujac pole zmodyfikowany w klasach. Jezeli uzytkow-
nik chce odestaé¢ swoje dane do serwera niezaleznie od aktualnego kontekstu, to apli-
kacja po prostu przeglada wszystkie dane i sprawdza, ktére zostaty zmodyfikowane,
a nastepnie konstruuje odpowiednie polecenie SQL (UPDATE ...) dla kazdego zmo-
dyfikowanego obiektu.

e Aplikacja moze réwniez zleci¢ §ledzenie zmian danych w specjalnie zaprojektowanych
do tego w ADO.NET obiektach, takich jak DataSet i DataGrid.

Wielodostep Czy aplikacja powinna informowaé inne aplikacje korzystajace z tych samych
danych o wprowadzanych zmianach? A moze powinna blokowaé dostep do danych uzyt-
kownikowi A, jesli w tym samym czasie dane te oglada uzytkownik B? Mozliwosci jest tu
duzo i sa w réznym stopniu wspierane przez rézne serwery baz danych.

e Najbardziej restrykcyjny scenariusz zaktada, ze z danych moze korzystaé tylko jeden
uzytkownik w jednej chwili. Aplikacja odpytuje serwer baz danych o juz podtaczonych
uzytkownikéw i jesli takowi istnieja, to odmawia pracy.

e Bardziej liberalny model zaktada, ze wielu uzytkownikéw moze korzystaé z tych sa-
mych danych, jednak uzytkownicy w danej chwili moga ogladaé tylko roztaczne dane.
Jezeli aplikacja konstruuje widok, w ktérym pokazana jest lista studentéw, to ten
fakt odnotowywany jest w bazie danych i zaden inny uzytkownik nie ma dostepu do
danych o studentach, dopdki dane te nie zostang zwolnione.

e Jeszcze liberalniejszy model zaktada, ze mozliwy jest dostep do tych samych danych
przez wielu uzytkownikow, przy czym tylko pierwszy z nich moze dane modyfikowad,
a pozostali moga je tylko ogladac.

240 ROZDZIAE C. SWIAT .NET

e Kolejny model zaktada, ze uzytkownicy moga jednoczeénie oglada¢ i modifikowaé
dane, jednak nie mozliwe jest jednoczesne modyfikowanie tych samych danych.

e Jeszcze inny model (dostepny w ADO.NET) umozliwia wielu uzytkownikom jedno-
czesny dostep do danych. Jezeli uzytkownicy A i B pobiora pewien zestaw danych,
a uzytkownik A zmodyfikuje je, to kolejna modyfikacja danych przez uzytkownika B
powinna zakonczy¢ sie stosownym powiadomieniem.

e Najdoskonalszy model wielodostepu zaktada natychmiastowe informowanie wszyst-
kich uzytkownikéw korzystajacych z danych o modyfikacji danych przez jednego z
nich. Model ten moze by¢ zrealizowany w rézny sposob, jednak najczedciej jest naj-
bardziej pracochlonny i dlatego w praktyce uzywany jest rzadziej niz ktéry$ z po-
przednich.

Powyzszy przeglad mozliwosci, jakie staja przed programista projektujacym lokalny mo-
del danych dla aplikacji bazodanowej wskazuje na wiele réznych wariantéw, bedacych efektem
skladania, jak z klockéw, réznych wariantéw z kolejnych zagadnien projektowych. Mozna na
przyktad wyobrazié¢ sobie aplikacje, ktéra do drzewiastych struktur danych pobiera minimalny
zbiér danych, potrzebnych do budowania potrzebnego widoku, §ledzi dokonywane przez uzyt-
kownika zmiany danych w biezacym widoku i nie pozwala innym uzytkownikom pracujacym
jednoczesnie na korzystanie z danych zablokowanych przez biezacego uzytkownika.

Wybdr konkretnego lokalnego modelu danych zalezy od wielu czynnikow, wérdéd ktérych
warto wymienic:

e latwo$¢ implementacji - pewne modele sa bardziej wymagajace, co automatycznie prze-
ktada sie na czas, jaki nalezy poswieci¢ danej aplikacji

e skalowalno$é¢ - pewne modele sprawdzaja sie tylko dla malych danych, inne dobrze radza
sobie z dowolng iloscia danych

e wsparce ze strony mechanizméw serwera lub jezyka programowania - pewne modele sa
wspierane badz przez mechanizmy serwera, badZ przez mechanizmy programowe.

Decyzja o wyborze ktéregos z modeli powinna byé¢ dobrze przedyskutowana w gronie pro-
jektantéw i programistéw aplikacji, poniewaz zly wybor oznacza mozliwa katastrofe, gdyby w
potowie prac okazalo sie, ze z jakich$ powodow wybrany model nalezy zmodyfikowaé lub zmienié.

6.6 Programowe zakladanie bazy danych

Aplikacja podczas startu powinna umozliwi¢ uzytkownikowi utworzenie bazy danych bezposred-
nio z poziomu interfejsu uzytkownika. Sytuacja, w ktérej uzytkownik musiatby do konstrukcji
bazy danych uzywaé¢ narzedzi typu osql jest niedopuszczalna.

Dysponujemy teraz wystarczajaca iloscig informacji, aby procedure zaktadania bazy danych,
ktéra przeprowadziliémy za pomocg osql, przenie$¢ do kodu aplikacji. Sposéb postepowania jest
nastepujacy:

1. Poprosié¢ uzytkownika o podanie hasta administratora serwera.

2. Nawigza¢ potaczenie do wskazanego serwera bazy danych do bazy master jako admini-
strator serwera.

3. Za pomoca obiektu SqlCommand wykonaé¢ komende CREATE DATABASE ... aby utwo-
rzy¢ baze danych.

6. BAZY DANYCH I ADO.NET 241

4. W taki sam sposéb zmieni¢ kontekst bazy danych na nowo utworzong baze danych pole-
ceniem USE

5. Wykonaé odpowiedni zestaw polecen CREATE TABLE ...

Cala procedura moze dziataé tak, ze zestaw polecen jest wezytywany z pliku - skryptu insta-
lacyjnego, przygotowanego "na boku”. Caly zestaw polecen mozna wysta¢ do bazy jako jedna
komende lub w razie potrzeby podzieli¢ go na mniejsze fragmenty, po to by na przyktad w trakcie
zakltadania bazy przez program uzytkownikowi pokazaé pasek postepu prac.

6.7 Transakcje

Podczas pracy z baza danych mozliwa jest sytuacja, w ktérej w pewnej chwili aplikacja wykona
wiecej niz jedna operacje na serwerze.

Wyobrazmy sobie na przyklad, ze aplikacja $ledzi zmiany w danych, ktorych dokonuje uzyt-
kownik i w pewnej chwili wysyla do serwera sekwencje polecen SQL, powodujacych odéwiezenie
informacji w bazie danych. Podczas wykonania takiej operacji btad moze pojawié¢ sie praktycznie
w dowolnej chwili i choé¢ zostanie wychwycony i przekazany aplikacji jako wyjatek, jego skutki
moglyby by¢ bardzo powazne.

Gdyby na przyktad aplikacja zdazyta odswiezy¢ tylko czes¢ informacji, zas btad uniemozli-
witby od$wiezenie caloSci zmian, to przy nastepnym uruchomieniu uzytkownik mégltby zastaé
dane swojego programu w postaci kompletnie nie nadajacej sie do dalszej pracy.

Na szczescie takiego scenariusza mozna uniknaé, wykorzystujac mechanizm tzw. transakcyi.
Transakcja gwarantuje, ze serwer albo przyjmie wszystkie polecenia bedace jej czescig jako niepo-
dzielng catosé, albo wszystkie je odrzuci. Transakcje gwarantuja wiec niepodzielno$é wykonania
sie operacji na serwerze SQL.

W ADO.NET transakcja jest obiektem typu SqlTransaction, ktory inicjowany jest unikal-
ng nazwa, odrozniajaca transakcje od siebie. Kazde polecenie wykonywane za pomocg obiektu
SqlCommand moze byé wykonane jako czesé rozpoczetej transakceji.

string T_NAME = "TRANSAKCJA";
SqlTransaction sqlT;

try
{
// rozpocznij transakcje
sqlT = sqlConn.BeginTransaction(T_NAME);

SqlCommand cmd = new SqlCommand("INSERT/UPDATE/DELETE ...",
sqlConn, sqlT);
cmd . ExecuteNonQuery () ;

// zatwierdz transakcje
sqlT.Commit () ;

}

catch

{

// wycofaj transakcje
sqlT.Rollback(T_NAME);
¥

6.8 Typ DataSet

W poprzednich rozdziatach dyskutowaliSmy zagadnienie projektowania lokalnych struktur da-
nych po stronie aplikacji, odpowiadajacych danym pobranym z serwera baz danych. Okazuje
sie, ze ADO.NET udostepnia typ danych DataSet, ktéry dosé dobrze nadaje sie do przechowy-
wania danych z relacyjnych baz danych. Obiekt typu DataSet przechowuje dane pogrupowane

242

w kolekcji obiektéow typu DataTable. Kazdy obiekt DataTable odpowiada jednemu zbiorowi
danych z serwera SQL. Obiekt DataTable ma kolekcje obiektéw typu DataColumn, ktérej
elementy charakteryzuja kolejne kolumny danych zgromadzonych w kolekcji elementéw typu

DataRow.

Aby nabra¢ nieco wprawy w uzywaniu obiektu DataSet, sprobujmy zaczaé¢ od prostego
przyktadu, w ktorym obiekt ten zostanie zbudowany ”od zera”, niezaleznie od zadnego zrédia

danych.

using System;
using System.Data;

public class CMain

{

static void WypiszInfoODataSet(DataSet d)

{

}

Console.WriteLine("DataSet {0} zawiera {1} tabele", d.DataSetName, d.Tables.Count);

foreach (DataTable t in d.Tables)
{

Console.WriteLine("Tabela {0} zawiera {1} wiersze", t.TableName, t.Rows.Count);

foreach (DataRow r in t.Rows)
{
Console.Write("-> ");
foreach (DataColumn ¢ in t.Columns)

Console.Write("{0}={1}, ", c.ColumnName, r[c.ColumnName]);

Console.WriteLine();
}
}

public static void Main()

{

}
}

// zbiér danych

DataSet dataSet = new DataSet("DataSetOsoby");

// tabela

DataTable dataTable = new DataTable("Osoby");

dataSet.Tables.Add(dataTable);

// kolumny tabeli

DataColumn dataColumnl = new DataColumn("Imig", typeof(string));
new DataColumn("Nazwisko", typeof(string));
DataColumn dataColumn3 = new DataColumn("Data urodzenia", typeof(DateTime));

DataColumn dataColumn2

dataTable.Columns.AddRange(new DataColumn[] { dataColumnl, dataColumn2, dataColumn3 1});

// wiersze
DataRow row;

row = dataTable.NewRow();
row["Imie"] = "Adam";
row["Nazwisko"] = "Kowalski";

row["Data urodzenia"] = DateTime.Parse("1992-05-01");

dataTable.Rows.Add(row);

row = dataTable.NewRow();
row["Imie"] = "Tomasz";
row["Nazwisko"] "Malinowski";

row["Data urodzenia"] = DateTime.Parse("1997-07-12");

dataTable.Rows.Add(row);

WypiszInfoODataSet(dataSet);

C:\Example>example.exe
DataSet DataSetOsoby zawiera 1 tabele
Tabela Osoby zawiera 2 wiersze

ROZDZIAE C. SWIAT .NET

6. BAZY DANYCH I ADO.NET 243

-> Imie=Adam, Nazwisko=Kowalski, Data urodzenia=1992-05-01 00:00:00,
-> Imie=Tomasz, Nazwisko=Malinowski, Data urodzenia=1997-07-12 00:00:00,

Wiedzac juz w jaki sposdb dziata DataSet, skorzystajmy z mozliwosci jaka daje ADO.NET,
czyli wypelnienia obiektu DataSet danymi z serwera baz danych. Do tego celu uzyjemy obiektu
typu SqlDataAdapter.

using System;
using System.Data;
using System.Data.SqlClient;

public class CMain

{
static void WypiszInfoODataSet(DataSet d)
{
}
public static string BuildConnectionString(string serverName,
string dbName,
string userName,
string passWd)
{
}
public static void Main()
{
try
{
SqlConnection sqlConn = new SglConnection();
sqlConn.ConnectionString =
BuildConnectionString("(local)", "sqlTEST", "sa", String.Empty);
sqlConn.0Open() ;
SqlDataAdapter adapter = new SqlDataAdapter(
"SELECT * FROM T_UCZELNIA; SELECT * FROM T_STUDENT", sqlConn);
DataSet dataSet = new DataSet("Dane");
// napeinij DataSet przez IDataAdapter
adapter.Fill(dataSet);
WypiszInfoODataSet(dataSet);
// zamknij potaczenie
sqlConn.Close();
}
catch (Exception ex)
{
Console.WriteLine(ex.Message);
}
}
}

C:\Example>example

DataSet Dane zawiera 2 tabele

Tabela Table zawiera 2 wiersze

-> ID_UCZELNIA=1, Nazwa=Uniwersytet Wroctawski, Miejscowosc=Wrocilaw,
-> ID_UCZELNIA=2, Nazwa=Uniwersytet Warszawski, Miejscowosc=Warszawa,
Tabela Tablel zawiera 4 wiersze

-> ID_UCZEN=1, ID_UCZELNIA=1, Nazwisko=Kowalski, Imie=Janusz,

-> ID_UCZEN=2, ID_UCZELNIA=1, Nazwisko=Malinowski, Imie=Tomasz,

-> ID_UCZEN=3, ID_UCZELNIA=2, Nazwisko=Nowak, Imie=Adam,

-> ID_UCZEN=4, ID_UCZELNIA=2, Nazwisko=Kaminska, Imie=Barbara,

244 ROZDZIAE C. SWIAT .NET

6.9 Aktywna wymiana danych

Mozliwosci ADO.NET obejmuja réwniez wspomaganie typowych operacji bazodanowych, takich
jak tworzenie, modyfikowanie i usuwanie danych na serwerze. Tajemnica tkwi w obiekcie Sql-
DataAdapter, ktéry dziala nie tylko jako zrédlo danych do obiektu DataSet (metoda Fill),
ale potrafi rowniez §ledzi¢ zmiany w danych i aktualizowaé je na serwerze (metoda Update).

Powstaje pytanie: skad DataAdapter wie jakich polecen SQL uzy¢ do modyfikacji czy
usuwania danych? Odpowiedz jest prosta: to programista sam zadaje tredci tych polecen, przy-
pisujac je pod propercje DeleteCommand, InsertCommand i UpdateCommand obiektu
DataAdapter.

W wyjatkowych przypadkach, kiedy operacje aktualizacji dotycza jednej tylko tabeli, istnie-
je mozliwo$¢ automatycznego wygenerowania odpowiednich polecen przez zainicjowanie obiektu
typu SqlCommandBuilder. W ponizszym przyktadzie zmodyfikujemy imie jednego ze studen-
téw.

using System;
using System.Data;
using System.Data.SqlClient;

public class CMain

{
static void WypiszInfoODataSet(DataSet d)
{

}

public static string BuildConnectionString(string serverName,
string dbName,
string userName,
string passWd)

{

}

public static void Main()
{

try

{

SqlConnection sqlConn = new SqlConnection();

sqlConn.ConnectionString =
BuildConnectionString("(local)", "sqlTEST", "sa", String.Empty);

sqlConn.0Open() ;

// inicjuj DataSet przy pomocy SqlDataAdapter
SqlDataAdapter adapter = new SqlDataAdapter(
"SELECT * FROM T_STUDENT", sqlConn);
// automatycznie twérz polecenia do wstawiania, modyfikacji i usuwania danych
new SqlCommandBuilder(adapter);

DataSet dataSet = new DataSet("Dane");
// napeinij DataSet przez IDataAdapter
adapter.Fill(dataSet);

WypiszInfoODataSet(dataSet);

// modyfikuj dane

DataRow row = dataSet.Tables[0].Rows[0];

row.BeginEdit () ;

row["Imie"] = "Jan";

row.EndEdit () ;

// aktualizuj na serwerze

int iModyf = adapter.Update(dataSet);
Console.WriteLine("Zmodyfikowano {0} wierszy", iModyf);

6. BAZY DANYCH I ADO.NET

WypiszInfoODataSet(dataSet);

// zamknij polaczenie
sqlConn.Close();

}

catch (Exception ex)

{

Console.WriteLine(ex.Message);

}
}
}

C:\Example>example

DataSet Dane zawiera 1 tabele
Tabela Table zawiera 4 wiersze

-> ID_UCZEN=1, ID_UCZELNIA=1,
-> ID_UCZEN=2, ID_UCZELNIA=1,
-> ID_UCZEN=3, ID_UCZELNIA=2,
-> ID_UCZEN=4, ID_UCZELNIA=2,
Zmodyfikowano 1 wierszy

DataSet Dane zawiera 1 tabele
Tabela Table zawiera 4 wiersze

-> ID_UCZEN=1, ID_UCZELNIA=1,
-> ID_UCZEN=2, ID_UCZELNIA=1,
-> ID_UCZEN=3, ID_UCZELNIA=2,
-> ID_UCZEN=4, ID_UCZELNIA=2,

Nazwisko=Kowalski, Imie=Janusz,
Nazwisko=Malinowski, Imie=Tomasz,
Nazwisko=Nowak, Imie=Adam,
Nazwisko=Kaminska, Imie=Barbara,

Nazwisko=Kowalski, Imie=Jan,
Nazwisko=Malinowski, Imie=Tomasz,
Nazwisko=Nowak, Imie=Adam,
Nazwisko=Kaminska, Imie=Barbara,

6.10 ADO.NET i XML

245

Obiekt typu DataSet moze by¢ sktadowany w postaci XML i odczytywany z plikow XML za

pomocg metod WriteXml, WriteXmlSchema, ReadXml i ReadXmlSchema.

Poprzedni przyktad zmodyfikujmy tak, aby zawarto$¢ DataSet i schemat XSD pokazaé w

oknie konsoli (oczywiscie mozna zapisaé¢ je do dowolnego strumienia):

static void WypiszInfoODataSet(DataSet d)

{

d.WriteXml(Console.OpenStandardOutput());
d.WriteXmlSchema(Console.OpenStandardOutput());

}

Zaréwno plik XML jak i plik XSD, ktore beda efektem dzialania tych metod moga by¢
przetwarzane wszystkimi dostepnymi do tej pory metodami. Mozna na przyktad zbiér rekor-
dow XML z serwera baz danych wystaé¢ przez sie¢ jako strumien XML. Mozna plik z danymi
XML odczytaé do obiektu DataSet, a nastepnie zapisaé na serwerze. Mozna wreszcie walidowaé
poprawnosé¢ danych za pomoca schematu XSD.

<Dane>
<Table>
<ID_UCZEN>1</ID_UCZEN>

<ID_UCZELNIA>1</ID_UCZELNIA>
<Nazwisko>Kowalski</Nazwisko>

<Imie>Jan</Imie>
</Table>
<Table>
<ID_UCZEN>2</ID_UCZEN>

<ID_UCZELNIA>1</ID_UCZELNIA>
<Nazwisko>Malinowski</Nazwisko>

<Imie>Tomasz</Imie>
</Table>
<Table>
<ID_UCZEN>3</ID_UCZEN>

<ID_UCZELNIA>2</ID_UCZELNIA>

<Nazwisko>Nowak</Nazwisko>

<Imie>Adam</Imie>
</Table>

246 ROZDZIAE C. SWIAT .NET

IBUCZEN |10 UCEELNEA [Wazwisks | Tris
» 1 s [Kowalski |Jan

z 1 |Malinowski Tomasz

3 12 Mok, Adarn

4 2 Kamiriska Barbara
o i I }

Rysunek C.14: DataGrid zwiazany z DataSet

<Table>
<ID_UCZEN>4</ID_UCZEN>
<ID_UCZELNIA>2</ID_UCZELNIA>
<Nazwisko>Kaminska</Nazwisko>
<Imie>Barbara</Imie>
</Table>
</Dane><7xml version="1.0"7>
<xs:schema id="Dane" xmlns="" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
<xs:element name="Dane" msdata:IsDataSet="true" msdata:Locale="pl-PL">
<xs:complexType>
<xs:choice maxOccurs="unbounded">
<xs:element name="Table">
<xs:complexType>
<xs:sequence>
<xs:element name="ID_UCZEN" type="xs:int" minOccurs="0" />
<xs:element name="ID_UCZELNIA" type="xs:int" minOccurs="0" />
<xs:element name="Nazwisko" type="xs:string" minOccurs="0" />
<xs:element name="Imie" type="xs:string" minOccurs="0" />
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:choice>
</xs:complexType>
</xs:element>
</xs:schema>

6.11 Wigzanie danych z komponentami wizualnymi

Mozliwosci .NET w zakresie przetwarzania danych sa, jak widzieliSmy na poprzednich przy-
ktadach, duze. Niezwykle latwo polaczyé ze sobg $wiat serweréw baz danych i swiat XML -
wystarcza do tego mozliwosci obiektéw DataSet.

Okazuje sie, ze réwnie tatwo zintegrowa¢ dane z obiektami wizualnymi. Stuza do tego obiekty
DataBinding, ktére opisuja sposéb wiazania kontrolek z danymi z DataSet.

Jednym z najciekawszych komponentow, do tej pory nieomawianym poniewaz jest on $cisle
zwiazany z ADO.NET, jest DataGrid. DataGrid za pomoca metody SetDataBinding mozna
dynamicznie powigza¢ z zawartoéciag obiektu DataSet.

using System;

using System.Data;

using System.Data.SqlClient;
using System.Windows.Forms;

6. BAZY DANYCH I ADO.NET

public class CMain : Form

{

}

DataGrid dataGrid;

public static string BuildConnectionString(string serverName,

{

}

string dbName,

string userName,

string passWd)

return String.Format(
@"Server={0};Database={1};User ID={2};Pwd={3};Connect Timeout=15",

serverName, dbName, userName, passWd);

public CMain()

{

}

// inicjuj DataGrid

dataGrid = new DataGrid();
dataGrid.Dock = DockStyle.Fill;
this.Controls.Add(dataGrid);

try

{

}

SqlConnection sqlConn = new SqlConnection();

sqlConn.ConnectionString =

BuildConnectionString("(local)", "sqlTEST",

sqlConn.0Open() ;

// inicjuj DataSet przy pomocy SqlDataAdapter
SqlDataAdapter adapter = new SqlDataAdapter(
"SELECT * FROM T_STUDENT", sqlConn);

// automatycznie twérz polecenia do wstawiania, modyfikacji i usuwania danych

new SqlCommandBuilder(adapter);

DataSet dataSet = new DataSet("Dane");
// napeinij DataSet przez IDataAdapter
adapter.Fill(dataSet);

// powiaz DataGrid i DataSet
dataGrid.SetDataBinding(dataSet, "Table");

// zamknij polaczenie
sqlConn.Close();

catch (Exception ex)

{

}

Console.WriteLine(ex.Message);

public static void Main()

{

}

Application.Run(new CMain());

n

sa",

String.Empty);

247

Mozliwosci komponentu DataGrid sa naprawde duze i szczegdltowy ich opis zdecydowanie
wykracza poza ramy tego skryptu. DataGrid moze m.in. formatowaé¢ komérki w zaleznosci od
ich zawartosci czy poprawnie obslugiwaé relacje miedzy danymi z wielu tabel. W przypadku
aktualizacji danych w jednej z tabel, DataGrid moze reagowaé¢ na to automatycznie odéwiezajac
swoja zawartosc.

248 ROZDZIAE C. SWIAT .NET

7 Dynamiczne WWW i ASP.NET

7.1 Dlaczego potrzebujemy dynamicznego WWW

Gwaltowny rozwdj sieci 1 coraz szerszy dostep do niej sprawiaja, ze réwnie szybko rozwijaja
sie techologie sieciowe. Zwykly protokét HTML, cho¢ w wielu przypadkach sprawdza sie dosko-
nale, w wielu innych okazuje sie¢ niewystarczajacy. To czego potrzebuja programisci, to moz-
liwoéé¢ tworzenia dynamicznych stron Internetowych, przy czym przez dynamiczny nie oznacza
tu "animowany, zywy”, tylko dostosowany do profilu konkretnego uzytkownika i umozliwiajacy
komunikacje w dwie strony.

Dynamicznie budowana zawarto$¢ stron WWW najczesciej zwiazana jest jakos z duzymi
zbiorami informacji. WyobraZmy sobie sieciowg, encyklopedie, w ktérej istnieja setki tysiecy moz-
liwych hasel, czy system ewidencji z milionami rekordéw. Nietrudno zauwazy¢, ze sam HTML
jest zbyt ubogi, aby wspomagaé realizacje takich przedsiewzie¢ (chyba, ze ktos wie jak przygo-
towa¢ milion stron w HTML i zbudowaé dla nich sensowne indeksy).

7.2 Przeglad technologii dynamicznego WWW
Common Gateway Interface

CGI jest jedna z pierwszych technologii, umozliwiajacych tworzenie dynamicznych stron WWW.
Pomyst CGI polega na tym, ze serwer Internetowy uruchamia zwyktly program wykonywalny
(nazywany skryptem CGI) i wyniki dzialania tego programu przekazuje klientowi. Jedna z
zalet CGI polega na tym, ze skrypty moga by¢ napisane w dowolnym jezyku, w ktérym da
sie napisa¢ konsolowy program, ktéry zapisuje i odczytuje dane ze standardowych strumieni
wejécia/wyjscia.

Najprostszy skrypt CGI, napisany w jezyku C mogtby wygladaé tak:

#include <stdio.h>

int main(int argc, char** argv)
{
printf("HTTP/1.0 200 OK\r\nContent-type: text/html\r\n\r\n");
printf("<HTML>\r\n<HEAD>");
printf("<TITLE>Witam w CGI</TITLE></HEAD>\r\n");
printf ("<BODY>Pierwszy skrypt w CGI</BODY>\r\n");
printf("</HTML>");

return O;

Z racji prostej idei, CGI jest bardzo popularne. Z CGI zwigzane sa jednak duze problemy
z wydajnoscia. Po pierwsze, kiedy skrypt jest wykonywany na serwerze, jest traktowany jak
kazdy inny proces w systemie, a co za tym idzie musi by¢ inicjowany jak kazdy inny proces.
7 punktu widzenia systemu operacyjnego, inicjowanie nowego procesu jest dosé czasochtonne.
Po drugie, kazdy nowy skrypt CGI zajmuje pamie¢ wprost proporcjonalng do swojej wielkosci.
Przy stu uzytkownikach korzystajacych jednoczesnie z serwera jest to jeszcze mozliwe. Przy kilku
tysigcach jednoczesnie uruchomionych proceséw zasoby nawet bardzo rozbudowanego serwera
najprawdopodobniej ulegna wyczerpaniu i caly system zawali sie.

Internet Server Application Programming Interface

Aby pokonaé problemy zwiazane z wydajnoscia CGI, Microsoft zaprojektowal alternatywna
technologie dynamicznego WWW, nazwang Internet Server Application Programming Interfa-
ce (ISAPI). Gléwny pomyst polegal na tym, ze skrypty ISAPI sa bibliotekami (DLL) a nie
modutami wykonywalnymi, dzigki czemu kod skryptu tadowany jest do pamieci tylko raz.

7. DYNAMICZNE WWW I ASP.NET 249

Istnieja dwa rodzaje bibliotek ISAPI: rozszerzenia ISAPI, ktore spelniajg identyczna funk-
cje jak skrypty CGI oraz filtry ISAPI, ktore reaguja na pewne zdarzenia zwiazane z obstuga
stron przez serwer.

Mimo, ze technologia ISAPI jest zdecydowanie wydajniejsza od CGI, nie jest pozbawiona
wad. Po pierwsze, napisanie poprawnej biblioteki ISAPI wymaga zdecydowanie wiecej wiedzy
niz napisanie skryptu CGI. Po drugie, jesli biblioteka ISAPI trafi juz na serwer Internetowy, to
nie ma tatwego sposobu na zastapienie jej nowsza wersja, poniewaz system operacyjny zabroni
dostepu do biblioteki, ktéra wedle jego rozeznania bedzie caty czas uzywana. Wymiana biblioteki
wymaga wiec zatrzymania ustugi serwera Inernetowego na serwerze sieciowym.

ASP

Nastepca ISAPI jest technologia Active Server Pages, ktéra, o dziwo, jest zaimplementowana
jako rozszerzenie ISAPI. W przypadku ASP nie ma jednak koniecznosci pisania wlasnych biblio-
tek DLL. Zamiast tego tworzy sie zwykla strone HTML, zas§ wewnatrz jej kodu mozna umieszczaé
dowolne instrukcje kodu jezyka skryptowego VBScript. ASP sam dba o interpretowanie kodu
VBScript i odsyta do klienta wyniki tej operacji.
Oto przyktad bardzo prostej strony ASP:

<% Option Explicit %>
<HTML>
<HEAD><TITLE>Witam w ASP</TITLE></HEAD>
<BODY>
<%
Dim n
Forn=11to 5

Response.Write("<FONT size=" & n)

Response.Write(">Witam w ASP
" & vbCrLf)
Next
%>
</B0ODY>
</HTML>

Projektujac strony ASP mozna korzystaé z catej sity VBScript. Ale to wlasénie sita VBScript
ta okazuje sie by¢ najwiekszg staboscia ASP - VBScript, jak przystalo na jezyk skryptowy,
jest bardzo stabo otypowany. Co wiecej - strony sg interpretowane dynamicznie. Oba te fakty
oznaczaja, ze bardzo tatwo popelnia¢ btedy w skryptach, ktére jesli sie pojawia, to wykrywane
sa dopiero wtedy, kiedy natrafi na nie pierwszy uzytkownik.

7.3 Czym jest ASP.NET

ASP.NET jest naturalnym rozszerzeniem ASP, ktére integruje technologie ASP z platforma
.NET. Dzieki ASP.NET mozliwe jest uzywanie praktycznie dowolnego jezyka platformy .NET do
tworzenia dynamicznej zawartosci stron WWW. W chwili obecnej jednak ASP.NET (podobnie
jak ASP) dziala jedynie na serwerze WWW wbudowanym w systemy Windows poczawszy od
wersji 2000. Serwer ten to Microsoft Internet Information Services (IIS).

7.4 Pierwszy przyktad w ASP.NET

Najprostszy przyktad dynamicznej strony ASP.NET ukazuje jednoczesnie, ze ASP.NET umozli-
wia uzycie C# jako jezyka skryptowego?®. Przy prébie uruchomienia kod strony bedzie prekom-
pilowany, a bledy beda statycznie raportowane uzytkownikowi.

Kod wewnatrz strony moze by¢ napisany w C# lub VB.NET. Tylko kod umieszczony w obiektowych biblio-
tekach DLL, bedacych dodatkowymi elementami dynamicznej strony, moze zawiera¢ skompilowany kod napisany
w dowolnym jezyku .NET

250 ROZDZIAL C. SWIAT .NET

Druga wazna réznica migdzy ASP a ASP.NET to brak mozliwosci bezposredniego odwota-
nia sie do zawartosci tekstu strony HTML. W ASP bardzo czesto uzywa sie metody Respon-
se.Write, aby umieéci¢ tekst wewnatrz strony ASP. W ASP.NET mozna jedynie odwolywaé
sie do umieszczonych na stronie obiektéw WWW lub kontrolek ASP.NET. W ponizszym przy-
ktadzie odwotujemy sie do obiektu WWW typu SPAN. Dostep do obiektu mozliwy jest dzigki
odwotaniu sie do jego nazwy (w przykladzie obiekt typu SPAN nazywa sic Message).

<%@ Page Language="C#" >

<HTML>

<HEAD><TITLE>Witam w ASP.NET</TITLE></HEAD>
<BODY>

<h
int i;
string s = string.Empty;

for (i=1; i<=5; i++)
{
s = s+String.Format(
"Witam w ASP.NET
", i);
}

Message.InnerHtml = s;
%>

</BODY>
</HTML>

7.5 Laczenie stron ASP.NET z dowolnym kodem

Jedna z najciekawszych mozliwosci ASP.NET jest taczenie kodu strony z dowolnym kodem,
kompilowanym przy pomocy dowolnego kompilatora platformy .NET.
Napiszmy najpierw kod prostej klasy:

using System;

namespace NExample
{
public class COsoba
{
public string Imie;
public string Nazwisko;

public COsoba(string Imie, string Nazwisko)
{
this.Imie
this.Nazwisko

}

Imie;
Nazwisko;

public override string ToString()
{
return String.Format("{0} {1}", Nazwisko, Imie);
}
}
}

i skompilujmy go do postaci biblioteki:
C:\Example>csc.exe /target:library CExample.cs
Aby tak utworzona biblioteka mogta by¢ wykorzystana w kodzie strony, plik DLL musi by¢

umieszczony w podkatalogu bin katalogu wirtualnego IIS. Katalog taki moze by¢ utworzony
recznie i nie musi mie¢ ustawionych zadnych specjalnych praw dostepu. Aby moé korzystaé¢ z

7. DYNAMICZNE WWW I ASP.NET 251

=lojx|

GBak - = - D () A Qseach ofFavoiies PMiede 3| 5 S =
| Address |t/ ocahostes/esenpidasps] Q6o
tacza] Wedow:
i

KowdshiJan

Kowalski Tan

Kowalski Jan

Kowalski Jan

|

£ Golone [[| Flodimma

Rysunek C.15: Efekt koncowy w przegladarce

przygotowanej klasy, w kodzie strony nalezy tylko doda¢ odwotanie do odpowiedniej przestrzeni
nazw.

<@ Page Language="C#" %>

<%@ import Namespace="NExample" %>

<HTML>

<HEAD><TITLE>Witam w ASP.NET</TITLE></HEAD>
<BODY>

<%

COsoba osoba = new COsoba("Jan", "Kowalski");
int i;

string s = string.Empty;

for (i=1; i<=5; i++)
{
s = s+String.Format(
"{1}
", i, osoba);
}
Message.InnerHtml = s;
%>

</BODY>
</HTML>

Uzytkownik, ktory oglada nasza strone w przegladarce i prébuje podgladnaé Zrédio strony,
widzi oczywiscie tylko efekt koncowy:

<HTML>
<HEAD><TITLE>Witam w ASP.NET</TITLE></HEAD>
<BODY>

Kowalski Jan

Kowalski Jan

Kowalski Jan

Kowalski Jan

Kowalski Jan

</BODY>
</HTML>

252 ROZDZIAE C. SWIAT .NET

7.6 Kontrolki ASP.NET

Kod strony ASP.NET moze oczywiscie zawiera¢ komponenty WWW, takie, jakie mozna umiesz-
cza¢ na zwykltych stronach HTML. Oprécz tego mozna jednak korzystaé z calej gamy kompo-
nentéw wilasciwych dla ASP.NET. Komponenty te sg obiektami pochodzacymi z biblioteki Sys-
tem.Web.UIL.WebControls. Programista moze oczywiscie sam tworzy¢ wlasne komponenty
wizualne, dziedziczac z klasy System.Web.UI.UserControl.

Zbioér zdarzen, jakie udostepniaja komponenty ASP.NET rézni sie od zdarzen komponentéw
Windows.Forms. Jest to dos¢ oczywiste - zachowanie si¢ komponentéw w systemie operacyjnym
podlega innym regutom niz zachowanie sie komponentéw w przegladarce Internetowe;j.

Przyktadowy skrypt tworzy dwa komponenty ASP.NET, etykiete i przycisk. Zauwazmy, ze
definicje komponentéw sg czescig strony i wyrdzniajg sie jedynie specjalnymi atrybutami. We-
wnatrz definicji przycisku okreslono funkcje reagujaca na przycisniecie przycisku. Funkcje te
umieszczono wewnatrz specjalnej sekcji strony, oznaczonej tagami script.

<%@ Page Language="C#" >

<script runat="server">
void Przycisk_Click(Object sender, EventArgs e) {
Labell.Text = "Witam w ASP.NET";
}
</script>

<html>
<head>
</head>
<body>
<form runat="server">
<center>
<asp:Label id="Labell" runat="server"
Width="193px">Etykieta</asp:Label>

<asp:Button id="Przycisk" onclick="Przycisk_Click"
runat="server" Text="Twérz dane osobowe"
Width="192px"></asp:Button>
</center>
</form>
</body>
</html>

Wiéréd komponentow ASP.NET znajduje sie m.in. kilka rodzajéw siatek, przyciskdéw, ka-
lendarze. Wérdd nich jest na przykiad DataGrid, ktéry moze by¢ inicjowany w standardowy
sposéb (patrz rozdzial 6.11, strona 246).

7.7 Inne przyklady ASP.NET
Identyfikacja klienta

Wewnatrz kodu strony mozna odwotywaé sie do wszystkich sktadowych obiektu Page, identy-

fikujacego biezaca strone. Wérdd nich przydatne sa propercje Request okreslajaca parametry

strony inicjujacej polaczenie oraz Response okreslajaca parametry odpowiedzi serwera.
Propercja Request moze byé wykorzystana na przyktad do identyfikacji systemu operacyj-

nego i przegladarki, ktorej uzywa klient.

<%@ Page Language="C#" >

<HTML>

<HEAD><TITLE>Witam w ASP.NET</TITLE></HEAD>
<BODY>

<h
Message.InnerHtml = String.Format("Browser: {0}, platform {1}",

7. DYNAMICZNE WWW I ASP.NET

Request .Browser.Browser,
Request.Browser.Platform);
o
>

</BODY>
</HTML>

Licznik odwiedzin strony

253

Przygotowanie licznika odwiedzin strony jest jedym z podstawowych zadan dynamicznego WWW.
W ASP.NET sytuacja jest o tyle wygodna, ze w kodzie skryptéw uzywamy dobrze znanych bi-

bliotek .NET.

Wartosé licznika odwiedzin bedzie zapisywana w pliku counter . txt w folderze strony WWW.
Jak jednak zabiezpieczy¢ sie przed zwickszaniem tego licznika przy czestym ods$wiezaniu strony
przez Internaute? Mozemy skorzystaé¢ z ciasteczek, czyli informacji umieszczanych po stronie
klienta, ktére pozwalaja identyfikowaé go przy kolejnych odwiedzinach naszej strony. W po-
nizszym przyktadzie ciasteczko zostanie uniewaznione po 2 minutach od pierwszego wejscia na

strone WWW.

<@ Page Language="C#"}>

<%@ import Namespace="System.IO0" %>

<%@ import Namespace="System.Drawing" %>

<%@ import Namespace="System.Drawing.Imaging" %>
<%@ import Namespace="System.Drawing.Drawing2D" %>

<script runat="server" language="C#">

string getCounter()

{
string CookieID = "0OldVisitor";

// czytaj wartosc licznika

string FilePath = Server.MapPath("\\") + "counter.txt";
StreamReader sr = File.OpenText(FilePath);

string counter = sr.ReadLine().ToString();

sr.Close();

// ciasteczko - czy to stary gosé?
HttpCookie Cookie;
Cookie = Request.Cookies[CookieID];

// tak, inkrementuj licznik

if (Cookie==null)

{
int counterInt = Convert.ToInt32(counter);
counterInt++;
counter = Convert.ToString(counterInt);

FileStream fs = new FileStream(FilePath, FileMode.Open,

StreamWriter sw = new StreamWriter(fs);
sw.WriteLine(counter);

sw.Close();

fs.Close();

Cookie new HttpCookie(CookieID, "true");
Cookie.Expires = DateTime.Now.AddSeconds(120);
Response. AppendCookie(Cookie);

return counter;

}

</script>

FileAccess.Write);

254 ROZDZIAE C. SWIAT .NET

<HTML>
<HEAD><TITLE>Przyktadowy licznik w ASP.NET</TITLE></HEAD>
<BODY>

<% MyCounter.InnerHtml = getCounter(); %>

<center>

GoS¢ numer:
<asp:Image id="MyCounterImage"/>

</center>

</BODY>
</HTML>

Spréobujmy rozwingé troche ten przyktad, tak aby licznik odwiedzin byl umieszczony na
stronie w postaci nie tekstu, ale dynamicznie budowanego obrazka.

W pierwszej chwili moze wydaé sie to trudne, ale na szcze$cie w kodzie strony istnieje moz-
liwoé¢ zapisania wygladu strony w postaci strumienia danych.

// Plik: c.aspx

<@ Page Language="C#"/>

<%@ import Namespace="System.IO0" %>

<%@ import Namespace="System.Drawing" 7>

<%@ import Namespace="System.Drawing.Imaging" %>
<%@ import Namespace="System.Drawing.Drawing2D" %>

<script runat="server" language="C#">

string getCounter()
{
// ... to samo co poprzednio

}

void drawCounter ()
{
int height
int width

40;
120;

Bitmap bmp = new Bitmap(width, height);
Graphics g = Graphics.FromImage (bmp) ;

string currentCounter = getCounter();
Font counterFont = new Font("Arial", 24, FontStyle.Bold);
SizeF sizeF = g.MeasureString(currentCounter, counterFont);

g.FillRectangle(Brushes.Black, 0, O, width, height);
g.DrawString(currentCounter, counterFont,
Brushes.White, (bmp.Width-sizeF.Width)/2, 3);

bmp . Save (Response.QutputStream, ImageFormat.Jpeg);

g.Dispose();
bmp.Dispose() ;
}

private void Page_Load(object sender, System.EventArgs e)
{
drawCounter() ;
}
</script>

Tak przygotowana strona pokazuje wartosé licznika w postaci obrazka. Problem polega tylko
na tym, ze zapisanie strumienia danych do zawartosci strony (bmp.Save(Response.OutputStream,...)
powoduje, ze strona nie bedzie zawiera¢ zadnych innych obiektéw. To nie szkodzi! Z licznika sko-
rzystamy w kodzie kazdej kolejnej strony, dynamicznie dolaczajac go jako obrazek:

<%@ Page Language="C#" >

7. DYNAMICZNE WWW I ASP.NET 255

> =13ix|

WoBack + = - () 1] 24| QSeach (plFavoites PMedia 4| BN b A =
Address [&) hip /ocalhosl exampled asps =] @t
Lacza 2] Bezphatna ustuga pocziowa Hotmal & | Dostosujtacza & | Windows & | Seuka) 2 Google katty graficane] grouppl.comp Jang.

=
To jest tekst strony

146

o

| €] Batowe I 11 8 Localinnanet %

Rysunek C.16: Dynamiczny licznik odwiedzin strony w ASP.NET

<HTML>
<HEAD><TITLE>Witam w ASP.NET</TITLE></HEAD>
<BODY>

<h2>To jest tekst strony</h2>

<center>

</center>

</BODY>
</HTML>

7.8 Narzedzia wspomagajagce projektowanie stron ASP.NET
Visual Studio .NET

Visual Studio .NET znakomicie radzi sobie ze wspomaganiem projektowania stron ASP.NET. Z
poziomu $rodowiska, tworzac nowy projekt, mozna nawet utworzy¢ katalog wirtulany na serwerze
IIS.

Podczas pracy nad projektem Visual Studio .NET stosuje nieco inng konwencje od przedsta-
wionej w dotychczasowych przykladach - warstwa prezentacyjna (uklad komponentéw) znajduje
sie w osobnym pliku niz kod obstugi zdarzen komponentéw.

ASP.NET WebMatrix

Microsoft ASP.NET WebMatrix jest darmowym narzedziem, wspierajacym projektowanie stron
ASP.NET. WebMatrix ma wizualny edytor stron, edytor kodu, palety narzedziowe. Edytor po-
zwala na przypisywanie zdarzen komponentom.

WebMatrix mozna pobraé ze strony http://www.asp.net.

256 ROZDZIAL C. SWIAT .NET

ol

Fle Edt Viw Famal Lo HTML Workspase Iook Window Help
A EE b BB e e e o (@l B e Type kevwords to search online help %

« [@lTmeshewRoman =3+ |A BB r U

E: Clnctpublwwwroofite stQ00IN =lolx|

\Wolkspece
b ihit E 3 Worls. | 13 Deta [Opent.. |
v | e Erjkicta (ET—
o TetBox Twaorz dane osohowe <CENTER> g

Iv Cheddox (Click to 522 parent HTHL clemerts) =
Do CheckBoxtist e @\|

& RadicButton
% RadioButtenist
2 DropDowinList
=4 ListBox

8b] Buttan

b LinkButtan

3| ImageButton
g Image

[AdRotator

{ Panel

[5] PlaceHolder
] Table: &

= et & Do [e 73 coss [o |
Y sqlDatssource ..
(] MyDataGrd -
5] DataGrid

3] Datatist

Repeater

[+ RequiredFieldy ..

E -
L5 Custom Eontris !
B Wy Srippets B Fropeit... 77 Classes | &1 Comm.. |
\ I I -

Rysunek C.17: Microsoft ASP.NET WebMatrix w akcji

8 Inne jezyki platformy .NET

8.1 VB.NET

Visual Basic NET jest nowa odstona znanego i popularnego jezyka Visual Basic. W nowej wersji
jezyk zostal znacznie unowoczesniony i dostosowany do mozliwosci platformy .NET. Kompilator
VB.NET jest czescia frameworka i uruchamiany jest poleceniem vbc.exe.

Program w VB.NET oprécz klas moze réowniez sktadaé sie z tzw. modulow, ktére sa po
prostu zbiornikami kodu nie przywiazanego do zadnej klasy. Funkcje publiczne z modutéw sa
dostepne z kazdego miejsca w kodzie, podobnie jak funkcje statyczne w klasach. Metoda Main
moze znajdowac sie w jakim$ module, zamiast w klasie.

VB.NET, w przeciwienstwie do C#, nie rozréznia duzych i matych liter w kodzie. Ma réwniez
znacznie liberalniejszy system typow. W VB.NET mozna na przyktad:

e uzywaé niezainicjowanych w kodzie zmiennych
e dokonywaé niejawnych konwersji miedzy warto$ciami réznych typow

Mozliwosci wyrazowe VB.NET odpowiadaja mozliwosciom C#, jednak ”basicopodobna”
sktadnia jest miejscami troche zbyt przegadana. Na przyktad ograniczniki strukturalne zawsze
s parami wyrazen:

Public Sub Metoda
End Sub
Public Function Funkcja(i As Integer, j As String) As String

End Function

7 powodéw historycznych zachowano m.in.

8. INNE JEZYKI PLATFORMY .NET 257

klasyczna basicowa petle For, ktora jest zdecydowanie stabsza od for z C#

stowo kluczowe Me, bedace odpowiednikiem this

stowo kluczowe Nothing, bedace odpowiednikiem null

e konieczno$¢ uzywania symbolu _ do oznaczenia przeniesienia dtugiej linii kodu do kolejnej
linii (bez tego znaku koniec linii oznacza koniec instrukeji)

W poréwnaniu z wersja 6.0 Visual Basica, w VB.NET znacznie poprawiono model obiektowy,
pozwalajac na projektowanie interfejséw i dziedziczenie takie jak w C#. Zmienne moga by¢
deklarowane w dowolnym miejscu kodu, podobnie jak w C#.

Przykladowa aplikacja w VB.NET

Pierwszy przyktadowy program to basicowa wersja programu ze strony 216. Oprécz oczywi-
stych réznic w sktadni, warto zwréci¢ uwage na zupelnie inny sposéb dodawania funkcji obstugi
zdarzen niz w C#.

Imports System
Imports System.Drawing
Imports System.Windows.Forms

Module MainModule

Sub Main
Dim f As New CMainForm
f.ShowDialog()

End Sub

Public Class CMainForm
Inherits System.Windows.Forms.Form

Dim timer As Timer

Public Sub New
MyBase.New()

timer = new Timer
timer.Interval = 50
AddHandler timer.Tick, AddressOf Timer_Tick

timer.Start

SetStyle(ControlStyles.UserPaint, True)
SetStyle(ControlStyles.AllPaintingInWmPaint, True)
SetStyle(ControlStyles.DoubleBuffer, True)

End Sub

Sub Timer_Tick(sender As Object, e As EventArgs)
Me.Invalidate
End Sub

Protected Overrides Sub OnPaint(e As PaintEventArgs)
Dim g as Graphics = e.Graphics
Dim f as Font = new Font("LED", 48)

Dim sf as StringFormat = new StringFormat ()

sf.Alignment = StringAlignment.Center
sf.LineAlignment = StringAlignment.Center

g.Clear(SystemColors.Control)
g.DrawString(DateTime.Now.ToLongTimeString(), f, Brushes.Black, _
Me.Width / 2, Me.Height / 2, sf)

258 ROZDZIAL C. SWIAT .NET

End Sub
End Class

End Module

Dynamiczne wigzanie

Ogromna przepasé¢ dzieli VB.NET od jego poprzednika, VB 6.0. Mimo to mato elegancka sktad-
nia sprawia, ze majac do wyboru VB.NET i C#, zdecydowanie bardziej warto wybraé¢ C#.
Okazuje sie jednak, ze istniejg zastosowania, w ktérych VB.NET sprawdza sie o wiele lepiej
niz C#. Chodzi o wspélprace z bibliotekami systemowymi w starym modelu COM. Program w
VB.NET moze zazadaé¢ utworzenia obiektu COM i wotaé jego metody, mimo ze ich prototypy
nie s¢ znane w trakcie kompilacji! Jest to mozliwe, poniewaz VB.NET uzywa poZnego wiazania
wywolywanych metod z odpowiadajacym im kodem. W C#, z powodu silnego otypowania kodu,
taka konstrukcja nie jest mozliwa i dlatego korzystanie z obiektéw COM jest trudniejsze.
Jezeli wiec aplikacja .NETowa powinna komunikowaé sie z obiektami COM, to odpowiedni
kod najwygodniej jest napisa¢ w VB.NET, za$ cala reszte - w jakim$ innym jezyku.
Zobaczmy prosty przyktad tzw. automatyzacji obiektéw Microsoft Office. Przyktadowa apli-
kacja utworzy instancje obiektu Microsoft Word i otworzy w niej nowy dokument.
Imports System

Imports System.Drawing
Imports System.Windows.Forms

Imports Microsoft.VisualBasic
Module MainModule
Sub Main
Dim f As New CMainForm
f.ShowDialog()
End Sub

Public Class CMainForm
Inherits System.Windows.Forms.Form

Dim b As Button

Public Sub New
MyBase.New()

b new Button

b.Text = "Utwérz obiekt MS Word"
b.Size = new Size(150, 25)
AddHandler b.Click, AddressOf b_Click

Controls.Add(b)
End Sub

Sub b_Click(sender As Object, e As EventArgs)
Dim o as Object

’ twoérz obiekt COM

= CreateObject("Word.Application")
.Visible = True

.Documents.Add

= Nothing

o 0 o o

End Sub

End Class

End Module

8. INNE JEZYKI PLATFORMY .NET 259

Analogiczna operacja w C# jest nieco bardziej skomplikowana i wymaga silnego wsparcia ze
strony mechanizmu refleksji.

try

{
Type t = Type.GetTypeFromProgID("Word.Application");
object w = Activator.CreatelInstance(t);

// w.Visible = true
t.InvokeMember("Visible", BindingFlags.SetProperty,
null, w, new Object[] { true });

// w.Documents. ..
object docs = t.InvokeMember("Documents", BindingFlags.GetProperty,
null, w, null);
// ...Add
t.InvokeMember ("Add", BindingFlags.InvokeMethod,
null, docs, null);

w = null;
}
catch(TypeLoadException ex)
{
}

Jak to sie¢ wiec dzieje, ze VB.NET potrafi wykonaé¢ kod, w ktorym wystepuja odwotania do
nieznanych w czasie kompilacji metod i propercji? Dlaczego kompilator przyjmuje kod

o = CreateObject("Word.Application")
o.Visible = True
o.Documents.Add

skoro o jest typu object? Odpowiedz na to pytanie tkwi w kodzie ILowym powyzszego mo-
dutu VB.NET. Proponuje samodzielnie zdekompilowaé¢ ten modul przy pomocy ildasm.exe i
przekonad si¢ jakich mechanizméw uzywa VB.NET do obstugi dynamicznego wigzania konkret-
nych metod obiektu z odwotaniami do nich w kodzie aplikacji.

8.2 ILAsm

MSIL jest jezykiem posrednim, do ktorego kompilowane sa wszystkie jezyki platformy .NET.
Wsréd nich szczegélna pozycje ma ILAsm (Intermediate Language Assembler), czyli jezyk ni-
skiego poziomu bezposrednio tltumaczacy sie do kodu posredniego MSIL.

Oczywidcie znajomo$é jezyka ILAsm nie jest niezbedna aby pisa¢ programy dla srodowiska
NET. Czasami jednak warto zdekompilowaé program (rozdzial 2.19) C#owy i zobaczyé jak
wyglada kod jakiegos$ interesujacego fragmentu.

Znajomosé jezyka posredniego jest oczywiscie niezbedna z punktu widzenia twoércy nowe-
go jezyka czy kompilatora dla platformy .NET. Kod ILAsmowy moze korzystaé¢ z wyjatkéw i
wotaé funkcje z bibliotek .NET. Mimo, Ze znacznie ulatwia tworzenie kodu wynikowego dla je-
zykéw obiektowych, nadaje sie rownie dobrze wszystkich typow jezykéw. W kolejnym rozdziale
zobaczymy przyklady kodu produkowanego przez kompilator SML.NET.

Informacje ogdlne

Z punktu widzenia kodu ILAsmowego, najistotniejszym elementem Srodowiska jest stos. Stos
stuzy do przekazywania parametréw do funkcji i zbierania wynikéw funkcji. Na stosie mozna
umieszczaé obiekty typéw prostych i referencyjnych (wtedy na stosie znajduje sie referencja do
obiektu, za$ warto$¢ obiektu znajduje sie na stercie). Programista moze przekazywa¢ wartosci

260 ROZDZIAL C. SWIAT .NET

obiektéw miedzy stosem a zmiennymi lokalnymi kodu. Do przekazania wartosci na stos stuza
instrukcje w postaci 1d..., zas do pobrania wartosci ze stosu i umieszczenia ich w zmiennych
lokalnych instrukcje postaci st....

Wykonanie funkcji w [1Asm sklada sie z trzech krokéw:

1. Polozenie na stosie parametréw wejsciowych funkcji
2. Wywolanie funkcji
3. Zdjecie ze stosu wynikow funkeji

Pierwszy i ostatni krok sg opcjonalne i oczywiscie zaleza od postaci funkcji.
IL jako jezyk niskopoziomowy ma dosé¢ duze mozliwosci. Ma m.in. instrukcje do obstugi tablic,
obiektéw oraz wyjatkow. Potrafi obstugiwaé ogonowe wywolania funkcji, delegatéw i zdarzenia.

Pierwszy program w ILAsm
Najprostszy program w ILAsm po prostu wypisze tekst powitalny na ekranie.

.assembly extern mscorlib {}
.assembly Example{}
.class public CExample extends [mscorlib]System.Object
{
.method public static void MyAppStart() il managed
{
.entrypoint
.maxstack 8

// umie$é na stosie napis
ldstr "Pierwszy program w ILAsm..."

// wotaj funkcje Console.WriteLine(string)
call void [mscorlib] System.Console::WriteLine
(class System.String)

ret

Dyrektywa .assembly extern informuje kompilator o koniecznoéci importu informacji o
funkcjach z zewnetrznej biblioteki. W tym przypadku chodzi o biblioteke mscorlib, ktéra jest
rdzeniem caltego $rodowiska .NET i trudno wyobrazi¢ sobie program niekorzystajacy z tej bi-
blioteki.

Dyrektywa .assembly definiuje nowy modut do kompilacji, w tym przypadku chodzi o pro-
gram, ktéry wlasnie piszemy.

Dyrektywa .class definiuje nowy typ, jednak jest ona opcjonalna - I[IAsm moze z powo-
dzeniem tworzy¢ kod nieobiektowy. W naszym przyktadzie nowym typem jest typ referencyjny
(klasa), dziedziczacy z klasy System.Object.

W przeciwienstwie do C# czy VB.NET, czesé definicji typu w ILAsm moze byé¢ umieszczona
w pewnym miejscu kodu, a inna cze$¢ w innym miejscu kodu. Definicja jednego i tego samego
typu moze nawet rozciaggaé sie na kilka plikéw z kodem Zrédtowym.

Struktury, czyli typy proste, wyprowadza sie z klasy System.ValueType zamiast z Sys-
tem.Object.

Dyrektywa .method rozpoczyna definicje kodu nowej metody. Specjalne oznaczenie il ma-
naged oznacza, ze kod metody napisany jest w ILAsm i powinien podlega¢ wszelkim regutom
narzucanym przez platforme .NET. Kod natywny mozna specyfikowaé za pomoca oznaczenia
native unmanaged.

8. INNE JEZYKI PLATFORMY .NET 261

Dyrektywa .entrypoint okredla miejsce startu aplikacji. Co ciekawe, odpowiednia funkcja
moze mie¢ dowolng nazwe, niekoniecznie Main.

Dyrektywa .maxstack okresla maksymalna gleboko$é stosu metody.

Instrukcja ldstr powoduje umieszczenie na stosie napisu przekazanego jako parametr. In-
strukcja call powoduje wywotlanie funkcji ze wskazanej biblioteki i wskazanej klasy. Funkcja ta
szuka na stosie odpowiednich parametréw, zdejmuje je, po czym wykonuje swéj kod.

Powyzszy przyktadowy kod moze by¢ skompilowany i uruchomiony:

C:\Example)ilasm example.il

Microsoft (R) .NET Framework IL Assembler. Version 1.0.3705.0
Copyright (C) Microsoft Corporation 1998-2001. All rights reserved.
Assembling ’example.il’ , no listing file, to EXE --) ’example.EXE’
Source file is ANSI

Assembled method CExample::MyAppStart
Creating PE file

Emitting members:

Global

Class 1 Methods: 1;

Writing PE file

Operation completed successfully

C:\Example)example
Pierwszy program w ILAsm...

Stale i zmienne

Stale numeryczne mogg by¢ tadowane bezposérednio na stos za pomocg instrukeji:

e stale catkowitoliczbowe - 1dc.i4 (int32), ldc.l4.s (int8) (.s na koncu instrukcji zawsze
oznacza “krotka” wersje instrukcji, czyli taka, ktoéra przyjmuje parametr o mniejszym
zakresie danych niz ”"pelna” instrukcja) oraz ldc.i8 (int64)

e stale calkowitoliczbowe miedzy 0 a 8 - 1dc.i4.(0-8)
e stale zmiennoprzecinkowe - ldc.r4.(float32) oraz ldc.r8.(float64)

Zmienne sa deklarowane za pomoca dyrektywy .locals. Opcjonalne stowo init oznacza, ze
zmienne maja by¢ zainicjowane domy$lnymi warto$ciami. Jesli progarmista zdecyduje inaczej,
kod bedzie przez srodowisko uruchomieniowe uwazany za niebezpieczny.

Zmienne sg numerowane kolejnymi liczbami catkowitymi i w jednej metodzie moze ich by¢
maksymalnie 65536, czyli 2'6. Zmienne moga byé deklarowane w kilku miejscach w kodzie me-
tody, co wiecej, jeéli pewna zmienna o numerze k przestaje by¢ potrzebna, mozna w jej miejsce
zadeklarowaé¢ nowg zmienng o tym samym numerze i tym samym typie, ale o innej nazwie.

Numery zmiennych odgrywaja gléwng role w kodzie ILAsmowym, bowiem przesylanie da-
nych ze stosu do zmiennej i ze zmiennej na stos odbywa sie za pomoca instrukeji ldloc (int32)
oraz stloc (int32), ktére jako parametr przyjmuja wlasnie nazwe zmiennej.

.assembly extern mscorlib {}
.assembly Example{}
.class public CExample extends [mscorlib]System.Object
{
.method public static void MyAppStart() il managed
{
.entrypoint
.maxstack 8

// int n;

262 ROZDZIAE C. SWIAT .NET

.locals init ([0] int32 n)

// n = 100;
1dc.i4 100
stloc O

// Console.WriteLine(n);
ldloc O
call void [mscorlib]System.Console::WriteLine(int32)

ret

Instrukcje arytmetyczne

Wiérdd instrukeji arytmetycznych szczegdlng role odgrywaja instrukcje umozliwiajace manipu-
lacje danymi na stosie:

dup powoduje utworzenie na stosie dodatkowej kopii juz istniejacego tam obiektu
pop powoduje usuniecie wartosci z wierzchu stosu

?Zwykle” instrukcje arytmetyczne wymagaja odpowiedniej liczby wartosci na stosie i zwra-
caja warto$¢ na stos.

add suma dwoch argumentéw

sub réznica

mul iloczyn

div iloraz

rem reszta z dzielenia

neg negacja parametru z wierzcholka stosu (zmiana znaku liczby)
Operacje bitowe:

and iloczyn bitowy

or suma bitowa

xor réznica symetryczna

not negacja bitowa

shl przesuniecie bitowe w lewo (wymaga dwoch wartosci na stosie: pierwsza okresla o ile bitéw
przesunaé¢ w lewo druga)

shr przesuniecie bitowe w prawo

Operatory konwersji pobierajg warto$é¢ ze stosu, konwertuja do wskazanego typu i odktadaja
wynik na stos

conv.il Konwertuj do int8

conv.ul Konwertuj do unsigned int8

conv.i2 Konwertuj do int16

8. INNE JEZYKI PLATFORMY .NET 263

conv.u2 Konwertuj do unsigned int16
conv.i4 Konwertuj do int32

conv.u4 Konwertuj do unsigned int32
conv.i8 Konwertuj do int64

conv.u8 Konwertuj do unsigned int64
conv.r4 Konwertuj do float32

conv.r8 Konwertuj do float64

Operacje warunkowe, skoki

Stosowe warunki logiczne sprawdzaja czy zachodzi odpowiednia relacja miedzy kolejnymi war-
tosciami ze stosu i odklada na stos wartos¢ 1 jesli warunek jest spelniony lub 0 jesli warunek
nie jest spelniony:

ceq Sprawdza czy dwie kolejne wartodci na stosie sa réwne
cgt Sprawdza czy pierwsza warto$é¢ na stosie jest wieksza od drugiej.

clt Sprawdza czy pierwsza wartoS¢ na stosie jest mniejsza od drugie;j.

Instrukcje skoku maja zwykle postaé¢ (instrukcja) (numer), gdzie (numer) oznacza prze-
suniecie (wyrazone w bajtach) instrukeji, do ktérej nalezy wykonaé¢ skok. Na przyklad br 5
oznacza bezwarunkowy skok do instrukcji lezacej bajtow dalej niz biezaca instrukcja.

Mozna jednak w kazdym miejscu, gdzie w kodzie wynikowym pojawia sie przesuniecie, umie-
Scié etykiete, ktora oprocz tego powinna znajdowadé sie gdzies w kodzie i wyznaczaé przez to po-
zycje jakiejs instrukcji. Podczas kompilacji odwotania do etykiet sg przez kompilator zamieniane
na wartosci odpowiednich przesunieé¢, na przyktad:

Etykietal:
br Etykietal
Unarne instrukcje warunkowe (wymagaja jednego parametru na stosie):
brfalse (int32) Skok jesli warto$¢ na stosie jest réwna 0
brtrue (int32) Skok jesli warto$¢ na stosie jest rézna od 0
Binarne instrukcje warunkowe (wymagaja dwéch parametréw na stosie):
beq (int32) Skok jesli réwne
bne (int32) Skok jesli nieréwne
bge (int32) Skok jesli wieksze lub réwne
bgt (int32) Skok jesli wieksze
ble (int32) Skok jesli mniejsze lub réwne

blt (int32) Skok jesli mniejsze

264 ROZDZIAE C. SWIAT .NET

Metody i parametry

Parametry wewnatrz metod moga by¢ odczytywane i zapisywane za pomoca instrukcji ldarg i
starg. W przyktadowej aplikacji umiescimy funkcje, ktora oblicza kwadrat liczby przekazanej
jako parametr.

.assembly extern mscorlib {}
.assembly Example{}
.class public CExample extends [mscorlib]System.Object
{
.method static int32 Kwadrat(int32 n) il managed
{
ldarg O // taduj parametr na stos
dup // umiesSé kolejng kopie na stosie
mul // mnéz przez siebie
ret // zwréé wynik

}

.method public static void MyAppStart() il managed
{

.entrypoint

.maxstack 8

// int n;
.locals init ([0] int32 n)

// n = Kwadrat(5);

ldc.i4 5

call int32 CExample::Kwadrat (int32)
stloc O

// Console.WriteLine(n)

ldloc O

call void [mscorlib]System.Console: :WriteLine(int32)

ret

Obiekty, pola, metody

IL udostepnia réwniez mechanizmy do operacji na obiektach. Dyrektywy .class, .method i
field pozwalaja na deklarowanei odpowiednich rodzajéw elementéw sktadowych klas.
Wazniejsze instrukcje do operacji na obiektach:

Idnull Laduje na stos referencje null

newobj (token) Allokuje pamieé¢ dla nowej instancji typu referencyjnego. Wymaga na stosie
odpowiedniej liczby parametréw dla konstruktora i odklada na stos referencje do nowo
utworzonego obiektu.

1dfld (token) Zdejmuje ze stosu referencje do obiektu i umieszcza na stosie wartosé wskazanego
pola.

ldsfld (token) Jak wyzej, tylko dotyczy pola statycznego.

stfld (token) Zdejmuje ze stosu wartos¢ pola i referencje do obiektu i umieszcza warto$é w
odpowiednim polu obiektu.

stsfld (token) Jak wyzej, tylko dotyczy pola statycznego.

castclass (token) Zdejmuje ze stosu referencje do obiektu i rzutuje do wskazanego typu.

8. INNE JEZYKI PLATFORMY .NET 265

box (token) Zdejmuje ze stosu warto$¢ typu prostego i opakowuje, zapisujac na stos referencje
do nowo utworzonego obiektu.

unbox (token) Odpakowuje wartos¢ obiektu z zadanej referencji.

Zobaczmy przyklad opakowywania. Na stos zatadujemy wartos¢ 1, opakujemy ja do obiektu
i wywotamy wirtualng metode ToString dla tak skonstruowanego obiektu. Wynik pokazemy w
oknie konsoli.

.assembly extern mscorlib {}
.assembly Example{}
.class public CExample extends [mscorlib]System.Object
{
.method public static void MyAppStart() il managed
{
.entrypoint
.maxstack 8

1ldc.i4 1

box [mscorlib]System.Int32

callvirt instance string [mscorlib]System.Object::ToString()
call void [mscorlib]System.Console: :WriteLine(string)

ret

Polimorfizm

Metody niestatyczne zdefiniowane w klasie moga by¢ zdefiniowane jako wirtualne lub nie za
pomocy dyrektywy virtual. W chwili wotania metody wirtualnej ze specjalnej struktury zwa-
nej tablicg metod wirtualnych pobierana jest informacja o tancuchu poprzecigzanych funkcji, z
ktérych wybierana jest odpowiednia. Oznacza to, ze wigzanie nazwy metody z konkretna imple-
mentacjg odbywa sie tuz przed wykonaniem metody, a nie w czasie kompilacji.

Zobaczmy nastepujacy przyktad:

.assembly CExample{}

.class public A
{

.method public specialname void .ctor() { ret }

.method public void Foo()

{
ldstr "A::Foo"
call void [mscorlib]System.Console::WriteLine(string)
ret

}

.method public virtual void Bar()

{
ldstr "A::Bar"
call void [mscorlib]System.Console::WriteLine(string)
ret

}

.method public virtual void Baz()

{
ldstr "A::Baz"
call void [mscorlib]System.Console::WriteLine(string)
ret

}

.class public B extends A

{
.method public specialname void .ctor() { ret }
.method public void Foo()

266

ldstr "B::Foo"
call void [mscorlib]System.Console::WriteLine(string)
ret

}

.method public virtual void Bar()

{
ldstr "B::Bar"
call void [mscorlib]System.Console::WriteLine(string)
ret

}

.method public virtual newslot void Baz()

{
ldstr "B::Baz"
call void [mscorlib]System.Console::WriteLine(string)
ret

}

.method public static void Exec()

{
.entrypoint
newobj instance void B::.ctor() // new B()
castclass class A // rzutuj na A

dup // 3 kopie na stosie
dup //

callvirt instance void A::Foo()
callvirt instance void A::Bar()
callvirt instance void A::Baz()
ret

ROZDZIAE C. SWIAT .NET

W klasie A zdefiniowano trzy metody, z czego dwie sg metodami wirtualnymi. W klasie B,
dziedziczacej z A, zdefiniowano trzy metody o takich samych sygnaturach jak metody z klasy

bazowej.

e metoda Foo jest w obu klasach zdefiniowana jako niewirtualna

e metoda Bar jest w obu klasach wirtualna

e metoda Baz jest w obu klasach wirtualna, przy czym w klasie B jest opatrzona dyrektywa

newslot (nowa pozycja w tablicy metod wirtualnych)

Efekt dzialania tego programu jest zgodny z oczekiwaniami: tylko kod metody Bar bedzie
pochodzil z klasy B. Zwr6émy przy okazji uwage, ze instrukcja callvirt w przypadku funkcji
Foo nie ma zadnego zastosowania, bowiem Foo nie jest metoda wirtualng. Podobnie, gdyby
wszystkie wywolania callvirt zamienié¢ na call, to fakt, ze wywolywane metody sa metodami
wirtualnymi przestatby mieé¢ znaczenie - call oznacza niepolimorficzne wywotanie funkcji.

C:\example>example.exe
A::Foo
B::Bar
A::Baz

Wyjatki

Obstuga wyjatkow w ILAsm polega na uzyciu dyrektyw .try i .catch. Na uwage zashuguje fakt,
ze kod w obu sekcjach musi by¢ jawnie opuszczony za pomocg instrukcji leave.

Ponizszy przyktad spowoduje wyjatek, poniewaz obiekt FileStream nie jest zainicjowany

przed wywolaniem jego metody.

8. INNE JEZYKI PLATFORMY .NET

/%
using System;
using System.IO;

namespace NSpace

{
class CMain
{
public static void Main()
{
try
{
FileStream fs = null;
fs.Close();
}
catch(Exception ex)
{
Console.WriteLine(ex.Message);
}
}
}
}
*/

.assembly extern mscorlib {}
.assembly Example{}
.class public CExample extends [mscorlib]System.Object

{
.method public static void MyAppStart() il managed
{
.entrypoint
.maxstack 2
.locals init (class [mscorlib]System.IO.FileStream V_O,
class [mscorlib]System.Exception V_1)
.try
{
ldnull
stloc.0 // V_0 = null
1ldloc.0
callvirt instance void [mscorlib]System.IO0.Stream::Close()
leave.s IL_0018
} // end .try
catch [mscorlib]System.Exception
{
stloc.1
ldloc.1
callvirt instance string [mscorlib]System.Exception::get_Message()
call void [mscorlib]System.Console::WriteLine(string)
leave.s IL_0018
} // end handler
IL_0018: ret
}
}

8.3 Ljaczenie kodu z réznych jezykow
Zasady laczenia kodu réznych jezykow

267

Platforma .NET pozwala z niespotykana wczesniej tatwoscia taczyé kod napisany w réznych
jezykach. Dowolny kompilator moze produkowaé biblioteki kodu, ktére nastepnie moga by¢ uzy-
wane z poziomu innych jezykéw. W ponizszym przyktadzie kod klasy napisanej w VB.NET jest

wykorzystywany w programie napisanym w C#.

// CMainForm.vb

Imports System

Imports System.Drawing
Imports System.Windows.Forms

268 ROZDZIAL C. SWIAT .NET

Namespace MainModule

Public Class CMainForm
Inherits System.Windows.Forms.Form

Public Sub New
MyBase.New()
End Sub

Protected Overrides Sub OnPaint(e As PaintEventArgs)
Dim g as Graphics = e.Graphics

Dim f as Font = new Font("Times New Roman", 48)

Dim sf as StringFormat = new StringFormat()

sf.Alignment StringAlignment.Center
sf.LineAlignment = StringAlignment.Center

g.Clear(SystemColors.Control)
g.DrawString("VB.NET", f, Brushes.Black, _
Me.Width / 2, Me.Height / 2, sf)

End Sub
End Class
End Namespace

// CExample.cs
using System;
using System.Windows.Forms;

using MainModule;

class CExample
{
public static void Main()
{
Application.Run(new CMainForm());
}
}

C:\example>vbc.exe /target:library CMainForm.vb

Microsoft (R) Visual Basic .NET Compiler version 7.00.9466

for Microsoft (R) .NET Framework version 1.00.3705.288

Copyright (C) Microsoft Corporation 1987-2001. All rights reserved.

C:\example>csc.exe /r:CMainForm.dll CExample.cs

Microsoft (R) Visual C# .NET Compiler version 7.00.9466

for Microsoft (R) .NET Framework version 1.0.3705

Copyright (C) Microsoft Corporation 2001. All rights reserved.

Aby mozliwa byta wspoltpraca kodu napisanego w réznych jezykach, oczywistym wydaje sie
by¢ wymaganie, aby jezyki te spelnialy pewne warunki. W przypadku jezykow projektowanych
z my$la o platformie .NET sprawa jest prosta. Trudnosci pojawiajg sie w przypadku jezykéw
dostosowywanych do wymogdéw platformy .NET, na przyktad jezykéw funkcjonalnych. Przyktad
kompilatora SML.NET pokazuje, ze takie trudnosci mozna z powodzeniem pokonywac.

Czy wiec wspdlistnienie wielu jezykow w obrebie jednej platformy oznacza, ze z poziomu
kodu C# mozna wprost wotaé¢ kod z na przyktad SML.NET?

Ot6z nie do konca tak jest. Aby jezyki mogly wspolpracowaé ze soba, konieczne jest aby
komunikacja odbywala sie za pomocg dos¢ rygorystycznych regut okreslanych przez specyfikacje
CTS (byta juz o tym mowa). Oznacza to, ze modul SMLowy moze dowolnie korzystaé¢ z moz-
liwosci SMLa, ale po to aby pobra¢ parametry i odda¢ wyniki do modutu C#owego, musi na

8. INNE JEZYKI PLATFORMY .NET 269

przyktad opakowac je w klasy, o ktére rozszerzono sktadnie SMLa. Dzieki temu, ze czesciag CTS
jest definicja typow prostych, wymiana informacji miedzy ré6znymi jezykami nie jest trudna: typy
proste przekazuje sie wprost, typy ztozone opakowuje si¢ w struktury lub klasy.

Ponizszy prosty przyklad pokazuje jak klase napisang w C# mozna wykorzysta¢ w kodzie
SML.NET.

// pola.cs
namespace NExample
{
public class CExample
{
// pola statyczne
public static readonly string pole_statyczne_readonly =
System.String.Concat("SML.", "NET");
public static int pole_statyczne = 23;

// pola
public int pole;

public CExample(int n)
{
pole = n;
}
}
}

(* pola_demo.sml *)
structure pola_demo =
struct

fun main () =
let

val ¢ = NExample.CExample(156)
in

print ("Pole statyczne readonly " ~ valOf (NExample.CExample.pole_statyczne_readonly) ~ "\n");
print ("Pole statyczne " ~ Int.toString(!NExample.CExample.pole_statyczne) ~ "\n");
NExample.CExample.pole_statyczne := 17;
print ("Pole statyczne " ~ Int.toString(!NExample.CExample.pole_statyczne) ~ "\n");
print ("Pole " ~ Int.toString(!(c.#pole)) ~ "\n");
c.#pole := T77;
print ("Pole " ~ Int.toString(!(c.#pole)) ~ "\n")
end
end

C:\Example>csc /nologo /t:library pola.cs
C:\Example>smlnet -reference:pola pola_demo
C:\Example>pola_demo.exe

Pole statyczne readonly SML.NET

Pole statyczne 23

Pole statyczne 17

Pole 156

Pole 77

Putlapki

Podczas taczenia kodu napisanego w réznych jezykach programista moze natknaé sie na prze-
rozne problemy. Jednym z najsubtelniejszych z nich jest problem poelgajacy na zbudowaniu
réznych jezykéw w oparciu o inne modele obiektowe.

Rozwazmy nastepujacy przyktad kodu w C+#.

using System;
using System.Windows.Forms;

namespace CPulapka

270 ROZDZIAL C. SWIAT .NET

{
public class A
{
public virtual void Q(int k)
{
Console.WriteLine("A::Q(int)");
}
}
public class B : A
{
public virtual void Q(double d)
{
Console.WriteLine("B::Q(double)");
}
public static void Main()
{
B b = new BQ;
b.Q(1.0); // tu jest OK!
b.QC 1); // a tu?
}
}

}

C:\example>CExample.exe
B::Q(double)
B::Q(double)

Taki a nie inny wynik dzialania programu moze by¢ w pierwszej chwili do$é¢ nieoczekiwany.
W klasie A zdefiniowano bowiem metode Q(int), ktéra wydaje sie lepiej pasowaé¢ do wywolania
b.Q(1) niz przeciazona w klasie B metoda Q(double).

Kompilator C# kieruje sie jednak jednoznacznymi regutami dopasowania funkcji, okreslo-
nymi w specyfikacji jezyka. Reguly te moéwia, ze jezeli mozliwe jest dopasowanie parametréw
do funkcji zdefiniowanej w klasie biezacej, to funkcja taka zostanie wywotana, mimo ze w klasie
bazowej moze istnie¢ funkcja, ktéra w danym kontekscie mogtaby byé bardziej wlasciwa (zauwaz-
my, ze konwersja int—double, ktéra jest konieczna aby wywolaé¢ funkcje B::Q(double) jest
gorsza niz konwersja int—int, ktéra miataby miejsce, gdyby w b.Q(1) wywotana bylta funkcja
A::Q(int)).

Najbardziej wlasciwe pytanie, ktére nalezaloby zadaé¢ w tym miejscu brzmi: a co sie stanie,
jesli w innym jezyku programowania reguly te wygladaja inaczej i sprébujemy potaczy¢ kod
takich dwdch jezykéw?

Coz, przekonajmy sie:

// CExample.cs -> CExample.dll
using System;

using System.Windows.Forms;

namespace CPulapka

{

public class A

{
public virtual void Q(int k)
{

Console.WriteLine("A::Q(int)");

}

}

public class B : A

{
public virtual void Q(double d)
{

Console.WriteLine("B::Q(double)");
}

8. INNE JEZYKI PLATFORMY .NET 271

}
}

// CTest.vb kompilowany z referencja do CExample.dll
Imports System

Imports System.Drawing

Imports System.Windows.Forms

Imports CPulapka
Module MainModule
Sub Main
Dim b as B

b = new BQ)

(1.0)
1)

Q o o
n oo

En ub

End Module

C:\example>CTest.exe
B::Q(double)
A::Q(int)

Wynik tekstu potwierdza, ze wybierajac funkcje do wywolania w danym kontekécie, kompi-
lator danego jezyka kieruje sie swoimi wlasnymi regutami. W tym przypadku kompilator jezyka
VB.NET do wywotania b.Q(1) dopasowal funkcje A::Q(int) w przeciwienstwie do kompilatora
C+#, ktory (jak widzieliSmy) w tym samym przypadku wybralby funkcje B::Q(double).

Przyklad ten jest bardzo pouczajacy. Swiadczy on o tym, ze mimo mozliwosci integracji w
obrebie jednej platformy uruchomieniowej, jezyki programowania moga zachowywaé¢ duza doze
niezaleznosci. W koncu gdyby kazdy jezyk trzeba bylo "na site” dopasowaé¢ do jakich$ regut,
zmieniajac jednoczesnie jego semantyke, to cata idea .NET bylaby niewiele warta - oznaczata-
by bowiem powstanie tak naprawde jednego sposobu ”ewaluacji” programéw, tyle ze ubranego
w skltadnie innych jezykéw. W chwili obecnej zas, programista chcacy skorzysta¢ z mozliwo-
Sci taczenia kodu réznych jezykéw musi byé po prostu swiadomy mozliwych probleméw z tym
zwiazanych - probleméw, podkreslmy, natury dosé glebokiej i wynikajacej z duzych réznic kon-
cepcyjnych pomiedzy jezykami i ich modelami obiektowymi. Od strony czysto ”technicznej”
platforma .NET daje wyjatkowa mozliwo$¢ bezproblemowego taczenia kodu dowolnych jezykéw
programowania.

272 ROZDZIAE C. SWIAT .NET

Bibliografia

http://msdn.microsoft.com

http: / /www. c-sharpcorner.com

Archer T., Whitechapel A. Inside C#, Microsoft Press

Eckel B. Thinking in C#, http://www.bruceeckel.com
Gunnerson E. A Programmer’s Introduction to C#

Lidin S. Inside Microsoft .NET IL Assembler, Microsoft Press
Morgan M. Poznaj jezyk Java 1.2

Petzold Ch. Programming Windows, Microsoft Press

Reilly Douglas J. Designing Microsoft ASP.NET Applications

Stroustrup B. Jezyk C++

273

274 BIBLIOGRAFIA

Dodatek A

Przyktadowe aplikacje

Zapraszam do przegladu interesujacych przykitadowych programéw, ktére z réznych wazgleddw
nie znalazly sie wéréd programéw przedstawianych wczesniej. Kazdy z tych programéw demo-
struje rézne przydatne techniki badz programistyczne zwigzane z platforma .NET. Programy
pozostawie bez komentarza, aby czytelnik moégt przeanalizowaé je samodzielnie.

1 Animowany fraktalny zbiér Julii

using System;

using System.Drawing;

using System.Drawing.Imaging;

using System.Windows.Forms;

using System.Runtime.InteropServices;

namespace vicMazeGen

{
public class CFrmJulia : System.Windows.Forms.Form
{

private const int PSiz = 128;

private double angle = 0.0, angle2 = 0.0;
private int CcX, Cy;

private Bitmap picFracSource;
private System.Windows.Forms.PictureBox picFrac;

public CFrmJulia()

{
this.SetStyle(ControlStyles.DoubleBuffer, true);
this.SetStyle(ControlStyles.AllPaintingInWmPaint, true);

picFracSource = new Bitmap(PSiz, PSiz, PixelFormat.Format24bppRgb);

this.picFrac = new System.Windows.Forms.PictureBox();
this.picFrac.Dock = DockStyle.Fill;
this.picFrac.SizeMode = System.Windows.Forms.PictureBoxSizeMode.StretchImage;

this.ClientSize = new System.Drawing.Size(256, 256);
this.StartPosition = System.Windows.Forms.FormStartPosition.CenterScreen;

this.Controls.Add(this.picFrac);
}

void JuliaPaint()

{
angle += 0.023; angle2+= 0.027;
cx = (int)(800.0 * Math.Sin(angle+1.0));
cy = (int)(800.0 * Math.Cos(angle2));

Rectangle bounds =

275

276

DODATEK A. PRZYKEADOWE APLIKACJE

Rysunek A.1: Animowany fraktalny zbiér Julii

new Rectangle(new Point(0, 0),
new Size(picFracSource.Width, picFracSource.Height));
BitmapData bData =
picFracSource.LockBits(bounds, ImageLockMode.ReadWrite,
PixelFormat.Format24bppRgb);

byte[]l picData = new byte[PSiz * PSiz * 3];
int iDex = 0;

int iterNo, i, j;

int x, y, xn, yn, x2, y2;

for (i=0; i<PSiz; i++)
for (j=0; j<PSiz; j++)

{
iterNo = 0;
x = (i<<5)-2048;
y = (j<<5)-2048;
X2 = X*X;
y2 = y*y;
while (
(iterNo++ < 32) &&
(Math.Abs(x2+y2) < 4000000)
)
{
X2 = X*¥X; y2 = y*y;
xn = ((x2-y2)>>10) + cx;
yn = ((xxy)>>9) + cy;
X =Xn; y = yn;
}

picData[iDex++] = Convert.ToByte(255-iterNo);
picData[iDex++] = Convert.ToByte(5*iterNo);
picData[iDex++] = Convert.ToByte(5*iterNo);

}

Marshal.Copy (picData, O, bData.ScanO, PSiz * PSiz * 3);
picFracSource.UnlockBits(bData);

2. BEZPOSREDNI DOSTEP DO NOSNIKA DANYCH W WINDOWS NT 277

this.picFrac.Image = picFracSource;
this.picFrac.Invalidate();

}

public static void Main()

{
CFrmJulia frm = new CFrmJulia();
frm.Show();

DateTime start = DateTime.Now;

int frame = 0;
while (frm.Created)
{

frm.JuliaPaint();
Application.DoEvents();

frm.Text = String.Format("Fraktal Julii, FPS: {0:N}",
frame/((TimeSpan) (DateTime.Now-start)) .TotalSeconds);
frame++;
}
}
}
}

2 Bezposredni dostep do nosnika danych w Windows NT

#include <windows.h>
#include <stdio.h>

void ShowErrorMessage ()
{

char* 1pMsgBuf;

FormatMessage (
FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM,
NULL,

GetLastError(),

MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
(LPTSTR) &1lpMsgBuf,

0,

NULL

)5

// Pokaz komunikat
MessageBox(NULL, 1lpMsgBuf, "GetLastError", MB_OK |MB_ICONINFORMATION);

// Zwolnij pamiec
LocalFree(1lpMsgBuf);

exit(1);
}

int main(int argc, char x*argv)
{
BOOL bResult;

const int nBytesToRead = 512;
unsigned long nBytesRead;
unsigned long nBytesWrote;
char inBuffer[nBytesToRead];

HANDLE hFloppy = CreateFile("\\\\.\\a:",
GENERIC_WRITE | GENERIC_READ,
FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL, OPEN_EXISTING, O, NULL);
if (hFloppy == INVALID_HANDLE_VALUE) ShowErrorMessage();

HANDLE hData = CreateFile("read.bin",
GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE,

278 DODATEK A. PRZYKLADOWE APLIKACJE

NULL, CREATE_ALWAYS, O, NULL);
if (hData == INVALID_HANDLE_VALUE) ShowErrorMessage();

// kopiuj obraz dyskietki do pliku
do
{
bResult = ReadFile(hFloppy, &inBuffer, nBytesToRead, &nBytesRead, NULL) ;
if (bResult)
WriteFile(hData, inBuffer, nBytesRead, &nBytesWrote, NULL);
} while (bResult != O && nBytesRead > 0);

CloseHandle(hFloppy) ;
CloseHandle(hData);

return O;

