Probability \& Statistics

Problem set №3. Week starting March $16^{\text {th }}$

1. A and B are events such that $P(A \cap B)=1 / 4, P\left(A^{C}\right)=1 / 3, P(B)=1 / 2$. Find $P(A \cup B)$.
2. Is it true that 13. day of the month is connected with Friday? (January 1, 1601 - December 31, 2000)

Explanation: Year n is a leap year if $n \equiv_{4} 0$, with the exception of years divisible by $100\left(n \not \equiv_{100} 0\right)$; unless $n \equiv{ }_{400} 0$ (i.e. year 2000). How many times in 400 -year cycle 13 . day of the month was Monday, Tuesday, ..., Sunday?
Random variables X, Y are independent, iff, in discrete case, condition $P\left(X=x_{i}, Y=y_{k}\right)=P\left(X=x_{i}\right)$. $P\left(Y=y_{k}\right)$ holds.
3. R.v. X has binomial distribution $B\left(n_{1}, p\right)$ and r.v. $Y B\left(n_{2}, p\right)$ distribution. X, Y are independent. Prove that $Z=X+Y$ has $B\left(n_{1}+n_{2}, p\right)$ distribution.
4. Independent r.vs. X, Y have Poisson distribution with parameters λ_{1} i λ_{2}. Prove that r.v. $Z=X+Y$ has Poisson distribution with parameter $\lambda_{1}+\lambda_{2}$.

Density of r.v. (X, Y) has form $f(x)=3 x y$ on area bounded by $y=0, y=x, y=2-x$.
5. Find marginal densities $f_{1}(x), f_{2}(y)$.
6. Calculate expected value of Y. Check if r.v. X, Y are independent.
7. Probability of success in independent trials equals p. We perform trials until 3 successes occur. R.v. X is equal to number of performed trials. Find distribution of X, i.e. find density function (probabilities) and expected value X.
8. Readable and thoroughly - without using the notes - write upper and lower Greek letters: alpha α, beta β, zeta ζ, eta η, lambda λ, chi χ, xi ξ, phi ϕ, rho ρ.
9. (a) Let $X \sim U[-2,2]$. Find distribution of $Y=|X|$.
(b) Given $X \sim U[-1,1]$ find distributions of $Y=X^{3}, Z=X^{2}$.
10. Let X be r.v. with geometric distribution $(X \sim \operatorname{Geom}(p))$. Check that $\mathrm{V}(X)=\frac{1-p}{p^{2}}$.
11. Cardinality of sets A_{1}, \ldots, A_{4} is equal - respectively $-40,32,20,50$. An element (from set of 142 elements) is randomly chosen. Cardinality of the set from which chosen element was taken is the value of random variable X. Next a set is randomly chosen. Cardinality of the chosen set is the value of random variable Y. Find $\mathrm{E}(X)$ i $\mathrm{E}(Y)$.

