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Abstract. Let {Pk} and Qk be any two sequences of classical orthogonal polynomials.
Using theorems of the theory of generalized hypergeometric functions, we give closed-form
expressions as well as recurrence relations for the coefficients an,k in the connection equation
Qn =

∑n
k=0 an,kPk (n ∈ N).
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1. Introduction

Let {Pk(x)} and {Qk(x)} be two systems of the classical orthogonal polynomials, i. e.
associated with the names of Jacobi, Laguerre, Hermite and Bessel. We are looking for the
coefficients an,k in

(1.1) Qn =
n∑
k=0

an,kPk,

called connection coefficients. An analogous problem is formulated for {Pk(x)} and {Qk(x)}
being systems of the classical orthogonal polynomials of a discrete variable, i. e. associated
with the names of Charlier, Meixner, Krawtchouk and Hahn.

Two type of results are met in a vast literature of this subject: closed-type formulae, or
recurrence relations (usually in k) for an,k (see [2]–[5], [10], [11], [13], [14], [16]–[25], [29]– [33],
[36]).

In the present paper, we show that both types of information on an,k may be obtained
using theorems of the theory of generalized hypergeometric functions.

2. Some results on generalized hypergeometric functions

Throughout this section, the letters p, q, r, s, t, u and n stand for non-negative integers.
We shall use the Pochhhammer’s symbol

(α)k = Γ(k + α)/Γ(α).

The definition for the generalized hypergeometric function is

(2.1) pFq

(
[ap]
[bq]

∣∣∣∣x) =

∞∑
k=0

(ap)kx
k

(bq)kk!

where the symbols [ap] and [bq] denote sets a1, a2, . . . , ap and b1, b2, . . . , bq of complex param-
eters, respectively, such that −bj 6∈ N0 and ai 6= bj for 1 ≤ i ≤ p and 1 ≤ j ≤ q, and where
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the above contracted notation will be used troughout the paper

f(ap) =

p∏
i=1

f(ai), f(bq) =

q∏
j=1

f(bj),

f being a given function.

Lemma 2.1.

p+r+1Fq+s

(
−n, [ap], [cr]

[bq], [ds]

∣∣∣∣zω) =
n∑
k=0

(
n

k

)
(ap)k(αt)kz

k

(bq)k(βu)k(k + λ)k

(2.2)

× p+t+1Fq+u+1

(
k − n, [k + ap], [k + αt]

2k + λ+ 1, [k + bq], [k + βu]

∣∣∣∣z) r+u+2Fs+t

(
−k, k + λ, [cr], [βu]

[ds], [αt]

∣∣∣∣ω) .
Proof. Eq. (2.2) is a specialized form of a much more general result in [26, Vol. II, §9.1,
Eq. (13)]. �

Lemma 2.2.

p+r+1Fq+s

(
−n, [ap], [cr]

[bq], [ds]

∣∣∣∣zω) =

n∑
k=0

(
n

k

)
(ap)k(αt)kz

k

(bq)k(βu)k
(2.3)

× p+t+1Fq+u

(
k − n, [k + ap], [k + αt]

[k + bq], [k + βu]

∣∣∣∣z) r+u+1Fs+t

(
−k, [cr], [βu]

[ds], [αt]

∣∣∣∣ω) .
Proof. Eq. (2.3) is a specialized form of a much more general result in [26, Vol. II, §9.1,
Eq. (27)]. �

Lemma 2.3 ( Wimp [34]; see also Wimp [35, App. C]; or Luke [26, Vol. II, §12.4]). Let β,
µ, [φP ], [ψQ] be such that none of the quantities β + 1, φi, ψj and µ are negative integers or
zero. Let w ∈ C \ {0} and let φi = β + 1 for i = P + 1. Then the functions

(2.4) Uk(w) =
(φP )k

(k + µ)k(ψQ)k
wk P+1FQ+1

(
[k + φP+1]

2k + µ+ 1, [k + ψQ]

∣∣∣∣w) (k ≥ 0),

satisfy the difference equation

(2.5)
θ+1∑
m=0

{Am(k; θ + 1)w +Bm(k; θ + 1)}Uk+m(w) = 0,

where θ := max(P,Q+ 1),

A0(k; R) ≡1,(2.6)

Am(k; R) =(−1)m
(2k + µ)m(k + β + 1)m

m!(k + µ)m
(2.7)

× P+3FP+2

(
−m, 2k + µ+m, [k + φP+1 + 1]

2k + µ+R+ 1, [k + φP+1]

∣∣∣∣1) (1 ≤ m ≤ R),
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B0(k, R) =BR(k, R) ≡ 0,(2.8)

Bm(k; R) =(−1)m
(2k + µ)m+1(k + β + 1)m[k + ψQ]

(m− 1)!(k + µ)m[k + φP+1]
(2.9)

× Q+2FQ+1

(
1−m, 2k + µ+m+ 1, [k + ψQ + 1]

2k + µ+R+ 1, [k + ψQ]

∣∣∣∣1) (1 ≤ m ≤ R).

Functions Uk(w) do not satisfy any other difference equation of type (2.5), with Am and Bm
independent of w, of order ≤ θ + 1.

In the special case of P = Q+1 and w = 1, the above result can be refined in the following
sense.

Lemma 2.4 (Lewanowicz [15]). Functions

(2.10) Uk(1) =
(φQ+1)k

(k + µ)k(ψQ)k
Q+2FQ+1

(
[k + φQ+2]

2k + µ+ 1, [k + ψQ]

∣∣∣∣1)
satisfy the difference equation

(2.11)
θ∑

m=0

{Am(k; θ) +Bm(k; θ)}Uk+m(1) = 0,

of order θ := Q+ 1, notation being that of (2.7)-(2.9).

We have the following confluent version of the result given in Lemma 2.3.

Lemma 2.5. Let β, [φP ], [ψQ] be such that none of the quantities β + 1, φi, ψj and µ are
negative integers or zero. Let w ∈ C\{0} and let φi = β+1 for i = P +1. Then the functions

(2.12) Vk(w) =
(φP )k
(ψQ)k

wk P+1FQ

(
[k + φP+1]
[k + ψQ]

∣∣∣∣w) (k ≥ 0),

satisfy the difference equation

(2.13)
ϑ∑

m=0

{Cm(k)w +Dm(k)}Vk+m(w) = 0,

where ϑ := max(P,Q) + 1, C0(k) ≡ 1, D0(k) ≡ 0, and

Cm(k) =(−1)m
(k + β + 1)m

m!
P+2FP+1

(
−m, [k + φP+1 + 1]

[k + φP+1]

∣∣∣∣1) ,(2.14)

Dm(k) =(−1)m
(k + β + 1)m(k + ψQ)

(m− 1)!(k + φP+1)
Q+1FQ

(
1−m, [k + ψQ + 1]

[k + ψQ]

∣∣∣∣1)(2.15)

for m = 1, 2, . . . , ϑ.

Proof. Replacing in (2.5) w by µw and passing to the limit with µ→∞, and making use of
the confluence principle

lim
µ→∞ P+1FQ+1

(
[k + φP+1]

[k + ψQ], 2k + µ+ 1

∣∣∣∣µw) = P+1FQ

(
[k + φP+1]
[k + ψQ]

∣∣∣∣w)
(see [26, Vol. I, §3.5]), we obtain the equation

θ+1∑
m=0

{Cm(k)w +Dm(k)}Vk+m(w) = 0,
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with θ = max(P,Q+ 1).
If P > Q then θ = P , and by [26, Vol.I, Eqs. 2.9(14), (15)] Cθ+1(k) 6≡ 0, Dθ+1(k) ≡ 0.
If P ≤ Q then θ = Q + 1, and by the above-cited equations Cθ+1(k) = Dθ+1(k) ≡ 0,

Dθ(k) 6≡ 0. Hence the result. �

In the special case of P = Q and w = 1, the above result can be refined in the following
sense.

Lemma 2.6. The functions

(2.16) Vk(1) =
(φQ+1)k
(ψQ)k

Q+1FQ

(
[k + φQ+1]
[k + ψQ]

∣∣∣∣1) (k ≥ 0)

satisfy the difference equation

(2.17)

Q∑
m=0

{Cm(k) +Dm(k)}Vk+m(w) = 0,

notation being that of (2.14)-(2.15) with P = Q.

Proof. In Lemma 2.5, let P := Q and w := 1. It suffices to show that the last term of the
sum in (2.13) vanishes, so that the order of the difference equation reduces to Q.

Indeed, using [26, Vol. I, Eq. 2.9(14)], we obtain

CQ+1 =
(k + β + 1)Q+1

[k + φQ+1]
= −DQ+1.

�

3. Classical polynomials orthogonal on an interval

Let {Pk(x)} and {Qk(x)} be two systems of the classical orthogonal polynomials, i. e.
associated with the names of Jacobi, Laguerre, Hermite and Bessel. Let us look for the
coefficients an,k in

(3.1) Qn(c x) =
n∑
k=0

an,k(c)Pk(x) (c 6= 0),

slightly generalizing equation (1.1).
The following hypergeometric series representation of these polynomials is well known:

P (α,β)
n (x) =(−1)n

(
n+ β

n

)
2F1

(
−n, n+ α+ β + 1

β + 1

∣∣∣∣1 + x

2

)
,(3.2)

Lαn(x) =(α+ 1)n(−1)n 1F1

(
−n
α+ 1

∣∣∣∣x) ,(3.3)

Hn(x) =(2x)n 2F0

(
−n/2, −n/2 + 1/2

—

∣∣∣∣− 1

x2

)
,(3.4)

Y α
n (x) = 2F0

(
−n, n+ α+ 1

—

∣∣∣∣−x2
)
.(3.5)

Shifted Jacobi polynomials are given by

(3.6) R(α,β)
n (x) = P (α,β)

n (2x− 1).
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3.1. Explicit forms for the connection coefficients. The above results allow to obtain
connection formulae between classical orthogonal polynomials. For instance, the following
expansions hold:


Y β
n (c x) =

n∑
k=0

aBBn,k (c)Y α
k (x),

aBBn,k (c) =

(
n

k

)
(n+ β + 1)k
(k + α+ 1)k

ck 2F1

(
k − n, k + n+ β + 1

2k + α+ 2

∣∣∣∣c
)

;

(3.7)


Lγn(c x) =

n∑
k=0

aLLn,k(c)L
α
k (x),

aLLn,k(c) = (−1)n(γ + 1)n

(
n

k

)
(−c)k

(γ + 1)k
2F1

(
k − n, k + α+ 1

k + γ + 1

∣∣∣∣c
)

;

(3.8)


Lγn(c x) =

n∑
k=0

aLBn,k(c)Y α
k (x),

aLBn,k(c) = (−1)n(γ + 1)n

(
n

k

)
(α+ 1)k(−2c)k

(γ + 1)k
1F1

(
k − n

k + γ + 1

∣∣∣∣−2c

)
;

(3.9)



Y γ
n (cx) =

n∑
k=0

aBJn,k(c)R
(α,β)
k (x),

aBJn,k(c) =
(−n)k(n+ γ + 1)k
(k + α+ β + 1)k

(
− c

2

)k
× 3F1

(
k + β + 1, k − n, k + n+ γ + 1

2k + α+ β + 2

∣∣∣∣− c2
)
.

(3.10)



R
(γ,δ)
n (c x) =

n∑
k=0

aJBn,k(c)Y
α
k (x),

aJBn,k(c) = (−1)n
(
n

k

)
(k + δ + 1)n−k(n+ γ + δ + 1)k

n!(k + α+ 1)k
(−2c)k

× 2F2

(
k − n, k + n+ γ + δ + 1

2k + α+ 2, k + δ + 1

∣∣∣∣−2c

)
;

(3.11)



P
(γ,δ)
n (x) =

n∑
k=0

aJJn,kP
(α,β)
k (x),

aJJn,k = (−1)n
(
n+ δ

n

)
(−n)k(n+ γ + δ + 1)k

(δ + 1)k(k + α+ β + 1)k

× 3F2

(
k − n, k + β + 1, k + n+ γ + δ + 1

2k + α+ β + 2, k + δ + 1

∣∣∣∣1
)

;

(3.12)
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For instance, let us prove (3.12). We use Lemma 2.1. After the following identification of
the parameters

p = q = t = 1, r = s = u = 0,

[ap] = {n+ γ + δ + 1}, [bq] = {δ + 1}, [cr] = [ds] = ∅,

[αt] = {β + 1}, [βu] = ∅, z = 1, ω =
1 + x

2

in equation (2.2), we obtain the formula

2F1

(
−n, n+ µ
δ + 1

∣∣∣∣ 1 + x

2

)
=

n∑
k=0

(
n

k

)
(β + 1)k(n+ µ)k
(k + λ)k(δ + 1)k

× 3F2

(
k − n, k + β + 1, k + n+ µ

2k + λ+ 1, k + δ + 1

∣∣∣∣1) 2F1

(
−k, k + λ
β + 1

∣∣∣∣1 + x

2

)
with λ := α+ β + 1 and µ := γ + δ + 1. Hence the result.

The proof of the remaining formulae is similar.

3.2. Recurrence relations for the connection coefficients. On applying Lemmata 2.3-
2.6, one can easily obtain a recurrence relation of the form

(3.13)
r∑
i=0

Ai(k)an,k+i(c) = 0

for the connection coefficients in (3.1). Table 1 contains the values of the order r of this
recurrence relation for many pairs of the classical families.

Table 1. The order r of the recurrence relation (3.13)

Pk(x)

Qn(cx) Lαk (x) R
(α,β)
k (x) Y α

k (x)

Lγn(cx)
2 (general case)

1 (c = 1)
3 2

R
(γ,δ)
n (cx) 3

3 (general case)

2 (c = 1 ∨ β = δ)

1 (c = 1 ∧ β = δ)

3

Y γ
n (cx) 3 3

2 (general case)

1 (c = 1)
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4. Classical orthogonal polynomials of a discrete variable

Now, let {Pk(x)} and {Qk(x)} be two systems of the classical orthogonal polynomials of
a discrete variable, i. e. associated with the names of Charlier, Maeixner, Krawtchouk and
Hahn. Let us look for the coefficients an,k in

(4.1) Qn(x) =

n∑
k=0

an,kPk(x).

The following hypergeometric series representations of the classical polynomials are well
known:

Qn(x;α, β,N)(x) = 3F2

(
−n, −x, n+ α+ β + 1

α+ 1, −N

∣∣∣∣1) ,(4.2)

m(γ,µ)
n (x) =(γ)n 2F1

(
−n, −x

γ

∣∣∣∣1− 1

µ

)
,(4.3)

k(p)
n (x,N) =(−p)n

(
N

n

)
2F1

(
−n, −x
−N

∣∣∣∣−1

p

)
,(4.4)

c(µ)
n (x) = 2F0

(
−n, −x

—

∣∣∣∣− 1

µ

)
.(4.5)

4.1. Explicit forms for the connection coefficients. As in the ”continuous” case, we
can very easily obtain connection formulae between classical orthogonal polynomials. For
instance, the following expansions hold:

Qn(x;α, β,N)(x) =
n∑
k=0

aHMn,k m
(γ,µ)
n (x),

aHMn,k =

(
n

k

)
(n+ α+ β + 1)k
(1−N)k(β + 1)k

(
µ

µ− 1

)k
× 3F2

(
k + γ, k − n, k + n+ α+ β + 1

k + β + 1, k + 1−N

∣∣∣∣ µ

µ− 1

)
;

(4.6)


c

(µ)
n (x) =

n∑
k=0

aCHn,k Qk(x;α, β,N)(x),

aCHn,k =

(
n

k

)
(1−N)k(β + 1)k

(k + α+ β + 1)k(−µ)k
3F1

(
k + β + 1, k + 1−N, k − n

2k + α+ β + 2

∣∣∣∣− 1

µ

)
;

(4.7)


m

(γ,µ)
n (x) =

n∑
k=0

aMM
n,k (c)m

(α,β)
k (x),

aMM
n,k =

(
n

k

)
(γ)n
(γ)k

[
β(µ− 1)

µ(β − 1)

]k
2F1

(
k + α, k − n

k + γ

∣∣∣∣β(µ− 1)

µ(β − 1)

)(4.8)

4.2. Recurrence relations for the connection coefficients. On applying Lemmata 2.3-
2.5, one can easily obtain a recurrence relation of the form

(4.9)

r∑
i=0

Ai(k)an,k+i = 0
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for the connection coefficients in (4.1). Table 2 contains the value of the order r of this
recurrence relation for all the pairs of the classical families.

Table 2. The order r of the recurrence relation (4.9)

Pk(x)

Qn(x) c
(µ)
k (x) m

(γ,µ)
k (x) k

(p)
k (x,N) Qk(x;α, β,N)

c
(ν)
n (x) 1 2 2 3

m
(δ,ν)
n (x) 2

2 (general case)

1 (δ = γ ∨ ν = µ)
2

3 (general case)

2 (δ = β + 1)

k
(q)
n (x,M) 2 2

2 (general case)

1 (q = p ∨M = N)

3 (general case)

2 (M = N + 1)

Qn(x; η, θ,M) 3
3 (general case)

2 (γ = η + 1)

3 (general case)

2 (M = N + 1)

3 (general case)

2 (M = N)

1 (M = N ∧ η = α)
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