

THE HYPERGEOMETRIC FUNCTIONS APPROACH TO THE CONNECTION PROBLEM FOR THE CLASSICAL ORTHOGONAL POLYNOMIALS

STANISŁAW LEWANOWICZ

ABSTRACT. Let $\{P_k\}$ and Q_k be any two sequences of classical orthogonal polynomials. Using theorems of the theory of generalized hypergeometric functions, we give closed-form expressions as well as recurrence relations for the coefficients $a_{n,k}$ in the connection equation $Q_n = \sum_{k=0}^n a_{n,k} P_k$ ($n \in \mathbb{N}$).

1. INTRODUCTION

Let $\{P_k(x)\}$ and $\{Q_k(x)\}$ be two systems of the classical orthogonal polynomials, i. e. associated with the names of Jacobi, Laguerre, Hermite and Bessel. We are looking for the coefficients $a_{n,k}$ in

$$(1.1) \quad Q_n = \sum_{k=0}^n a_{n,k} P_k,$$

called *connection coefficients*. An analogous problem is formulated for $\{P_k(x)\}$ and $\{Q_k(x)\}$ being systems of the classical orthogonal polynomials of a discrete variable, i. e. associated with the names of Charlier, Meixner, Krawtchouk and Hahn.

Two type of results are met in a vast literature of this subject: closed-type formulae, or recurrence relations (usually in k) for $a_{n,k}$ (see [2]–[5], [10], [11], [13], [14], [16]–[25], [29]–[33], [36]).

In the present paper, we show that both types of information on $a_{n,k}$ may be obtained using theorems of the theory of generalized hypergeometric functions.

2. SOME RESULTS ON GENERALIZED HYPERGEOMETRIC FUNCTIONS

Throughout this section, the letters p, q, r, s, t, u and n stand for non-negative integers. We shall use the Pochhammer's symbol

$$(\alpha)_k = \Gamma(k + \alpha)/\Gamma(\alpha).$$

The definition for the generalized hypergeometric function is

$$(2.1) \quad {}_pF_q \left(\begin{bmatrix} a_p \\ b_q \end{bmatrix} \mid x \right) = \sum_{k=0}^{\infty} \frac{(a_p)_k x^k}{(b_q)_k k!}$$

where the symbols $[a_p]$ and $[b_q]$ denote sets a_1, a_2, \dots, a_p and b_1, b_2, \dots, b_q of complex parameters, respectively, such that $-b_j \notin \mathbb{N}_0$ and $a_i \neq b_j$ for $1 \leq i \leq p$ and $1 \leq j \leq q$, and where

the above contracted notation will be used throughout the paper

$$f(a_p) = \prod_{i=1}^p f(a_i), \quad f(b_q) = \prod_{j=1}^q f(b_j),$$

f being a given function.

Lemma 2.1.

(2.2)

$$\begin{aligned} {}_{p+r+1}F_{q+s} \left(\begin{matrix} -n, [a_p], [c_r] \\ [b_q], [d_s] \end{matrix} \middle| z\omega \right) &= \sum_{k=0}^n \binom{n}{k} \frac{(a_p)_k (\alpha_t)_k z^k}{(b_q)_k (\beta_u)_k (k+\lambda)_k} \\ &\times {}_{p+t+1}F_{q+u+1} \left(\begin{matrix} k-n, [k+a_p], [k+\alpha_t] \\ 2k+\lambda+1, [k+b_q], [k+\beta_u] \end{matrix} \middle| z \right) {}_{r+u+2}F_{s+t} \left(\begin{matrix} -k, k+\lambda, [c_r], [\beta_u] \\ [d_s], [\alpha_t] \end{matrix} \middle| \omega \right). \end{aligned}$$

Proof. Eq. (2.2) is a specialized form of a much more general result in [26, Vol. II, §9.1, Eq. (13)]. \square

Lemma 2.2.

$$\begin{aligned} (2.3) \quad {}_{p+r+1}F_{q+s} \left(\begin{matrix} -n, [a_p], [c_r] \\ [b_q], [d_s] \end{matrix} \middle| z\omega \right) &= \sum_{k=0}^n \binom{n}{k} \frac{(a_p)_k (\alpha_t)_k z^k}{(b_q)_k (\beta_u)_k} \\ &\times {}_{p+t+1}F_{q+u} \left(\begin{matrix} k-n, [k+a_p], [k+\alpha_t] \\ [k+b_q], [k+\beta_u] \end{matrix} \middle| z \right) {}_{r+u+1}F_{s+t} \left(\begin{matrix} -k, [c_r], [\beta_u] \\ [d_s], [\alpha_t] \end{matrix} \middle| \omega \right). \end{aligned}$$

Proof. Eq. (2.3) is a specialized form of a much more general result in [26, Vol. II, §9.1, Eq. (27)]. \square

Lemma 2.3 (Wimp [34]; see also Wimp [35, App. C]; or Luke [26, Vol. II, §12.4]). *Let $\beta, \mu, [\phi_P], [\psi_Q]$ be such that none of the quantities $\beta+1, \phi_i, \psi_j$ and μ are negative integers or zero. Let $w \in \mathbb{C} \setminus \{0\}$ and let $\phi_i = \beta+1$ for $i = P+1$. Then the functions*

$$(2.4) \quad U_k(w) = \frac{(\phi_P)_k}{(k+\mu)_k (\psi_Q)_k} w^k {}_{P+1}F_{Q+1} \left(\begin{matrix} [k+\phi_{P+1}] \\ 2k+\mu+1, [k+\psi_Q] \end{matrix} \middle| w \right) \quad (k \geq 0),$$

satisfy the difference equation

$$(2.5) \quad \sum_{m=0}^{\theta+1} \{A_m(k; \theta+1)w + B_m(k; \theta+1)\} U_{k+m}(w) = 0,$$

where $\theta := \max(P, Q+1)$,

$$(2.6) \quad A_0(k; R) \equiv 1,$$

$$\begin{aligned} (2.7) \quad A_m(k; R) &= (-1)^m \frac{(2k+\mu)_m (k+\beta+1)_m}{m! (k+\mu)_m} \\ &\times {}_{P+3}F_{P+2} \left(\begin{matrix} -m, 2k+\mu+m, [k+\phi_{P+1}+1] \\ 2k+\mu+R+1, [k+\phi_{P+1}] \end{matrix} \middle| 1 \right) \quad (1 \leq m \leq R), \end{aligned}$$

$$(2.8) \quad B_0(k, R) = B_R(k, R) \equiv 0,$$

$$(2.9) \quad B_m(k; R) = (-1)^m \frac{(2k + \mu)_{m+1} (k + \beta + 1)_m [k + \psi_Q]}{(m-1)! (k + \mu)_m [k + \phi_{P+1}]} \\ \times {}_{Q+2}F_{Q+1} \left(\begin{matrix} 1-m, 2k + \mu + m + 1, [k + \psi_Q + 1] \\ 2k + \mu + R + 1, [k + \psi_Q] \end{matrix} \middle| 1 \right) \quad (1 \leq m \leq R).$$

Functions $U_k(w)$ do not satisfy any other difference equation of type (2.5), with A_m and B_m independent of w , of order $\leq \theta + 1$.

In the special case of $P = Q + 1$ and $w = 1$, the above result can be refined in the following sense.

Lemma 2.4 (Lewanowicz [15]). *Functions*

$$(2.10) \quad U_k(1) = \frac{(\phi_{Q+1})_k}{(k + \mu)_k (\psi_Q)_k} {}_{Q+2}F_{Q+1} \left(\begin{matrix} [k + \phi_{Q+2}] \\ 2k + \mu + 1, [k + \psi_Q] \end{matrix} \middle| 1 \right)$$

satisfy the difference equation

$$(2.11) \quad \sum_{m=0}^{\theta} \{A_m(k; \theta) + B_m(k; \theta)\} U_{k+m}(1) = 0,$$

of order $\theta := Q + 1$, notation being that of (2.7)-(2.9).

We have the following confluent version of the result given in Lemma 2.3.

Lemma 2.5. *Let $\beta, [\phi_P], [\psi_Q]$ be such that none of the quantities $\beta + 1, \phi_i, \psi_j$ and μ are negative integers or zero. Let $w \in \mathbb{C} \setminus \{0\}$ and let $\phi_i = \beta + 1$ for $i = P + 1$. Then the functions*

$$(2.12) \quad V_k(w) = \frac{(\phi_P)_k}{(\psi_Q)_k} w^k {}_{P+1}F_Q \left(\begin{matrix} [k + \phi_{P+1}] \\ [k + \psi_Q] \end{matrix} \middle| w \right) \quad (k \geq 0),$$

satisfy the difference equation

$$(2.13) \quad \sum_{m=0}^{\vartheta} \{C_m(k)w + D_m(k)\} V_{k+m}(w) = 0,$$

where $\vartheta := \max(P, Q) + 1$, $C_0(k) \equiv 1$, $D_0(k) \equiv 0$, and

$$(2.14) \quad C_m(k) = (-1)^m \frac{(k + \beta + 1)_m}{m!} {}_{P+2}F_{P+1} \left(\begin{matrix} -m, [k + \phi_{P+1} + 1] \\ [k + \phi_{P+1}] \end{matrix} \middle| 1 \right),$$

$$(2.15) \quad D_m(k) = (-1)^m \frac{(k + \beta + 1)_m (k + \psi_Q)}{(m-1)! (k + \phi_{P+1})} {}_{Q+1}F_Q \left(\begin{matrix} 1-m, [k + \psi_Q + 1] \\ [k + \psi_Q] \end{matrix} \middle| 1 \right)$$

for $m = 1, 2, \dots, \vartheta$.

Proof. Replacing in (2.5) w by μw and passing to the limit with $\mu \rightarrow \infty$, and making use of the confluence principle

$$\lim_{\mu \rightarrow \infty} {}_{P+1}F_{Q+1} \left(\begin{matrix} [k + \phi_{P+1}] \\ [k + \psi_Q], 2k + \mu + 1 \end{matrix} \middle| \mu w \right) = {}_{P+1}F_Q \left(\begin{matrix} [k + \phi_{P+1}] \\ [k + \psi_Q] \end{matrix} \middle| w \right)$$

(see [26, Vol. I, §3.5]), we obtain the equation

$$\sum_{m=0}^{\theta+1} \{C_m(k)w + D_m(k)\} V_{k+m}(w) = 0,$$

with $\theta = \max(P, Q + 1)$.

If $P > Q$ then $\theta = P$, and by [26, Vol.I, Eqs. 2.9(14), (15)] $C_{\theta+1}(k) \not\equiv 0$, $D_{\theta+1}(k) \equiv 0$.

If $P \leq Q$ then $\theta = Q + 1$, and by the above-cited equations $C_{\theta+1}(k) = D_{\theta+1}(k) \equiv 0$, $D_{\theta}(k) \not\equiv 0$. Hence the result. \square

In the special case of $P = Q$ and $w = 1$, the above result can be refined in the following sense.

Lemma 2.6. *The functions*

$$(2.16) \quad V_k(1) = \frac{(\phi_{Q+1})_k}{(\psi_Q)_k} {}_{Q+1}F_Q \left(\begin{matrix} [k + \phi_{Q+1}] \\ [k + \psi_Q] \end{matrix} \middle| 1 \right) \quad (k \geq 0)$$

satisfy the difference equation

$$(2.17) \quad \sum_{m=0}^Q \{C_m(k) + D_m(k)\} V_{k+m}(w) = 0,$$

notation being that of (2.14)-(2.15) with $P = Q$.

Proof. In Lemma 2.5, let $P := Q$ and $w := 1$. It suffices to show that the last term of the sum in (2.13) vanishes, so that the order of the difference equation reduces to Q .

Indeed, using [26, Vol. I, Eq. 2.9(14)], we obtain

$$C_{Q+1} = \frac{(k + \beta + 1)_{Q+1}}{[k + \phi_{Q+1}]} = -D_{Q+1}.$$

\square

3. CLASSICAL POLYNOMIALS ORTHOGONAL ON AN INTERVAL

Let $\{P_k(x)\}$ and $\{Q_k(x)\}$ be two systems of the classical orthogonal polynomials, i.e. associated with the names of Jacobi, Laguerre, Hermite and Bessel. Let us look for the coefficients $a_{n,k}$ in

$$(3.1) \quad Q_n(cx) = \sum_{k=0}^n a_{n,k}(c) P_k(x) \quad (c \neq 0),$$

slightly generalizing equation (1.1).

The following hypergeometric series representation of these polynomials is well known:

$$(3.2) \quad P_n^{(\alpha, \beta)}(x) = (-1)^n \binom{n + \beta}{n} {}_2F_1 \left(\begin{matrix} -n, n + \alpha + \beta + 1 \\ \beta + 1 \end{matrix} \middle| \frac{1+x}{2} \right),$$

$$(3.3) \quad L_n^\alpha(x) = (\alpha + 1)_n (-1)^n {}_1F_1 \left(\begin{matrix} -n \\ \alpha + 1 \end{matrix} \middle| x \right),$$

$$(3.4) \quad H_n(x) = (2x)^n {}_2F_0 \left(\begin{matrix} -n/2, -n/2 + 1/2 \\ - \end{matrix} \middle| -\frac{1}{x^2} \right),$$

$$(3.5) \quad Y_n^\alpha(x) = {}_2F_0 \left(\begin{matrix} -n, n + \alpha + 1 \\ - \end{matrix} \middle| -\frac{x}{2} \right).$$

Shifted Jacobi polynomials are given by

$$(3.6) \quad R_n^{(\alpha, \beta)}(x) = P_n^{(\alpha, \beta)}(2x - 1).$$

3.1. Explicit forms for the connection coefficients. The above results allow to obtain connection formulae between classical orthogonal polynomials. For instance, the following expansions hold:

$$(3.7) \quad \begin{cases} Y_n^\beta(cx) = \sum_{k=0}^n a_{n,k}^{BB}(c) Y_k^\alpha(x), \\ a_{n,k}^{BB}(c) = \binom{n}{k} \frac{(n+\beta+1)_k}{(k+\alpha+1)_k} c^k {}_2F_1 \left(\begin{matrix} k-n, k+n+\beta+1 \\ 2k+\alpha+2 \end{matrix} \middle| c \right); \end{cases}$$

$$(3.8) \quad \begin{cases} L_n^\gamma(cx) = \sum_{k=0}^n a_{n,k}^{LL}(c) L_k^\alpha(x), \\ a_{n,k}^{LL}(c) = (-1)^n (\gamma+1)_n \binom{n}{k} \frac{(-c)^k}{(\gamma+1)_k} {}_2F_1 \left(\begin{matrix} k-n, k+\alpha+1 \\ k+\gamma+1 \end{matrix} \middle| c \right); \end{cases}$$

$$(3.9) \quad \begin{cases} L_n^\gamma(cx) = \sum_{k=0}^n a_{n,k}^{LB}(c) Y_k^\alpha(x), \\ a_{n,k}^{LB}(c) = (-1)^n (\gamma+1)_n \binom{n}{k} \frac{(\alpha+1)_k (-2c)^k}{(\gamma+1)_k} {}_1F_1 \left(\begin{matrix} k-n \\ k+\gamma+1 \end{matrix} \middle| -2c \right); \end{cases}$$

$$(3.10) \quad \begin{cases} Y_n^\gamma(cx) = \sum_{k=0}^n a_{n,k}^{BJ}(c) R_k^{(\alpha,\beta)}(x), \\ a_{n,k}^{BJ}(c) = \frac{(-n)_k (n+\gamma+1)_k}{(k+\alpha+\beta+1)_k} \left(-\frac{c}{2}\right)^k \\ \quad \times {}_3F_1 \left(\begin{matrix} k+\beta+1, k-n, k+n+\gamma+1 \\ 2k+\alpha+\beta+2 \end{matrix} \middle| -\frac{c}{2} \right). \end{cases}$$

$$(3.11) \quad \begin{cases} R_n^{(\gamma,\delta)}(cx) = \sum_{k=0}^n a_{n,k}^{JB}(c) Y_k^\alpha(x), \\ a_{n,k}^{JB}(c) = (-1)^n \binom{n}{k} \frac{(k+\delta+1)_{n-k} (n+\gamma+\delta+1)_k}{n! (k+\alpha+1)_k} (-2c)^k \\ \quad \times {}_2F_2 \left(\begin{matrix} k-n, k+n+\gamma+\delta+1 \\ 2k+\alpha+2, k+\delta+1 \end{matrix} \middle| -2c \right); \end{cases}$$

$$(3.12) \quad \begin{cases} P_n^{(\gamma,\delta)}(x) = \sum_{k=0}^n a_{n,k}^{JJ} P_k^{(\alpha,\beta)}(x), \\ a_{n,k}^{JJ} = (-1)^n \binom{n+\delta}{n} \frac{(-n)_k (n+\gamma+\delta+1)_k}{(\delta+1)_k (k+\alpha+\beta+1)_k} \\ \quad \times {}_3F_2 \left(\begin{matrix} k-n, k+\beta+1, k+n+\gamma+\delta+1 \\ 2k+\alpha+\beta+2, k+\delta+1 \end{matrix} \middle| 1 \right); \end{cases}$$

For instance, let us prove (3.12). We use Lemma 2.1. After the following identification of the parameters

$$\begin{aligned} p = q = t = 1, \quad r = s = u = 0, \\ [a_p] = \{n + \gamma + \delta + 1\}, \quad [b_q] = \{\delta + 1\}, \quad [c_r] = [d_s] = \emptyset, \\ [\alpha_t] = \{\beta + 1\}, \quad [\beta_u] = \emptyset, \quad z = 1, \quad \omega = \frac{1+x}{2} \end{aligned}$$

in equation (2.2), we obtain the formula

$$\begin{aligned} {}_2F_1 \left(\begin{matrix} -n, n + \mu \\ \delta + 1 \end{matrix} \middle| \frac{1+x}{2} \right) &= \sum_{k=0}^n \binom{n}{k} \frac{(\beta + 1)_k (n + \mu)_k}{(k + \lambda)_k (\delta + 1)_k} \\ &\times {}_3F_2 \left(\begin{matrix} k - n, k + \beta + 1, k + n + \mu \\ 2k + \lambda + 1, k + \delta + 1 \end{matrix} \middle| 1 \right) {}_2F_1 \left(\begin{matrix} -k, k + \lambda \\ \beta + 1 \end{matrix} \middle| \frac{1+x}{2} \right) \end{aligned}$$

with $\lambda := \alpha + \beta + 1$ and $\mu := \gamma + \delta + 1$. Hence the result.

The proof of the remaining formulae is similar.

3.2. Recurrence relations for the connection coefficients. On applying Lemmata 2.3-2.6, one can easily obtain a recurrence relation of the form

$$(3.13) \quad \sum_{i=0}^r A_i(k) a_{n,k+i}(c) = 0$$

for the connection coefficients in (3.1). Table 1 contains the values of the order r of this recurrence relation for many pairs of the classical families.

TABLE 1. The order r of the recurrence relation (3.13)

$Q_n(cx)$	$P_k(x)$		
	$L_k^\alpha(x)$	$R_k^{(\alpha,\beta)}(x)$	$Y_k^\alpha(x)$
$L_n^\gamma(cx)$	2 (general case) 1 ($c = 1$)	3	2
$R_n^{(\gamma,\delta)}(cx)$	3	3 (general case) 2 ($c = 1 \vee \beta = \delta$) 1 ($c = 1 \wedge \beta = \delta$)	3
$Y_n^\gamma(cx)$	3	3	2 (general case) 1 ($c = 1$)

4. CLASSICAL ORTHOGONAL POLYNOMIALS OF A DISCRETE VARIABLE

Now, let $\{P_k(x)\}$ and $\{Q_k(x)\}$ be two systems of the classical orthogonal polynomials of a discrete variable, i.e. associated with the names of Charlier, Maeixner, Krawtchouk and Hahn. Let us look for the coefficients $a_{n,k}$ in

$$(4.1) \quad Q_n(x) = \sum_{k=0}^n a_{n,k} P_k(x).$$

The following hypergeometric series representations of the classical polynomials are well known:

$$(4.2) \quad Q_n(x; \alpha, \beta, N)(x) = {}_3F_2 \left(\begin{matrix} -n, -x, n + \alpha + \beta + 1 \\ \alpha + 1, -N \end{matrix} \middle| 1 \right),$$

$$(4.3) \quad m_n^{(\gamma, \mu)}(x) = (\gamma)_n {}_2F_1 \left(\begin{matrix} -n, -x \\ \gamma \end{matrix} \middle| 1 - \frac{1}{\mu} \right),$$

$$(4.4) \quad k_n^{(p)}(x, N) = (-p)^n \binom{N}{n} {}_2F_1 \left(\begin{matrix} -n, -x \\ -N \end{matrix} \middle| -\frac{1}{p} \right),$$

$$(4.5) \quad c_n^{(\mu)}(x) = {}_2F_0 \left(\begin{matrix} -n, -x \\ - \end{matrix} \middle| -\frac{1}{\mu} \right).$$

4.1. Explicit forms for the connection coefficients. As in the "continuous" case, we can very easily obtain connection formulae between classical orthogonal polynomials. For instance, the following expansions hold:

$$(4.6) \quad \begin{cases} Q_n(x; \alpha, \beta, N)(x) = \sum_{k=0}^n a_{n,k}^{HM} m_n^{(\gamma, \mu)}(x), \\ a_{n,k}^{HM} = \binom{n}{k} \frac{(n + \alpha + \beta + 1)_k}{(1 - N)_k (\beta + 1)_k} \left(\frac{\mu}{\mu - 1} \right)^k \\ \times {}_3F_2 \left(\begin{matrix} k + \gamma, k - n, k + n + \alpha + \beta + 1 \\ k + \beta + 1, k + 1 - N \end{matrix} \middle| \frac{\mu}{\mu - 1} \right); \end{cases}$$

$$(4.7) \quad \begin{cases} c_n^{(\mu)}(x) = \sum_{k=0}^n a_{n,k}^{CH} Q_k(x; \alpha, \beta, N)(x), \\ a_{n,k}^{CH} = \binom{n}{k} \frac{(1 - N)_k (\beta + 1)_k}{(k + \alpha + \beta + 1)_k (-\mu)^k} {}_3F_1 \left(\begin{matrix} k + \beta + 1, k + 1 - N, k - n \\ 2k + \alpha + \beta + 2 \end{matrix} \middle| -\frac{1}{\mu} \right); \end{cases}$$

$$(4.8) \quad \begin{cases} m_n^{(\gamma, \mu)}(x) = \sum_{k=0}^n a_{n,k}^{MM} (c) m_k^{(\alpha, \beta)}(x), \\ a_{n,k}^{MM} = \binom{n}{k} \frac{(\gamma)_n}{(\gamma)_k} \left[\frac{\beta(\mu - 1)}{\mu(\beta - 1)} \right]^k {}_2F_1 \left(\begin{matrix} k + \alpha, k - n \\ k + \gamma \end{matrix} \middle| \frac{\beta(\mu - 1)}{\mu(\beta - 1)} \right) \end{cases}$$

4.2. Recurrence relations for the connection coefficients. On applying Lemmata 2.3-2.5, one can easily obtain a recurrence relation of the form

$$(4.9) \quad \sum_{i=0}^r A_i(k) a_{n,k+i} = 0$$

for the connection coefficients in (4.1). Table 2 contains the value of the order r of this recurrence relation for all the pairs of the classical families.

TABLE 2. The order r of the recurrence relation (4.9)

$Q_n(x)$	$P_k(x)$			
	$c_k^{(\mu)}(x)$	$m_k^{(\gamma, \mu)}(x)$	$k_k^{(p)}(x, N)$	$Q_k(x; \alpha, \beta, N)$
$c_n^{(\nu)}(x)$	1	2	2	3
$m_n^{(\delta, \nu)}(x)$	2	2 (general case) 1 ($\delta = \gamma \vee \nu = \mu$)	2	3 (general case) 2 ($\delta = \beta + 1$)
$k_n^{(q)}(x, M)$	2	2	2 (general case) 1 ($q = p \vee M = N$)	3 (general case) 2 ($M = N + 1$)
$Q_n(x; \eta, \theta, M)$	3	3 (general case) 2 ($\gamma = \eta + 1$)	3 (general case) 2 ($M = N + 1$)	3 (general case) 2 ($M = N$) 1 ($M = N \wedge \eta = \alpha$)

REFERENCES

- [1] W. A. Al-Salam, The Bessel polynomials, *Duke Math. J.* **24** (1957), 529–546.
- [2] R. Álvarez-Nodarse, R. Yáñez and J. S. Dehesa, Modified Clebsch-Gordan-type expansions for products of discrete hypergeometric polynomials, *J. Comput. Appl. Math.* **89** (1998), 171–197.
- [3] I. Area, E. Godoy, A. Ronveaux and A. Zarzo, Minimal recurrence relations for connection coefficients between classical orthogonal polynomials: discrete case, *J. Comput. Appl. Math.* **87** (1997), 321–337.
- [4] P. L. Artés, J. S. Dehesa, A. Martinez-Finkenstein and J. Sánchez-Ruiz, Modified Clebsch-Gordan-type expansions for products of continuous hypergeometric polynomials, *J. Comput. Appl. Math.* **89** (1998), 171–190.
- [5] P. L. Artés, J. S. Dehesa, A. Martinez-Finkenstein and J. Sánchez-Ruiz, Linearization and connection coefficients for hypergeometric-type polynomials, *J. Comput. Appl. Math.* **99** (1998), 15–26.
- [6] R. Askey, *Orthogonal Polynomials and Special Functions*, Regional Conf. Ser. Appl. Math. **21** (SIAM, Philadelphia, PA, 1975).
- [7] R. Askey and G. Gasper, Jacobi polynomial expansions of Jacobi polynomials with non-negative coefficients, *Proc. Cambridge Phil. Soc.* **70** (1971), 243–255.
- [8] B. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan and S. M. Watt, *Maple V Language Reference Manual*, Springer-Verlag, New York, 1991.
- [9] T. S. Chihara, *An Introduction to Orthogonal Polynomials* (Gordon and Breach, New York, 1978).
- [10] G. Gasper, Projection formulas for orthogonal polynomials of a discrete variable, *J. Math. Anal. Appl.* **45** (1974) 176–198.
- [11] E. Godoy, A. Ronveaux, A. Zarzo and I. Area, Minimal recurrence relations for connection coefficients between classical orthogonal polynomials: continuous case, *J. Comput. Appl. Math.* **84** (1997) 257–275.
- [12] E. Grosswald, *Bessel Polynomials*, Lect. Notes Math., vol. 698, Springer, Berlin, 1978.
- [13] W. Koepf and D. Schmersau, Algorithms for classical orthogonal polynomials, Konrad-Zuse-Zentrum Berlin, Preprint SC 96-23, September 1996.
- [14] W. Koepf and D. Schmersau, Representations of orthogonal polynomials, Konrad-Zuse-Zentrum Berlin, Preprint SC 97-06, February 1997.
- [15] S. Lewanowicz, Recurrence relations for hypergeometric functions of unit argument, *Mathematics of Computation* **45** (1985), 521–535. Errata *ibid.* **48** (1987), 853.
- [16] S. Lewanowicz, A new approach to the problem of constructing recurrence relations for the Jacobi coefficients, *Zastos. Mat.* **21** (1991), 303–326.
- [17] S. Lewanowicz, Quick construction of recurrence relations for the Jacobi coefficients, *J. Comput. Appl. Math.* **43** (1992), 355–372.
- [18] S. Lewanowicz, Results on the associated Jacobi and Gegenbauer polynomials, *J. Comput. Appl. Math.* **49** (1993), 137–143.
- [19] S. Lewanowicz, Results on the associated classical orthogonal polynomials, *J. Comput. Appl. Math.* **65** (1995), 215–231.
- [20] S. Lewanowicz, Recurrence relations for the connection coefficients of the orthogonal polynomials of a discrete variable, *J. Comput. Appl. Math.* **76** (1996), 213–229.
- [21] S. Lewanowicz, Second-order recurrence relation for the linearization coefficients of the classical orthogonal polynomials, *J. Comput. Appl. Math.* **69** (1996), 159–170.
- [22] S. Lewanowicz, Recurrences for the coefficients of series expansions with respect to classical orthogonal polynomials, *Appl. Math.* **29** (2002), 97–116.
- [23] S. Lewanowicz, Representations for the parameter derivatives of the classical orthogonal polynomials, *Rendiconti del Circolo Matematico di Palermo*, Ser. II, Suppl. **68** (2002), 599–613.
- [24] S. Lewanowicz and J. Witkowski, Construction of recurrence relations for the Jacobi coefficients, using Maple, Techn. Rep., Inst. Comput. Sci., Univ. of Wrocław, Febr. 1995.
See URL <http://www.ii.uni.wroc.pl/~sle/publ.html>.

- [25] S. Lewanowicz and P. Woźny, Algorithms for construction of recurrence relations for the coefficients of expansions in series of classical orthogonal polynomials, Techn. Rep., Inst. Comput. Sci., Univ. of Wrocław, Feb. 2001. See URL <http://www.ii.uni.wroc.pl/~sle/publ.html>.
- [26] Y. L. Luke, *The Special Functions and their Approximations*, Academic Press, New York, 1969.
- [27] A. F. Nikiforov and V. B. Uvarov, *Special Functions of Mathematical Physics* (Birkhäuser, Basel, 1988).
- [28] A. F. Nikiforov, S. K. Suslov and V. B. Uvarov, *Classical Orthogonal Polynomials of a Discrete Variable*, Springer-Verlag, Berlin, 1991.
- [29] A. Ronveaux, Orthogonal polynomials: connection and linearization coefficients, in: M. Alfaro et al. (Eds), Proc. Internat. Workshop Orthogonal Polynomials in Math. Phys., Leganés, 1996, pp. 131–142.
- [30] A. Ronveaux, I. Area, E. Godoy and A. Zarzo, Lectures on recursive approach to connection and linearization coefficients between polynomials. Introduction, in Proc. *Workshop on Special Functions and Differential Equations*, Madras, Jan. 13–24, 1997.
- [31] A. Ronveaux, S. Belmehdi, E. Godoy and A. Zarzo, Recurrence relations approach for connection coefficients – Applications to classical discrete orthogonal polynomials, in *Symmetries and Integrability of Difference Equations*, eds. D. Levi, L. Vinet and P. Winternitz, CRM Proceedings and Lecture Notes Series, vol. 9 (1996), AMS, Providence (RI), pp. 321–337.
- [32] A. Ronveaux, A. Zarzo and E. Godoy, Recurrence relation for connection coefficients between two families of orthogonal polynomials, *J. Comput. Appl. Math.* **62** (1995), 67–73.
- [33] J. Sánchez-Ruiz and J. S. Dehesa, Expansions in series of orthogonal hypergeometric polynomials, *J. Comput. Appl. Math.* **89** (1998), 155–170.
- [34] J. Wimp, Recursion formulae for hypergeometric functions, *Math. Comp.* **22** (1968), 363–373.
- [35] J. Wimp, *Computation with Recurrence relations*, Pitman, Boston, 1984.
- [36] P. Woźny, Recurrence relations for the coefficients of expansions in classical orthogonal polynomials of a discrete variable *Appl. Math.* **30** (2003), 89–107.

INSTITUTE OF COMPUTER SCIENCE, UNIVERSITY OF WROCŁAW

E-mail address: Stanisław.Lewanowicz@ii.uni.wroc.pl