GENERALIZED BERNSTEIN POLYNOMIALS*

STANISŁAW LEWANOWICZ[†], PAWEŁ WOŹNY

ABSTRACT. We introduce polynomials $B_i^n(x;\omega|q)$, depending on two parameters q and ω , which generalize classical Bernstein polynomials, discrete Bernstein polynomials defined by Sablonnière, as well as q-Bernstein polynomials introduced by Phillips. Basic properties of the new polynomials are given. Also, formulas relating $B_i^n(x;\omega|q)$, big q-Jacobi and q-Hahn (or dual q-Hahn) polynomials are presented.

AMS Subject Classification: 41A10, 65D17, 33D45.

Keywords: Generalized Bernstein polynomials, generalized Bézier form, generalized de Casteljau algorithm, degree elevation, big q-Jacobi polynomials, q-Hahn polynomials, dual q-Hahn polynomials, orthogonal polynomial expansion.

1. Introduction.

We define generalized Bernstein polynomials of degree $n \ (n \in \mathbb{N})$ by

(1.1)
$$B_i^n(x;\omega|q) := \frac{1}{(\omega;q)_n} \begin{bmatrix} n \\ i \end{bmatrix}_q x^i(\omega x^{-1};q)_i(x;q)_{n-i} \qquad (i=0,1,\ldots,n),$$

where q and ω are real parameters such that $q \neq 1$, and $\omega \neq 1, q^{-1}, \ldots, q^{1-n}$. Here we use the q-Pochhammer symbol defined for any $c \in \mathbb{C}$ by

$$(c; q)_0 := 1,$$
 $(c; q)_k := \prod_{j=0}^{k-1} (1 - c q^j)$ $(k \ge 1),$

and the q-binomial coefficient given by

$$\begin{bmatrix} n \\ i \end{bmatrix}_{q} := \frac{(q; q)_{n}}{(q; q)_{i} (q; q)_{n-i}}.$$

For convenience we shall always assume that $q \in (0, 1)$, unless it is otherwise stated. Alternative forms of the formula (1.1) are:

(1.2)
$$B_i^n(x;\omega|q) = \frac{1}{(\omega;q)_n} \begin{bmatrix} n \\ i \end{bmatrix}_q \prod_{j=0}^{i-1} (x - \omega q^j) \prod_{k=0}^{n-i-1} (1 - xq^k)$$

(1.3)
$$= q^{\binom{i}{2}} \frac{(-\omega)^i}{(\omega; q)_n} \begin{bmatrix} n \\ i \end{bmatrix}_q (\omega^{-1} q^{1-i} x; q)_i (x; q)_{n-i}.$$

Date: May 8, 2009.

^{*}Corrected and extended version of our paper [9].

[†]Corresponding author.

Notice that the classical Bernstein polynomials (see, e.g., [3, p. 66])

(1.4)
$$B_i^n(x) = \binom{n}{i} x^i (1-x)^{n-i} \qquad (0 \le i \le n),$$

the discrete Bernstein polynomials [14], [15]

$$(1.5) b_i^n(N,x) = \frac{1}{(-N)_n} \binom{n}{i} (-x)_i (x-N)_{n-i} (0 \le i \le n \le N; \ N \in \mathbb{N}),$$

where the Pochhammer symbol $(c)_k$ is defined for any $c \in \mathbb{C}$ by

$$(c)_0 := 1,$$
 $(c)_k := c(c+1)\cdots(c+k-1)$ $(k \ge 1),$

as well as the q-Bernstein polynomials

(1.6)
$$b_i^n(x;q) = \begin{bmatrix} n \\ i \end{bmatrix}_q x^i \ (x;q)_{n-i} \qquad (0 \le i \le n),$$

recently introduced by Phillips (see [10]–[12]), are limit or particular forms of the polynomials $B_i^n(x;\omega|q)$. Namely, we have

(1.7)
$$\lim_{q \uparrow 1} B_i^n(x; \omega | q) = B_i^n \left(\frac{x - \omega}{1 - \omega} \right),$$

(1.8)
$$\lim_{q \uparrow 1} B_i^n(q^{-x}; q^{-N} | q) = b_{n-i}^n(N, x),$$

(1.9)
$$B_i^n(x;0|q) = b_i^n(x;q).$$

There are several possible applications of the polynomials $B_i^n(x;\omega|q)$. First, we can approximate given function $f \in C[0, 1]$ by a two-parameter family of polynomials

$$\mathcal{B}_{n}^{\omega,q}(f;x) := \sum_{i=0}^{n} f\left(\frac{[i]_{q}}{[n]_{q}}\right) B_{i}^{n}(u;\omega|q) \qquad (u = \omega + (1-\omega)x; \ 0 \le q, \omega < 1),$$

where we use the notation (1.10). The linear operator mapping f to $\mathcal{B}_{n}^{\omega,q}(f;\cdot)$ is monotone; moreover, using an argument similar to the one used in [12], one can show that $\mathcal{B}_n^{\omega,q_n}(f;\cdot)$ converges uniformly to f on [0, 1], provided $0 < q_n < 1$ and $\lim_{n \to \infty} q_n = 1$. Second, one may define a parametric curve $P_n^{\omega,q}$ (generalized Bézier curve, say) by

$$P_n^{\omega,q}(t) = \sum_{i=0}^n W_i B_i^n(u; \omega | q) \qquad (u = \omega + (1 - \omega)t; \ 0 \le t \le 1),$$

where $W_i \in \mathbb{R}^d$ $(d \in \{1, 2, 3\}, i = 0, 1, \dots, n)$ are given points; this representation, like its previously defined particular forms – Bézier curve [5, Chaper 4] and q-Bézier curve [10], is advantageous for practical computations, on account of its shape preserving property, and the numerical stability of the associated de Casteljau algorithm for curve evaluation (see § 2).

Third, as pointed out in [15], it sometimes needed to represent a polynomial given as a linear combination of orthogonal polynomials in the form of a combination of Bernstein polynomials (discrete, in that case); as a result, a stable algorithm of the polynomial evaluation was obtained. In this connection, we show that coefficients of certain basic hypergeometric orthogonal polynomials, called big q-Jacobi polynomials, in the generalized Bernstein polynomial basis are evaluations of another basic hypergeometric orthogonal polynomials, named dual q-Hahn polynomials. The inverse representation is also given; this time the so-called q-Hahn polynomials are involved.

In § 2, we give a list of basic properties of $B_i^n(x;\omega|q)$ such as recurrence and q^{-1} -derivative-recurrence relations, partition of unity, Bézier form of a polynomial, degree elevation, de Casteljau algorithm, and q-Pochhammer polynomial representation, which are analogues of the well-known properties of the classical Bernstein polynomials (see, e.g., [5, Chapter 4]). In § 3, we give an explicit formula relating generalized Bernstein, big q-Jacobi and q-Hahn polynomials (see Thm 3.1), while in § 4, another formula is given, relating big q-Jacobi, generalized Bernstein, and dual q-Hahn polynomials (see Thm 4.1). Also, we show that earlier results on connections between classical Bernstein and Jacobi polynomials ([4], [13]), or discrete Bernstein and Hahn polynomials ([15], [13]), or q-Bernstein and little q-Jacobi polynomials [2] can be easily recovered, using these theorems.

We end this section with a list of notation and terminology used in the paper. For more details the reader is referred to the monographs [1] by G. Andrews, R. Askey and R. Roy, or [6] by G. Gasper and M. Rahman, or the report [7] by R. Koekoek and R. Swarttouw. In the sequel we make use of the convention

$$(c_1, c_2, \dots, c_k)_n := \prod_{j=1}^k (c_j)_n, \qquad (c_1, c_2, \dots, c_k; q)_n := \prod_{j=1}^k (c_j; q)_n.$$

Also, for $c \in \mathbb{C}$ we define the q-number $[c]_q$ by

$$[c]_q := \frac{q^c - 1}{q - 1}.$$

The q- and q^{-1} -derivative operators \boldsymbol{D}_q and $\boldsymbol{D}_{1/q}$ are given by

$$D_q f(x) := \frac{f(qx) - f(x)}{(q-1)x}, \qquad D_{1/q} f(x) := \frac{f(x/q) - f(x)}{(1/q-1)x}, \qquad x \neq 0,$$

and $\boldsymbol{D}_q f(0) := \boldsymbol{D}_{1/q} f(0) := f'(0),$ provided f'(0) exists. Note that

$$\lim_{q \to 1} \mathbf{D}_q f(x) = \lim_{q \to 1} \mathbf{D}_{1/q} f(x) = f'(x)$$

if f is differentiable. Also, we have

(1.11)
$$\mathbf{D}_{a}^{r} f(x) = q^{\binom{r}{2}} \mathbf{D}_{1/a}^{r} f(q^{r} x) \qquad (r = 0, 1, \ldots).$$

The generalized hypergeometric series is defined by (see, e.g., $[1, \S 2.1]$)

$$_{r}F_{s}\left(\begin{vmatrix} a_{1},\ldots,a_{r} \\ b_{1},\ldots,b_{s} \end{vmatrix} z\right) := \sum_{k=0}^{\infty} \frac{(a_{1},\ldots,a_{r})_{k}}{(1,b_{1},\ldots,b_{s})_{k}} z^{k},$$

while the basic hypergeometric series is defined by (see, e.g., [1, § 10.9])

$${}_{r}\phi_{s}\begin{pmatrix} a_{1}, a_{2}, \dots, a_{r} \\ b_{1}, b_{2}, \dots, b_{s} \end{pmatrix} q; z := \sum_{k=0}^{\infty} \frac{(a_{1}, \dots, a_{r}; q)_{k}}{(q, b_{1}, \dots, b_{s}; q)_{k}} \left((-1)^{k} q^{\binom{k}{2}} \right)^{1+s-r} z^{k},$$

where $r, s \in \mathbb{Z}_+$ and $a_1, a_2, \ldots, a_r, b_1, b_2, \ldots, b_s, z \in \mathbb{C}$.

2. Properties of the generalized Bernstein Polynomials.

Lemma 2.1. For $n \in \mathbb{N}$ and $0 \le i \le n$ the following holds true (in (iii)–(vi), we adopt the convention that $B_i^n(x; \omega | q) = 0$ for i < 0 or i > n):

- (i) the zeros of $B_i^n(x; \omega | q)$ are: $\omega, \omega q, \ldots, \omega q^{i-1}, 1, q^{-1}, \ldots, q^{i-n+1}$;
- (ii) $B_i^n(x;\omega|q) \ge 0$ for (a) 0 < q < 1, $0 \le \omega < 1$ and $\omega \le x \le 1$, or (b) $q, \omega > 1$ and $1 \le x \le \omega$;

(iii)
$$B_i^n(x;\omega|q) = \frac{1 - xq^{n-i-1}}{1 - \omega q^{n-1}} B_i^{n-1}(x;\omega|q) + q^{n-i} \frac{x - \omega q^{i-1}}{1 - \omega q^{n-1}} B_{i-1}^{n-1}(x;\omega|q);$$

$$(iv)\ \ B_{i}^{n}(x;\omega|\,q)=q^{i}\,\frac{1-xq^{n-i-1}}{1-\omega q^{n-1}}\,B_{i}^{n-1}(x;\omega|q)+\frac{x-\omega q^{i-1}}{1-\omega q^{n-1}}\,B_{i-1}^{n-1}(x;\omega|\,q);$$

$$(v) \ B_i^n(x;\omega|q) = \frac{[n-i+1]_q}{[n+1]_q} B_i^{n+1}(x;\omega|q) + \left(1 - \frac{[n-i]_q}{[n+1]_q}\right) B_{i+1}^{n+1}(x;\omega|q);$$

$$(vi) \begin{cases} \mathbf{D}_{1/q} B_{i}^{n}(x; \omega | q) = q^{-i} \frac{[n]_{q}}{1 - \omega} \Big(q B_{i-1}^{n-1}(x; q\omega | q) - B_{i}^{n-1}(x; q\omega | q) \Big), \\ \mathbf{D}_{q} B_{i}^{n}(x; \omega | q) = q^{-i} \frac{[n]_{q}}{1 - \omega} \Big(q B_{i-1}^{n-1}(qx; q\omega | q) - B_{i}^{n-1}(qx; q\omega | q) \Big); \end{cases}$$

(vii)
$$B_i^n(cx;\omega|q) = \sum_{j=i}^n B_i^j(c;\omega|q) B_j^n(x;\omega/c|q);$$

$$(viii) \ B_{i+j}^{n+m}(x;\omega|q) = q^{j(i-m)} \frac{\left[\begin{array}{c} n+m \\ i+j \end{array} \right]_q}{\left[\begin{array}{c} m \\ i \end{array} \right]_q \left[\begin{array}{c} n \\ j \end{array} \right]_q} B_i^m(x;\omega|q) \, B_j^n(q^{m-i}x;q^m\omega|q).$$

Proof.

(i), (ii), (viii) These properties follow immediately from the definition (1.1). (iii), (iv) It is easy to oberve that (cf. (1.1))

(2.1)
$$\frac{[i]_q}{[n]_q} B_i^n(x; \omega | q) = \frac{x - \omega q^{i-1}}{1 - \omega q^{n-1}} B_{i-1}^{n-1}(x; \omega | q),$$

(2.2)
$$\frac{[n-i]_q}{[n]_q} B_i^n(x;\omega|q) = \frac{1-xq^{n-i-1}}{1-\omega q^{n-1}} B_i^{n-1}(x;\omega|q).$$

By combining these equations and using

$$\begin{bmatrix} n \\ i \end{bmatrix}_q = q^{n-i} \begin{bmatrix} n-1 \\ i-1 \end{bmatrix}_q + \begin{bmatrix} n-1 \\ i \end{bmatrix}_q = \begin{bmatrix} n-1 \\ i-1 \end{bmatrix}_q + q^i \begin{bmatrix} n-1 \\ i \end{bmatrix}_q,$$

we obtain the stated equations.

(v) Observe that $1 - [n - i - 1]_q / [n]_q = q^{n-i-1} [i+1]_q / [n]_q$, so that (2.1) implies

$$\left(1 - \frac{[n-i-1]_q}{[n]_q}\right) B_{i+1}^n(x;\omega|q) = q^{n-i-1} \frac{x - \omega q^i}{1 - \omega q^{n-1}} B_i^{n-1}(x;\omega|q).$$

By adding the above equation to (2.2), and replacing n by n+1 in the resulting equation, we obtain the result.

(vi) We prove the first formula; the second formula follows from the first one by (1.11) with r = 1. Let us write (cf. (1.3)) $B_i^n(x; \omega | q) = C_{n,i}(\omega) f(x) g(x)$ with

$$C_{n,i}(\omega) = \frac{q^{\binom{i}{2}}(-\omega)^i}{(\omega; q)_n} \begin{bmatrix} n \\ i \end{bmatrix}_q, \quad f(x) = (\omega^{-1}q^{1-i}x; q)_i, \quad g(x) = (x; q)_{n-i}.$$

By using general properties of the q^{-1} -derivative,

(2.3)
$$\mathbf{D}_{1/q}(\alpha x; q)_m = -\alpha [m]_q(\alpha x; q)_{m-1},$$

$$\mathbf{D}_{1/q}(fg)(x) = \mathbf{D}_{1/q}f(x) \cdot g(x) + f(x/q)\mathbf{D}_{1/q}g(x),$$

as well as equations

$$\frac{C_{n,i}(\omega)}{C_{n-1,i-1}(q\omega)} = -\frac{[n]_q}{[i]_q} \frac{\omega}{1-\omega}, \qquad \frac{C_{n,i}(\omega)}{C_{n-1,i}(q\omega)} = \frac{[n]_q}{[n-i]_q} \frac{q^{-i}}{1-\omega},$$

we obtain

$$\begin{aligned} \boldsymbol{D}_{1/q} B_{i}^{n}(x;\omega|\,q) &= -C_{n,i}(\omega) \big([\,i\,]_{q} \omega^{-1} q^{1-i}\,(\omega^{-1} q^{1-i} x;\,q)_{i-1}\,(x;\,q)_{n-i} \\ &+ [\,n-i\,]_{q}\,(\omega^{-1} q^{-i} x;\,q)_{i}\,(x;\,q)_{n-i-1} \big) \\ &= q^{-i} \frac{[\,n\,]_{q}}{1-\omega} \Big(q\,B_{i-1}^{n-1}(x;q\omega|\,q) - B_{i}^{n-1}(x;q\omega|\,q) \Big). \end{aligned}$$

Lemma 2.2. For $n \in \mathbb{N}$, the following identities hold:

(2.4)
$$\sum_{i=0}^{n} B_i^n(x; \omega | q) \equiv 1 \qquad (partition \ of \ unity),$$

(2.5)
$$\sum_{i=0}^{n} \frac{[i]_q}{[n]_q} B_i^n(x;\omega|q) = \frac{x-\omega}{1-\omega}.$$

Proof. To prove (2.4), set a = x and $b = \omega/x$ in the identity (see, e.g., [1, § 10, Exercise 9])

$$(ab; q)_n = \sum_{i=0}^n {n \brack i}_q a^i (b; q)_i (a; q)_{n-i}.$$

We prove (2.5) by induction on n. For n = 1, this equation is obviously true. Assume that it holds for a certain $n \in \mathbb{N}$. By using (2.1) and (2.4), we obtain

$$\begin{split} \sum_{i=0}^{n+1} \frac{[\,i\,]_q}{[\,n+1\,]_q} B_i^{n+1}(x;\omega|\,q) &= \sum_{i=0}^n \frac{x-\omega q^i}{1-\omega q^n} B_i^n(x;\omega|\,q) \\ &= \frac{x-\omega}{1-\omega q^n} + \frac{\omega}{1-\omega q^n} \sum_{i=0}^n (1-q^i) B_i^n(x;\omega|\,q) \\ &= \frac{x-\omega}{1-\omega q^n} + \omega \frac{1-q^n}{1-\omega q^n} \sum_{i=0}^n \frac{[\,i\,]_q}{[\,n\,]_q} B_i^n(x;\omega|\,q) \\ &= \frac{x-\omega}{1-\omega q^n} + \omega \frac{1-q^n}{1-\omega q^n} \cdot \frac{x-\omega}{1-\omega} = \frac{x-\omega}{1-\omega}. \end{split}$$

Hence, the identity holds true for $n = 1, 2, \ldots$

Lemma 2.3. Polynomials $B_0^n(x;\omega|q)$, $B_1^n(x;\omega|q)$,..., $B_n^n(x;\omega|q)$ form a basis in the space Π_n of polynomials of degree $\leq n$.

Proof. The lemma may be easily justified using Lemma 2.9. \Box

By the above lemma, any polynomial $p \in \Pi_n$ can be written in the generalized Bézier form

(2.6)
$$p(x) = \sum_{i=0}^{n} \beta_i B_i^n(x; \omega | q).$$

Lemma 2.4. For (a) 0 < q < 1, $0 \le \omega < 1$ and $\omega \le x \le 1$, or (b) q, $\omega > 1$ and $1 \le x \le \omega$, the graph of the polynomial (2.6) lies in the convex hull of the points

$$W_i = \left((1 - \omega) \frac{[i]_q}{[n]_q} + \omega, \beta_i \right) \qquad (i = 0, 1, \dots, n).$$

Proof. By using Lemma 2.2 we obtain

$$(x, p(x)) = \left(\omega + (1 - \omega)\frac{x - \omega}{1 - \omega}, p(x)\right)$$

$$= \left(\omega \sum_{i=0}^{n} B_{i}^{n}(x; \omega | q) + (1 - \omega) \sum_{i=0}^{n} \frac{[i]_{q}}{[n]_{q}} B_{i}^{n}(x; \omega | q), \sum_{i=0}^{n} \beta_{i} B_{i}^{n}(x; \omega | q)\right)$$

$$= \sum_{i=0}^{n} B_{i}^{n}(x; \omega | q) W_{i}.$$

Hence, in view of part (ii) of Lemma 2.1 and (2.4), the point (x, p(x)) is a convex linear combination of the points W_0, W_1, \ldots, W_n .

Lemma 2.5. Let $p \in \Pi_n$ be given in the generalized Bézier form (2.6). Then for r = 0, 1, ..., we have

(2.7)
$$\begin{cases} \mathbf{D}_{1/q}^{r} p(x) = \frac{\prod_{j=0}^{r-1} [n-j]_{q}}{(\omega; q)_{r}} \sum_{i=0}^{n-r} (q^{-i}\Delta)^{r} \beta_{i} \cdot B_{i}^{n-r}(x; q^{r}\omega| q), \\ \mathbf{D}_{q}^{r} p(x) = q^{\binom{r}{2}} \frac{\prod_{j=0}^{r-1} [n-j]_{q}}{(\omega; q)_{r}} \sum_{i=0}^{n-r} (q^{-i}\Delta)^{r} \beta_{i} \cdot B_{i}^{n-r}(q^{r}x; q^{r}\omega| q), \end{cases}$$

where Δ is the forward progression operator, $\Delta \beta_i = \beta_{i+1} - \beta_i$.

Proof. It suffices to prove the first formula; the second formula follows from the first one by (1.11). For r = 0, the first equation (2.7) is trivial. Let us consider the case r = 1. By using

part (vi) of Lemma 2.1, we obtain

$$\begin{aligned} \boldsymbol{D}_{1/q} p(x) &= \sum_{i=0}^{n} \beta_{i} \boldsymbol{D}_{1/q} B_{i}^{n}(x; \omega | q) \\ &= \frac{[n]_{q}}{1 - \omega} \sum_{i=0}^{n} \beta_{i} q^{-i} \left(q B_{i-1}^{n-1}(x; q\omega | q) - B_{i}^{n-1}(x; q\omega | q) \right) \\ &= \frac{[n]_{q}}{1 - \omega} \sum_{i=0}^{n-1} \left(q^{-i} \Delta \right) \beta_{i} \cdot B_{i}^{n-1}(x; q\omega | q). \end{aligned}$$

Generalization to higher-order q^{-1} -derivatives is straightforward.

Lemma 2.6. Let $p \in \Pi_n$ be given in the form (2.6). The q-Pochhammer polynomial expansion of p is given by

(2.8)
$$p(x) = \sum_{i=0}^{n} {n \brack i}_{q} (-1)^{i} \frac{(q^{i-n}\Delta)^{i} \beta_{n-i}}{(\omega; q)_{i}} (x; q)_{i}.$$

Proof. First observe that if a_0, a_1, \ldots, a_n are coefficients in

$$p(x) = \sum_{i=0}^{n} a_i(x; q)_i,$$

then we have

(2.9)
$$(-1)^{i} [1]_{q} [2]_{q} \cdots [i]_{q} a_{i} = \left(\mathbf{D}_{1/q}^{i} p \right) (1) \qquad (i = 0, 1, \dots, n).$$

This can be proved by induction on i, using (2.3). Now, by using Lemma 2.5, and the part (i) of Lemma 2.1, we obtain (cf. (2.7))

$$\left(\mathbf{D}_{1/q}^{i}p\right)(1) = \frac{\prod_{j=0}^{i-1} [n-j]_{q}}{(\omega; q)_{i}} \left(q^{i-n}\Delta\right)^{i} \beta_{n-i} \quad (i=0,1,\ldots,n).$$

Comparing this formula with (2.9) gives

$$a_i = \begin{bmatrix} n \\ i \end{bmatrix}_q (-1)^i \frac{\left(q^{i-n}\Delta\right)^i \beta_{n-i}}{(\omega; q)_i} \qquad (i = 0, 1, \dots, n).$$

Lemma 2.7 (Generalized de Casteljau algorithm). Given the polynomial (2.6), let the quantities $\beta_i^{(k)}$ (k = 0, 1, ..., n; i = 0, 1, ..., n - k) be defined in the following recursive way:

(2.10)
$$\beta_i^{(0)} := \beta_i \qquad (i = 0, 1, \dots, n);$$

(2.11)
$$\beta_i^{(k)} := \frac{1 - xq^{n-k-i}}{1 - \omega q^{n-k}} \beta_i^{(k-1)} + \left(1 - \frac{1 - xq^{n-k-i}}{1 - \omega q^{n-k}}\right) \beta_{i+1}^{(k-1)}$$

$$(k = 1, 2, \dots, n; i = 0, 1, \dots, n-k).$$

Then $p(x) = \beta_0^{(n)}$.

Proof. By using part (iii) of Lemma 2.1, we obtain

$$p(x) = \sum_{i=0}^{n} \beta_{i} B_{i}^{n}(x; \omega | q)$$

$$= \sum_{i=0}^{n} \beta_{i} \left(\frac{1 - xq^{n-i-1}}{1 - \omega q^{n-1}} B_{i}^{n-1}(x; \omega | q) + q^{n-i} \frac{x - \omega q^{i-1}}{1 - \omega q^{n-1}} B_{i-1}^{n-1}(x; \omega | q) \right)$$

$$= \sum_{i=0}^{n-1} \beta_{i}^{(1)} B_{i}^{n-1}(x; \omega | q),$$

 $\beta_i^{(1)}$ being defined according (2.11). Repeating the above process n times we arrive in

$$p(x) = \sum_{i=0}^{n-k} \beta_i^{(k)} B_i^{n-k}(x; \omega | q) \qquad (k = 1, 2, \dots, n).$$

The last form is $p(x) = \beta_0^{(n)}$.

Lemma 2.8 (Degree elevation). The nth degree polynomial (2.6) can be represented in the generalized Bernstein basis of degree n + 1,

(2.12)
$$p(x) = \sum_{i=0}^{n+1} \beta_i^* B_i^{n+1}(x; \omega | q),$$

where

$$(2.13) \quad \beta_i^* := \frac{[n-i+1]_q}{[n+1]_q} \beta_i + \left(1 - \frac{[n-i+1]_q}{[n+1]_q}\right) \beta_{i-1}$$

$$(i = 0, 1, \dots, n+1).$$

Proof. It suffice to use formula of part (v) of Lemma 2.1 in the expression (2.6) for the polynomial p.

The next two lemmas give a representation of the polynomials (1.1) in terms of the q-Pochhammer polynomials $(x; q)_k$, as well as the so-called inverse representation.

Lemma 2.9. For $n \in \mathbb{N}$ and $0 \le i \le n$, the following relation holds:

$$(2.14) B_i^n(x;\omega|q) = (-1)^i q^{\frac{1}{2}i(i+1)-in} \begin{bmatrix} n \\ i \end{bmatrix}_q \sum_{k=0}^i \begin{bmatrix} i \\ k \end{bmatrix}_q (-1)^k q^{\binom{k}{2}} \frac{(x;q)_{n-k}}{(\omega;q)_{n-k}}.$$

Proof. First observe that for any $n \in \mathbb{N}$ and i = 0, it takes the form

$$B_0^n(x;\omega|q) = \frac{(x;q)_n}{(\omega;q)_n},$$

which is in agreement with the definition (1.1). In the remaining part of the proof we use induction on n. Write formula (2.14) in the form

$$B_i^n(x;\omega|q) = \sum_{k=0}^i \alpha_{i,k}^{(n)}(x;q)_{n-k},$$

where

$$\alpha_{i,k}^{(n)} := (-1)^{i+k} q^{\binom{i+1}{2} + \binom{k}{2} - in} \begin{bmatrix} n \\ i \end{bmatrix}_q \begin{bmatrix} i \\ k \end{bmatrix}_q \frac{1}{(\omega; q)_{n-k}},$$

and assume that it holds for a certain n and for $0 \le i \le n$. By using (2.1), we obtain for i = 1, 2, ..., n + 1

$$\begin{split} B_i^{n+1}(x;\omega|\,q) &= C\,(\omega q^{i-1}-x)\,B_{i-1}^n(x;\omega|\,q) \\ &= C\,(\omega q^{i-1}-x)\,\sum_{k=0}^{i-1}\alpha_{i-1,k}^{(n)}\,(x;\,q)_{n-k} \\ &= C\,\sum_{k=0}^i q^{k-n}\{(1-xq^{n-k})-(1-\omega q^{n-k+i-1})\}\alpha_{i-1,k}^{(n)}\,(x;\,q)_{n-k} \\ &= C\,q^{-n}\sum_{k=0}^i q^k\alpha_{i-1,k}^{(n)}\big\{\,(x;\,q)_{n+1-k}-(1-\omega q^{n-k+i-1})\,(x;\,q)_{n-k}\big\} \\ &= C\,q^{-n}\sum_{k=0}^i q^k\big\{\alpha_{i-1,k}^{(n)}-q^{-1}(1-\omega q^{n-k+i})\alpha_{i-1,k-1}^{(n)}\big\}\,(x;\,q)_{n+1-k} \\ &= \sum_{k=0}^i \alpha_{i,k}^{(n+1)}\,(x;\,q)_{n+1-k}, \end{split}$$

where $C := [n+1]_q/([i]_q(\omega q^n - 1))$. (We adopted the convention that $\alpha_{i-1,i}^{(n)} = \alpha_{i-1,-1}^{(n)} = 0$.)

Lemma 2.10. The Pochhammer polynomials have the following representation in the generalized Bernstein polynomial basis:

$$(2.15) \qquad \frac{(x;q)_j}{(\omega;q)_j} = \begin{bmatrix} n \\ j \end{bmatrix}_q^{-1} \sum_{m=0}^{n-j} q^{jm} \begin{bmatrix} n-m \\ j \end{bmatrix}_q B_m^n(x;\omega|q) \qquad (0 \le j \le n; \ n \in \mathbb{N}).$$

Proof. First observe that for any $n \in \mathbb{N}$ and j = n it reduces to

$$\frac{(x; q)_n}{(\omega; q)_n} = B_0^n(x; \omega | q),$$

hence is obviously true. In the remaining part of the proof we use induction on n. Obviously, (2.15) is true for n = j = 0. Assume that it holds for a certain n and $0 \le j \le n$, then use

Lemma 2.8 to obtain

$$\frac{(x;q)_{j}}{(\omega;q)_{j}} = \sum_{m=0}^{n-j} \beta_{j,m}^{(n)} B_{m}^{n}(x;\omega|q)$$

$$= \sum_{m=0}^{n+1-j} \left(\frac{[n+1-m]_{q}}{[n+1]_{q}} \beta_{j,m}^{(n)} + \left(1 - \frac{[n+1-m]_{q}}{[n+1]_{q}} \right) \beta_{j,m-1}^{(n)} \right) B_{m}^{n+1}(x;\omega|q)$$

$$= \sum_{m=0}^{n+1-j} \beta_{j,m}^{(n+1)} B_{m}^{n+1}(x;\omega|q) \qquad (0 \le j \le n),$$

where

$$\beta_{j,m}^{(n)} := q^{jm} \begin{bmatrix} n \\ j \end{bmatrix}_q^{-1} \begin{bmatrix} n-m \\ j \end{bmatrix}_q.$$

Thus, identity (2.15) holds for any $n \in \mathbb{N}$ and $0 \le j \le n$.

3. BIG q-Jacobi polynomials are defined by (see, e.g., [6, (7.3.10)], or [7, § 3.5])

(3.1)
$$P_k(x; a, b, c|q) := {}_{3}\phi_2\left(\begin{matrix} q^{-k}, abq^{k+1}, x \\ aq, cq \end{matrix} \middle| q; q\right) \qquad (k \ge 0),$$

and the q-Hahn polynomials are given by (see, e.g., [6, Eq. (7.3.21)], or $[7, \S 3.6]$)

(3.2)
$$Q_k(q^{-x}; a, b, N|q) := {}_{3}\phi_2\left(\begin{matrix} q^{-k}, abq^{k+1}, q^{-x} \\ aq, q^{-N} \end{matrix} \middle| q; q\right) \quad (k = 0, 1, \dots, N; N \in \mathbb{N}).$$

We will prove the following formulas relating the generalized Bernstein, big q-Jacobi and q-Hahn polynomials.

Theorem 3.1. Generalized Bernstein polynomials have the following representation in the big q-Jacobi polynomial basis:

$$(3.3) B_{i}^{n}(x;\omega|q) = (-1)^{i}q^{\binom{n-i}{2}}(-aq)^{n} \begin{bmatrix} n \\ i \end{bmatrix}_{q} \frac{(bq;q)_{n}}{(abq^{2};q)_{n}}$$

$$\times \sum_{j=0}^{n} q^{-\binom{j+1}{2}} \left(-\frac{q^{n}}{a} \right)^{j} \frac{(abq^{2};q)_{2j} (aq,abq,q^{-n};q)_{j}}{(abq;q)_{2j} (q,bq,abq^{n+2};q)_{j}}$$

$$\times Q_{n-j} \left(q^{i-n}; \frac{q^{-n-1}}{b}, \frac{q^{-n-1}}{a}, n | q \right) P_{j} \left(x; a, b, \frac{\omega}{q} | q \right);$$

$$(3.4) B_{i}^{n}(x;\omega|q) = (-1)^{i}q^{\binom{n-i}{2}}(-cq)^{n} \begin{bmatrix} n \\ i \end{bmatrix}_{q} \frac{(b\omega/c;q)_{n}}{(bq\omega;q)_{n}}$$

$$\times \sum_{j=0}^{n} q^{-\binom{j+1}{2}} \left(-\frac{q^{n}}{c} \right)^{j} \frac{(bq\omega;q)_{2j} (cq,b\omega,q^{-n};q)_{j}}{(b\omega;q)_{2j} (q,b\omega/c,b\omega q^{n+1};q)_{j}}$$

$$\times Q_{n-j} \left(q^{i-n}; \frac{cq^{-n}}{b\omega}, \frac{q^{-n-1}}{c}, n | q \right) P_{j} \left(x; \frac{\omega}{q}, b, c | q \right).$$

Proof. By inserting (cf. [8])

$$(x;q)_k = \frac{(aq,cq;q)_k}{(abq^2;q)_k} \sum_{j=0}^k (-1)^j q^{\binom{j}{2}} \begin{bmatrix} k \\ j \end{bmatrix}_q \frac{(abq^2;q)_{2j} (abq;q)_j}{(abq;q)_{2j} (abq^{k+2};q)_j} P_j(x;a,b,c|q)$$

into (2.14), we obtain

$$B_i^n(x;\omega|q) = (-1)^i q^{\frac{1}{2}i(i+1)-in} \begin{bmatrix} n \\ i \end{bmatrix}_q \sum_{j=0}^n C_j(\omega) P_j(x;a,b,c|q),$$

where

$$\begin{split} C_{j}(\omega) = & (-1)^{j} q^{\binom{j}{2}} \frac{(abq^{2}; \, q)_{2j} \, (abq; \, q)_{j}}{(abq; \, q)_{2j}} \\ & \times \sum_{k=0}^{\min(i, n-j)} & \left[{n-k \atop j} \right]_{q} \left[{i \atop k} \right]_{q} \frac{(-1)^{k} q^{\binom{k}{2}} \, (aq, cq; \, q)_{n-k}}{(\omega, abq^{2}; \, q)_{n-k} \, (abq^{n-k+2}; \, q)_{j}}. \end{split}$$

Using properties of the q-Pochhammer symbol (see, e.g., [6], or $[7, \S 0.2]$), we obtain

$$C_{j}(\omega) = \frac{(aq; q)_{n} (cq; q)_{n}}{(abq^{2}; q)_{n} (\omega; q)_{n}} (-1)^{j} q^{\binom{j}{2}} \frac{(abq^{2}; q)_{2j} (abq, q^{n+1-j}; q)_{j}}{(abq; q)_{2j} (q, abq^{n+2}; q)_{j}}$$

$$\times \sum_{k=0}^{\min(i,n-j)} \frac{(q^{j-n}, q^{-i}, q^{1-n}/\omega, q^{-n-j-1}/(ab); q)_{k}}{(q, q^{-n}, q^{-n}/a, q^{-n}/c; q)_{k}} \left(\frac{b \, \omega}{c} \, q^{i}\right)^{k}.$$

Hence, we have the formula

$$(3.5) B_{i}^{n}(x;\omega|q) = (-1)^{i}q^{\binom{i+1}{2}-in} \begin{bmatrix} n \\ i \end{bmatrix}_{q} \frac{(aq,cq;q)_{n}}{(abq^{2},\omega;q)_{n}} \sum_{j=0}^{n} q^{jn} \frac{(abq^{2};q)_{2j} (abq,q^{-n};q)_{j}}{(abq;q)_{2j} (q,abq^{n+2};q)_{j}} \times_{4}\phi_{3} \begin{pmatrix} q^{-i}, q^{j-n}, q^{1-n}/\omega, q^{-n-j-1}/(ab) \\ q^{-n}, q^{-n}/a, q^{-n}/c \end{pmatrix} q; \frac{\omega bq^{i}}{c} P_{j}(x;a,b,c|q).$$

By setting $c = \omega/q$ in the above formula, and applying the identity (cf. [1, Eq. (10.10.5)])

$$\begin{split} & 3\phi_2 \begin{pmatrix} q^{j-n}, \ q^{-i}, \ q^{-n-j-1}/(ab) \ | \ q; bq^{i+1} \end{pmatrix} \\ & = q^{(n-j)(j+n+1)} \ (ab)^{n-j} \frac{(q^{-n}/b; \ q)_{n-j}}{(aq^{j+1}; \ q)_{n-j}} \ _3\phi_2 \begin{pmatrix} q^{j-n}, \ q^{i-n}, \ q^{-n-j-1}/(ab) \ | \ q; q \end{pmatrix}, \end{split}$$

we obtain after some algebra

$$\begin{split} B_i^n(x;\omega|\,q) &= (-1)^i q^{\frac{1}{2}i(i+1)-in} \begin{bmatrix} n \\ i \end{bmatrix}_q \frac{(bq;\,q)_n}{(abq^2;\,q)_n} \\ &\times \sum_{j=0}^n \, q^{\frac{1}{2}(n-j)(j+n+1)+jn} (-a)^{n-j} \frac{(abq^2;\,q)_{2j} \, (aq,abq,q^{-n};\,q)_j}{(abq;\,q)_{2j} \, (q,bq,abq^{n+2};\,q)_j} \\ &\times \, _3\phi_2 \begin{pmatrix} q^{j-n},\,q^{i-n},\,q^{-n-j-1}/(ab) \\ q^{-n},\,q^{-n}/b \end{pmatrix} \, q;q \end{pmatrix} \, P_j(x;a,b,\omega/q|q) \\ &= (-1)^{n-i} q^{\frac{1}{2}n(n+1)+\frac{1}{2}i(i+1)-in} a^n \begin{bmatrix} n \\ i \end{bmatrix}_q \frac{(bq;\,q)_n}{(abq^2;\,q)_n} \\ &\times \sum_{j=0}^n \, q^{jn-\frac{1}{2}j(j+1)} (-a)^{-j} \frac{(abq^2;\,q)_{2j} \, (aq,qbq,q^{-n};\,q)_j}{(abq;\,q)_{2j} \, (q,bq,abq^{n+2};\,q)_j} \\ &\times Q_{n-j} (q^{i-n};\,q^{-n-1}/b,q^{-n-1}/a,n|q) \, P_j(x;a,b,\omega/q|q), \end{split}$$

which completes the proof of (3.3).

Formula (3.4) follows in a similar way, by setting $a = \omega/q$ in (3.5), and applying again [1, Eq. (10.10.5)].

Remember that little q-Jacobi polynomials are given by (see, e.g., $[7, \S 3.12]$)

(3.6)
$$p_k(x; \alpha, \beta | q) := {}_{2}\phi_1 \begin{pmatrix} q^{-k}, \alpha \beta q^{k+1} \\ \alpha q \end{pmatrix} q; qx \qquad (k \ge 0)$$

Corollary 3.2. *q-Bernstein polynomials* (1.6) have the following representation in the little *q-Jacobi polynomial basis:*

$$(3.7) b_i^n(x;q) = (-1)^{n-i} q^{\binom{n-i}{2}} a^n \begin{bmatrix} n \\ i \end{bmatrix}_q \frac{(bq;q)_n}{(abq^2;q)_n}$$

$$\times \sum_{j=0}^n q^{n(j+1)} \frac{(abq^2;q)_{2j} (abq,q^{-n};q)_j}{(abq;q)_{2j} (q,abq^{n+2};q)_j}$$

$$\times Q_{n-j} \left(q^{i-n}; \frac{1}{bq^{n+1}}, \frac{1}{aq^{n+1}}, n | q \right) p_j \left(\frac{x}{aq}; b, a | q \right).$$

Notice that equation (3.7) is equivalent to a formula obtained in [2].

Proof. By setting $\omega = 0$ in (3.3), using (1.8), and the relation [7, § 3.5]

(3.8)
$$P_{j}(x; a, b, 0|q) = \frac{(bq; q)_{j}}{(aq; q)_{j}} (-aq)^{j} q^{\binom{j}{2}} p_{j} \left(\frac{x}{aq}; b, a|q\right)$$

the result follows.

Recall that the Jacobi polynomials are defined by (see, e.g., [1, p. 99], or [7, § 1.8])

(3.9)
$$P_k^{(\alpha,\beta)}(x) := \frac{(\alpha+1)_k}{k!} \, {}_2F_1\left(\begin{array}{c} -k, k+\alpha+\beta+1 \\ \alpha+1 \end{array} \middle| \frac{1-x}{2}\right) \qquad (k \ge 0),$$

while the *Hahn polynomials* are given by $[7, \S 1.5]$

(3.10)
$$Q_k(x; \alpha, \beta, N) := {}_{3}F_2\left(\begin{array}{c|c} -k, k + \alpha + \beta + 1, -x \\ \alpha + 1, -N \end{array} \middle| 1 \right) \quad (k = 0, 1, \dots, N; \ N \in \mathbb{N}).$$

Corollary 3.3. Bernstein polynomials (1.4) have the following representation in the Jacobi polynomial basis (3.9):

(3.11)
$$B_{i}^{n}(x) = (-1)^{n-i} \binom{n}{i} \frac{(\beta+1)_{n}}{(\alpha+\beta+2)_{n}} \times \sum_{j=0}^{n} (-1)^{j} \frac{(\alpha+\beta+2)_{2j}(\alpha+\beta+1,-n)_{j}}{(\alpha+\beta+1)_{2j}(\beta+1,\alpha+\beta+n+2)_{j}} \times Q_{n-j}(n-i;-\beta-n-1,-\alpha-n-1,n) P_{j}^{(\alpha,\beta)}(2x-1).$$

Notice that equation (3.11) is equivalent to a formula obtained in [13].

Proof. The result follows by setting $a = q^{\alpha}$, $b = q^{\beta}$ in (3.7), letting $q \uparrow 1$, using (1.7) and (cf. [7, § 5.6])

(3.12)
$$\lim_{q \uparrow 1} p_j(x; q^{\beta}, q^{\alpha} | q) = (-1)^j \frac{j!}{(\beta + 1)_j} P_j^{(\alpha, \beta)}(2x - 1),$$

(3.13)
$$\lim_{q \uparrow 1} Q_{n-j} \left(q^{i-n}; q^{-\beta-n-1}, q^{-\alpha-n-1}, n \mid q \right) = Q_{n-j} (n-i; -\beta-n-1, -\alpha-n-1, n).$$

Corollary 3.4. Discrete Bernstein polynomials (1.5) can be represented in the form

(3.14)
$$b_{i}^{n}(N,t) = (-1)^{i} \binom{n}{i} \frac{(\beta+1)_{n}}{(\alpha+\beta+2)_{n}} \times \sum_{j=0}^{n} (-1)^{j} \frac{(\alpha+\beta+2)_{2j}(\alpha+1,\alpha+\beta+1,-n)_{j}}{(\alpha+\beta+1)_{2j}(1,\beta+1,\alpha+\beta+n+2)_{j}} \times Q_{n-j}(i;-\beta-n-1,-\alpha-n-1,n) Q_{j}(t;\alpha,\beta,N).$$

Note that a formula equivalent to (3.14) has been obtained in [13].

Proof. The result follows from (3.3) by setting $a = q^{\alpha}$, $b = q^{\beta}$, $\omega = q^{-N}$, $x = q^{-t}$, letting $q \uparrow 1$, and using (1.8), (3.13) and (cf. [7, § 5.6])

(3.15)
$$\lim_{q \uparrow 1} P_j(q^{-t}; q^{\alpha}, q^{\beta}, q^{-N-1} | q) = \lim_{q \uparrow 1} Q_j(q^{-t}; q^{\alpha}, q^{\beta}, N | q) = Q_j(t; \alpha, \beta, N).$$

4. Generalized Bernstein polynomial expansion of big q-Jacobi polynomials.

Let us recall that the dual q-Hahn polynomials are defined by $[7, \S 3.7]$

$$R_k(\mu(x); \gamma, \delta, N|q) := {}_{3}\phi_2 \begin{pmatrix} q^{-k}, q^{-x}, \gamma \delta q^{x+1} \\ \gamma q, q^{-N} \end{pmatrix} q; q$$
$$(\mu(x) := q^{-x} + \gamma \delta q^{x+1}; \ k = 0, 1, \dots, N; \ N \in \mathbb{N}).$$

We prove the following.

Theorem 4.1. Big q-Jacobi polynomials (3.1) have the following representation in the generalized Bernstein polynomial basis:

(4.1)
$$P_i(x; a, b, c|q) = \sum_{j=0}^n R_{n-j} \left(q^{-i} + abq^{i+1}; a, b, n|q \right) B_j^n(x; cq|q).$$

Proof. By inserting (2.15) into the expansion $[7, \S 3.5]$

$$P_i(x; a, b, c|q) = \sum_{k=0}^{i} \frac{(q^{-i}, abq^{i+1}, x; q)_k}{(q, aq, cq; q)_k} q^k,$$

we obtain after some algebra

$$P_i(x; a, b, c|q) = \sum_{j=0}^n \left(\sum_{k=0}^{\min(i, n-j)} \frac{(q^{-i}, q^{j-n}, \omega, abq^{i+1}; q)_k}{(q, aq, cq, q^{-n}; q)_k} q^k \right) B_j^n(x; \omega|q).$$

Hence

$$P_i(x; a, b, c|q) = \sum_{j=0}^{n} {}_{4}\phi_3 \begin{pmatrix} q^{-i}, q^{j-n}, \omega, abq^{i+1} \\ q^{-n}, aq, cq \end{pmatrix} q^{n}(x; \omega|q).$$

Setting $\omega = cq$ in the above equation, we obtain

$$P_{i}(x; a, b, c|q) = \sum_{j=0}^{n} {}_{3}\phi_{2} \begin{pmatrix} q^{-i}, q^{j-n}, abq^{i+1} \\ q^{-n}, aq \end{pmatrix} q; q B_{j}^{n}(x; cq|q)$$
$$= \sum_{j=0}^{n} R_{n-j} (q^{-i} + abq^{i+1}; a, b, n|q) B_{j}^{n}(x; cq|q).$$

Corollary 4.2. Little q-Jacobi polynomials (3.6) and q-Bernstein polynomials (1.6) are connected by the formula

(4.2)
$$p_{i}(x; a, b|q) = (-b)^{-i} q^{-\binom{i+1}{2}} \frac{(bq; q)_{i}}{(aq; q)_{i}} \times \sum_{j=0}^{n} R_{n-j}(q^{-i} + abq^{i+1}; b, a, n|q) b_{j}^{n}(bqx; q).$$

Remark that a formula equivalent to (4.2) has been recently obtained in [2].

Proof. The result follows by setting c=0 in (4.1), using (3.8), replacing x by aqx, and interchanging the roles of the parameters a and b.

The dual Hahn polynomials are defined by $[7, \S 1.6]$

$$R_k(\lambda(x); \gamma, \delta, N) := {}_{3}F_2\left(\begin{array}{c} -k, -x, x + \gamma + \delta + 1 \\ \gamma + 1, -N \end{array} \middle| 1 \right)$$
$$(\lambda(x) := x(x + \gamma + \delta + 1); \quad k = 0, 1, \dots, N; \quad N \in \mathbb{N}).$$

Corollary 4.3. Jacobi polynomials (3.9) and Bernstein polynomials (1.4) are connected by the formula

(4.3)
$$P_i^{(\alpha,\beta)}(2x-1) = \frac{(\alpha+1)_i}{i!} \sum_{j=0}^n R_{n-j} \left(i(i+\alpha+\beta+1); \alpha, \beta, n \right) B_j^n(x).$$

Remark that a formula equivalent to (4.3) was obtained in [4].

Proof. The argument is similar to the one used in the proof of Cor. 3.3. \Box

Corollary 4.4. The Hahn polynomials (3.10) have the following representation in the discrete Bernstein polynomial basis (1.5):

(4.4)
$$Q_{i}(x; \alpha, \beta, N) = \sum_{j=0}^{n} R_{j}(i(i + \alpha + \beta + 1); \alpha, \beta, n) b_{j}^{n}(N, x).$$

Note that Eq. (4.4) has been earlier obtained in [15].

Proof. The argument is similar to the one used in the proof of Cor. 3.4. \Box

References

- [1] G. E. Andrews, R. Askey, and R. Roy, Special Functions, Cambridge Univ. Press, Cambridge, 1999.
- [2] I. Area, E. Godoy, P. Woźny, S. Lewanowicz, and A. Ronveaux, Formulae relating q-Bernstein, little q-Jacobi and q-Hahn polynomials: Application to the q-Bézier curve evaluation, Integr. Transf. Spec. Funct., 15 (2004), 375–385.
- [3] E. W. Cheney, Introduction to Approximation Theory, second ed., Chelsea Publ., Providence, R. I., 1982.
- [4] Z. Ciesielski, Explicit formula relating the Jacobi, Hahn and Bernstein polynomials, SIAM J. Math. Anal., 18 (1987), pp. 1573–1575.
- [5] G.E. Farin, Curves and Surfaces for Computer-Aided Geometric Design. A Practical Guide, third ed., Academic Press, Boston, 1996.
- [6] G. Gasper, and M. Rahman, Basic Hypergeometric Series, Encyclopedia of Mathematics and its Applications, Vol. 35, Cambridge University Press, Cambridge, 1990.
- [7] R. Koekoek and R. F. Swarttouw, *The Askey scheme of hypergeometric orthogonal polynomials and its* q-analogue, Fac. Techn. Math. Informatics, Delft Univ. of Technology, Rep. 98–17, Delft, 1998.
- [8] S. Lewanowicz, E. Godoy, I. Area, A. Ronveaux, and A. Zarzo, Recurrence relations for the coefficients of the Fourier series expansions with respect to q-classical orthogonal polynomials, Numer. Algorithms, 23 (2000), pp. 31–50.
- [9] S. Lewanowicz, P. Woźny, Generalized Bernstein polynomials, BIT Numer. Math. 44 (2004), 63-78.
- [10] H. Oruç, and G. M. Philips, q-Bernstein polynomials and Bézier curves, J. Comput. Appl. Math., 151 (2003), pp. 1–12.
- [11] G. M. Phillips, A de Casteljau algorithm for generalized Bernstein polynomials, BIT, 36 (1996), pp. 232– 236
- [12] G. M. Phillips, Bernstein polynomials based on the q-integers, Ann. Numer. Math., 4 (1997), pp. 511–518.
- [13] A. Ronveaux, A. Zarzo, I. Area, and E. Godoy, Bernstein bases and Hahn–Eberlein orthogonal polynomials, Integr. Transf. Spec. Funct., 7 (1998), pp. 87–96.
- [14] P. Sablonnière, Discrete Bézier curves and surfaces, in Mathematical Methods in Computer Aided Geometric Design II, T. Lyche and L. L. Schumaker, eds., Academic Press, New York, 1992, pp. 497–515.
- [15] P. Sablonnière, Discrete Bernstein bases and Hahn polynomials, J. Comput. Appl. Math., 49 (1993), pp. 233–241.

INSTITUTE OF COMPUTER SCIENCE, UNIVERSITY OF WROCŁAW, POLAND E-mail address: {Stanislaw.Lewanowicz,Pawel.Wozny}@ii.uni.wroc.pl