Dual generalized Bernstein basis

Stanislaw Lewanowicz, Pawel Wojny

Institute of Computer Science, University of Wroclaw,
ul. Przesmyckiego 20, 51-151 Wroclaw, Poland

Abstract. The generalized Bernstein basis in the space Π_n of polynomials of degree at most n, being an extension of the q-Bernstein basis introduced recently by G. M. Phillips, is given by the formula (see S. Lewanowicz & P. Wojny, BIT 44 (2004), 63–78)

$$B_n^i(x; \omega|q) := \frac{1}{(\omega; q)_n} \left[\begin{array}{c} n \\ i \end{array} \right]_q x^i (\omega x^{-1}; q), (x; q)_{n-i} \quad (i = 0, 1, \ldots, n).$$

We give explicitly the dual basis functions $D_n^k(x; a, b, \omega|q)$ for the polynomials $B_n^i(x; \omega|q)$, in terms of big q-Jacobi polynomials $P_k(x; a, b, \omega/q; q)$, a and b being parameters; the connection coefficients are evaluations of the q-Hahn polynomials. An inverse formula – relating big q-Jacobi, dual generalized Bernstein, and dual q-Hahn polynomials – is also given. Further, an alternative formula is given, representing the dual polynomial $D_n^j (0 \leq j \leq n)$ as a linear combination of min$(j, n-j) + 1$ big q-Jacobi polynomials with shifted parameters and argument. Finally, we give a recurrence relation satisfied by D_n^k, as well as an identity which may be seen as an analogue of the extended Marsden’s identity.