

Two-variable orthogonal polynomials of big q -Jacobi type

Stanisław Lewanowicz, Paweł Woźny

Institute of Computer Science, University of Wrocław, ul. F. Joliot-Curie 15, 50-383 Wrocław, Poland

Abstract

A four-parameter family of orthogonal polynomials in two variables is defined by

$$P_{n,k}(x, y; a, b, c, d; q) := P_{n-k}(y; a, bcq^{2k+1}, dq^k; q) y^k (dq/y; q)_k P_k(x/y; c, b, d/y; q) \\ (n \in \mathbb{N}; k = 0, 1, \dots, n),$$

where $q \in (0, 1)$, $0 < aq, bq, cq < 1$, $d < 0$, and $P_m(t; \alpha, \beta, \gamma; q)$ are univariate big q -Jacobi polynomials,

$$P_m(t; \alpha, \beta, \gamma; q) := {}_3\phi_2 \left(\begin{array}{c} q^{-m}, \alpha\beta q^{m+1}, t \\ \alpha q, \gamma q \end{array} \middle| q; q \right) \quad (m \geq 0)$$

(see, e.g., [1, Section 7.3]). These polynomials form an extension of Dunkl's bivariate (little) q -Jacobi polynomials [2]. We prove orthogonality property of the new polynomials, and show that they satisfy a three-term relation in a vector-matrix notation, as well as a second-order partial q -difference equation.

We give some basic properties of the new polynomials. First, we show that they form an orthogonal system with respect to the linear functional \mathbf{u} defined by

$$\langle \mathbf{u}, p \rangle := \int_{dq}^{aq} \int_{dq}^{cqy} \frac{(dq/y, x/(cy), x/d, y/a, y/d; q)_\infty}{y(d/(cy), cqy/d, x/y, bx/d, y; q)_\infty} p(x, y) d_q x d_q y,$$

where p is any two-variable polynomial. Second, we proved that the following three-term relations hold:

$$\left. \begin{array}{l} x \mathbb{P}_n = A_{n,1} \mathbb{P}_{n+1} + B_{n,1} \mathbb{P}_n + C_{n,1} \mathbb{P}_{n-1}, \\ y \mathbb{P}_n = A_{n,2} \mathbb{P}_{n+1} + B_{n,2} \mathbb{P}_n + C_{n,2} \mathbb{P}_{n-1} \end{array} \right\} \quad (n \geq 0),$$

where we used the notation $\mathbb{P}_n := [P_{n,0}, P_{n,1}, \dots, P_{n,n}]^T$, and $A_{n,i}$, $B_{n,i}$ and $C_{n,i}$ are tridiagonal ($i = 1$) or diagonal ($i = 2$) matrices of appropriate dimensions. Last, we showed that for any $n \geq 0$, the polynomial vector \mathbb{P}_n satisfies the linear second-order partial q -difference equation in the form

$$l_{11} D_{q,x} D_{q^{-1},x} \mathbb{P}_n + l_{22} D_{q,y} D_{q^{-1},y} \mathbb{P}_n + l_{12}^- D_{q^{-1},x} D_{q^{-1},y} \mathbb{P}_n \\ + l_{12}^+ D_{q,x} D_{q,y} \mathbb{P}_n + m_1 D_{q,x} \mathbb{P}_n + m_2 D_{q,y} \mathbb{P}_n = \lambda_n \mathbb{P}_n,$$

with $\lambda_n := [n]_q q^{1-n} (abcq^{n+2} - 1)/(q-1)$, and the polynomial coefficients $l_{11}(x)$, $l_{22}(y)$, $l_{12}^\pm(x, y)$, $m_1(x)$, $m_2(y)$ being given explicitly. Here $D_{q^{\pm 1},x}$ and $D_{q^{\pm 1},y}$ are partial q -derivative operators, and we let

$$D_{q^{\pm 1},z} \mathbb{P}_n := [D_{q^{\pm 1},z} P_{n,0}, D_{q^{\pm 1},z} P_{n,1}, \dots, D_{q^{\pm 1},z} P_{n,n}]^T \quad (z = x, y).$$

AMS Classification: 33D50, 33C50

Keywords: Bivariate big q -Jacobi polynomial; Orthogonality weight; Three term relation; Partial q -difference equation.

- [1] G.E. Andrews, R. Askey, R. Roy, Special functions, Encyclopedia of Mathematics and its Applications 71, Cambridge University Press, Cambridge, 1999.
- [2] C.F. Dunkl, Orthogonal polynomials in two variables of q -Hahn and q -Jacobi type, SIAM J. Alg. Disc. Meth. 1 (1980) 137–151.