

MR1379133 (97c:33010) 33C45 (42C05)

Lewanowicz, Stanisław (PL-WROC-C)

Results on the associated classical orthogonal polynomials. (English summary)

Proceedings of the International Conference on Orthogonality, Moment Problems and Continued Fractions (Delft, 1994).

J. Comput. Appl. Math. **65** (1995), no. 1-3, 215–231.

The classical orthogonal polynomials (Jacobi, Laguerre, Hermite, and Bessel polynomials) all satisfy a second-order differential equation and a three-term recurrence relation $xP_k(x) = \xi_0(k)P_{k-1}(x) + \xi_1(k)P_k(x) + \xi_2(k)P_{k+1}(x)$, with recurrence coefficients $\xi_i(k)$ which are simple rational functions of the degree k . Changing the recurrence coefficients $\xi_i(k)$ to $\xi(k+c)$ gives the associated orthogonal polynomials $P_k(x; c)$ of order c . Usually one only deals with integer order c , but for classical orthogonal polynomials any real $c > 0$ is possible. In 1991, it was shown by Belmehdi and Ronveaux that the associated polynomials of order c satisfy a fourth-order differential equation $\mathbf{M}_n^{(c)} P_n(x; c) = 0$. The present author shows that this differential operator is of the form $\mathbf{M}_n^{(c)} = \mathbf{M}_n^{(1)} + \theta_{n,c} \mathbf{Q}_n$, where $\theta_{n,c}$ is a real number and \mathbf{Q}_n is a second-order differential operator which is independent of c . This allows the author to find a second-order recurrence relation for the connection coefficients $a_{n,k}^{(c)}$ in the relation $P_n(x; c) = \sum_{k=0}^n a_{n,k}^{(c)} P_k(x)$. The four cases (Jacobi, Laguerre, Hermite, and Bessel) are then worked out in detail.

{For the entire collection see MR1379115 (96j:00036)}

Reviewed by [Walter Van Assche](#)

© Copyright American Mathematical Society 1997, 2011