

Zbl 0583.33005

Lewanowicz, Stanisław

Recurrence relations for hypergeometric functions of unit argument.

Math. Comput. 45, 521-535 (1985).

The author shows that the generalized hypergeometric function

$$P_n := {}_{p+3}F_{p+2} \left(\begin{matrix} -n, n + \lambda, a_p, 1 \\ b_{p+2} \end{matrix} ; 1 \right), \quad n \geq 0$$

satisfies a nonhomogeneous recurrence relation of order p , when ${}_{p+3}F_{p+2}(1)$ is balanced, and of order $p + 1$ otherwise. For

$$U_n := ((c_{q+1})_n / (d_q)_n (n + \lambda)_n) {}_{q+2}F_{q+1} \left(\begin{matrix} n + c_{q+2} \\ n + d_q, 2n + \lambda + 1 \end{matrix} ; 1 \right), \quad n \geq 0$$

a homogeneous recurrence relation of order $q + 1$ is given. The results are proved by using some general theorems due to *J. Wimp* [Math. Comput. 22, 363-373 (1968; Zbl 0186.104); ibid. 29, 577-581 (1975; Zbl 0304.33003)] and *Y. Luke* [The special functions and their approximations (1969; Zbl 0193.017)]. Some examples are given.

S.L.Kalla

Classification: 33C05 65D20 65Q05

Keywords: recurrence relation

doi:10.2307/2008142