Dual generalized Bernstein basis

Stanisław Lewanowicz *, Paweł Woźny

Institute of Computer Science, University of Wrocław, ul. Przesmyckiego 20,
51-151 Wrocław, Poland

Abstract

The generalized Bernstein basis in the space \(\Pi_n \) of polynomials of degree at most \(n \), being an extension of the \(q \)-Bernstein basis introduced recently by G.M. Phillips, is given by the formula (see S. Lewanowicz & P. Woźny, BIT 44 (2004), 63–78)

\[
B_n^i(x; \omega|q) := \frac{1}{(\omega; q)_n} \left[\begin{array}{c} n \\ i \end{array} \right] q^i (\omega x^{-1}; q)_i (x; q)_{n-i} \quad (i = 0, 1, \ldots, n).
\]

We give explicitly the dual basis functions \(D_n^k(x; a, b, \omega|q) \) for the polynomials \(B_n^i(x; \omega|q) \), in terms of big \(q \)-Jacobi polynomials \(P_k(x; a, b, \omega/q; q) \), \(a \) and \(b \) being parameters; the connection coefficients are evaluations of the \(q \)-Hahn polynomials. An inverse formula – relating big \(q \)-Jacobi, dual generalized Bernstein, and dual \(q \)-Hahn polynomials – is also given. Further, an alternative formula is given, representing the dual polynomial \(D_n^j \) \((0 \leq j \leq n)\) as a linear combination of \(\min(j, n-j) + 1 \) big \(q \)-Jacobi polynomials with shifted parameters and argument. Finally, we give a recurrence relation satisfied by \(D_n^k \), as well as an identity which may be seen as an analogue of the extended Marsden’s identity.

Key words: Generalized Bernstein basis; \(q \)-Bernstein basis; Bernstein basis; Discrete Bernstein basis; Dual basis; Big \(q \)-Jacobi polynomials; Little \(q \)-Jacobi polynomials; Shifted Jacobi polynomials.

* Corresponding author. Fax + 48 71 3756244.
Email addresses: Stanislaw.Lewanowicz@ii.uni.wroc.pl (Stanisław Lewanowicz), Pawel.Wozny@ii.uni.wroc.pl (Paweł Woźny).

Preprint submitted to Journal of Approximation Theory