

Efficient evaluation of Bernstein-Bézier coefficients of B-spline basis functions over one knot span

Filip Chudy^{a,*}, Paweł Woźny^a

^a*Institute of Computer Science, University of Wrocław, ul. Joliot-Curie 15, 50-383 Wrocław, Poland*

Abstract

New differential-recurrence relations for B-spline basis functions are given. Using these relations, a recursive method for finding the Bernstein-Bézier coefficients of B-spline basis functions over a single knot span is proposed. The algorithm works for any knot sequence and has an asymptotically optimal computational complexity. Numerical experiments show that the new method gives results which preserve a high number of digits when compared to an approach which uses the well-known de Boor-Cox formula.

Keywords: B-spline basis functions, Bernstein-Bézier form, recurrence relations, B-spline curves, B-spline surfaces, de Boor-Cox algorithm.

*Corresponding author.

Email addresses: Filip.Chudy@cs.uni.wroc.pl (Filip Chudy), Pawel.Wozny@cs.uni.wroc.pl (Paweł Woźny)