
On the Complexity of the Bernays-Schönfinkel Class
with Datalog

Witold Charatonik and Piotr Witkowski
{wch, pwit}@ii.uni.wroc.pl

Institute of Computer Science
University of Wrocław

Abstract. Bernays-Schönfinkel class with Datalog is a 2-variable fragment of
the Bernays-Schönfinkel class extended with least fixed points expressible by
certain monadic Datalog programs. It was used in a bounded model checking
procedure for programs manipulating dynamically allocated pointer structures,
where the bounded model checking problem was reduced to the satisfiability of
formulas in this logic. The best known upper bound on the complexity of the
satisfiability problem for this logic was 2NEXPTIME.
In this paper we extend the Bernays-Schönfinkel class with Datalog to a more
expressive logic — a fragment of two-variable logic with counting quantifiers
extended with the same kind of fixed points. We prove that both satisfiability and
entailment for the new logic are decidable in NEXPTIME and we give a matching
lower bound for the original logic, which establishes NEXPTIME-completeness
of the satisfiability and entailment problems for both of them. Our algorithm is
based on a translation to 2-variable logic with counting quantifiers.

1 Introduction

Automated verification of programs manipulating dynamically allocated pointer struc-
tures is a challenging task. The reachable state space of such programs is infinite and
the verification problem is undecidable. Moreover, to reason about sets of nodes reach-
able from a program variable one often wants to be able to compute transitive closure
or least fixed points of some operators. Unfortunately, evenquite simple logics like
two-variable fragments of first-order logic or even two-variable fragments of Bernays-
Schönfinkel class extended with either transitive closure or least fixed points quickly
become undecidable [10,13].

In [7] the authors proposed a bounded model checking procedure for imperative pro-
grams that manipulate dynamically allocated pointer structures on the heap. Although
in this procedure an explicit bound is assumed on the length of the program execu-
tion, the size of the initial data structure is not bounded. Therefore, such programs form
infinite and infinitely branching transition systems. The procedure is based on the fol-
lowing four observations. First, error conditions like dereference of a dangling pointer,
are expressible in the two-variable fragment of Bernays-Schönfinkel class with equal-
ity. Second, the fragment is closed under weakest preconditions wrt. finite paths. Third,
data structures like trees, lists (singly or doubly linked,or even circular) are expressible
in a fragment of monadic Datalog. Finally, the combination of the Bernays-Schönfinkel

fragment with Datalog fragment is decidable. The bounded model checking problem for
pointer programs is then reduced to the satisfiability of formulas in Bernays-Schönfinkel
class with Datalog. The authors gave an algorithm solving the satisfiability problem in
2NEXPTIME.

In this paper, we improve the logic from [7] in terms of both expressibility and
complexity. The two-variable fragment of Bernays-Schönfinkel class (BS2 for short) is
simply a fragment of first-order logic restricted to two universally quantified variables.
In the new logic, we are able to use both universal and existential quantifiers and addi-
tionally we may use counting in quantifiers. Moreover, the logic in [7] has additional
semantic restrictions, some of which we are able to drop here. This gives us an increase
of expressibility.

We give an algorithm for testing satisfiability of our logic that runs in NEXPTIME.
The algorithm is based on a translation to 2-variable logic with counting quantifiers.
Since our logic subsumes the Bernays-Schönfinkel class withDatalog (further called
BS2 + Datalog), we improve the previous complexity upper bound. We also give a
matching lower bound and establish NEXPTIME-completenessof both logics. Finally,
we also solve the entailment problem, which was left open in [7]. It has further conse-
quences for the applicability of the logic in verification.

The paper is organized as follows. The main results on satisfiability and entailment
are proved in Section 3. Section 4 gives the corresponding lower bound. In Section 5
we show that dropping one of the restrictions on sharing datathat forbids us to model
directed acyclic graphs leads to a very complex logic. The main part of the paper is
finished with the discussion on related and future work. In the appendix we give some
proofs that did not fit in the page limit and an example showingthat our logic can also
be used to specify verification conditions of nontrivial program manipulating linked
data structures.

2 Preliminaries

LetΣE (extensional database vocabulary) be a vocabulary containing relational symbols
of arity at most 2 and functional symbols of arity 0 (that is, constants). LetΣI (inten-
sional database vocabulary) be a relational vocabulary containing unary symbols only
and letΣP be a set containing some ofΣE binary predicates. Assume in addition that a
countably infinite set of variablesV is available.ΣE is a vocabulary of some (to be pre-
cised later) two-variable logic formula,ΣI defines symbols that occur in heads of clauses
from Datalog programs andΣP — binary symbols used in their bodies. Following [7],
we are interested inmonadic tree-automaton likeDatalog programs, which are Datalog
programs whose clauses are similar to transitions in edge-labeled tree automata.

Definition 1. A monadic tree-automaton like Datalog program overΣI ,ΣE andΣP is
a conjunction of clauses of the form

p(u)← B, r1 (u, v1) ,q1(v1), . . . , r l(u, vl),ql(vl)

where

– B is a conjunction ofΣE-literals containing constants and possibly the variable u,

2

– p,q1, . . . ,ql areΣI -predicates,
– r1, . . . , r l are distinctΣP-predicates,
– l ≥ 0, u, v1, . . . , vl are distinct variables from V.

Monadic tree-automata like Datalog programs are further called (monadic, t.a. like)
Datalog programs for short.

Example 1.A binary tree withleft andright pointers, whose leaves point to constant
NULL is defined by Datalog program

tree(x)← x = NULL; tree(x)← left(x, y), tree(y), right(x, z), tree(z).

Let P be a monadic Datalog program. Given aΣE-structureM, theleast extensionof M
wrt. P is the least (ΣE ∪ΣI)-structure that is a model of the clause setP. More formally,
we have the following definition.

Definition 2 (Least extension).Let M be a relational structure overΣE, P be a monadic
Datalog program overΣI ,ΣP andΣE whose variables come from V. Let FM

= {p(e) |
p(·) ∈ ΣI ∧ e ∈ M}. The direct consequence operator TM

P is a function from2FM
→ 2FM

defined as follows.

TM
P (I) = I ∪ {p(e) | ∃[p(x)← body] ∈ P.∃Θ ∈ V → M. Θ(x) = e∧ M ∪ I |= (bodyΘ)}

Let TM
P =

⋃∞
i=1(TM

P)i(∅). Then the least extension of M with respect to P is a structure
MP overΣE ∪ ΣI , such that MP = M ∪ TM

P .

Definition 3 (Sliced Datalog program).A monadic tree-automaton like Datalog pro-
gram P overΣI , ΣE andΣP is called sliced if, for some natural k, P=

∧k
i=1 Pi where

– each Pi is a monadic tree-automaton like Datalog program over vocabulariesΣ i
I

,Σ i
P andΣE,

– Σ i
I ∩ Σ

j
I = ∅ andΣ i

P ∩ Σ
j
P = ∅ for i , j, 1 ≤ i, j ≤ k,

–
⋃k

i=1Σ
i
I = ΣI and

⋃k
i=1Σ

i
P = ΣP.

We sometimes write{P1, . . . ,Pk} instead of
∧k

i=1 Pi . In the following, we will use sliced
programs in two ways. The first is to control if some data structures are allowed or are
forbidden to share substructures (see the bounded-sharingrestriction below). The sec-
ond way is to solve the entailment problem, where we have to assure that the structures
defined by the two formulas may interfere.

The two-variable fragment of Bernays-Schönfinkel class (BS2 for short) is the set
of all formulas of the form∀x∀y φ, whereφ is a quantifier-free first-order formula over
ΣE. We specify reachability predicates via sliced Datalog programs.

Definition 4 (BS2 + Datalog). A formula of Bernays-Schönfinkel class with Datalog is
a conjunctionφ ∧ P∧ Q where

– φ is a BS2 formula overΣE,
– P = {P1, . . . ,Pk} is a sliced monadic tree-automaton like Datalog program

3

– query Q is conjunction of constant positive atoms
∧

i pi(ci) (where pi ∈ ΣI and
ci ∈ ΣE) and BS2 class formulas overΣE ∪ ΣI with negative occurrences of pi(x)
atoms only (pi ∈ ΣI and x is a variable).

Example 2.Tree rooted in a constantroot whose nodes have backward linkr to root
is specified asBS2 + Datalog formulaφ ∧ P∧ Q, whereQ is tree(root) ∧ ∀xtree(x) →
(x , NULL→ r(x, root)), P is Datalog program from example 1 (with one slice only)
andφ is simply true.

For a givenΣE-formulaφ and a queryQ, we say thatΣE-structureM satisfiesφ∧P∧Q,
denoted byM |= φ∧P∧Q, if MP is a model ofφ∧Q, whereMP is the least extension of
M wrt. P. However, this still does not define the semantics of Bernays-Schönfinkel class
with Datalog. The logic was designed to model heaps of pointer programs, therefore we
are not interested in general satisfiability of formulas in this class, but we impose two
additional restrictions on models.

Functionality. We require that all binary relations are functional, i. e.,for all pred-
icatesr in ΣE, structureM (and thus alsoMP must be a model of∀u, v1, v2

(

r(u, v1) ∧
r(u, v2) → v1 = v2

)

. This ensures that every pointer at any given moment points to at
most one heap cell.

Bounded-Sharing. We require that the binary relations occurring in each slice Pi

of the Datalog programP = {P1, . . . ,Pk} represent pointers in data structures that do
not share memory with other data structures defined byPi . That is, structureMP must
be a model of all sentences of the form∀u1,u2, v

(

s1(u1, v) ∧ s1(u2, v) ∧ u1 , u2 →

const(v)
)

and∀u1,u2, v
(

s1(u1, v)∧s2(u2, v)→ const(v)
)

, wheres1 ands2 are two distinct
predicates occurring inΣ i

P andconst(v) is a shorthand for the disjunction
∨

c∈ΣE
v = c.

Note that the bounded-sharing restriction is not imposed onall binary predicates but
just on the ones occurring in the Datalog programP.

As an example consider two programs defining lists

list1(x)← x = NULL; list1(x)← next1(x, y), list1(y).
list2(x)← x = NULL; list2(x)← next2(x, y), list2(y).

together with a formula∀x¬next1(NULL, x) ∧ ¬next2(NULL, x). If the two programs
are in the same slice then, with the exception of constants, they are not allowed to have
common nodes. On the other hand, if they are in different slices, they may freely share
nodes.

The functionality and bounded-sharing restrictions are expressible in the Bernays-
Schönfinkel class with equality, but they require more than two variables, so we can-
not add them to the formulaφ. Each Datalog slicePi can define multiple structures.
Constant elements are intended to model nodes pointed to by program variables. Such
nodes are allowed to be pointed to by elements of different structures, even from the
same slice.

Definition 5 (Semantics of Bernays-Schönfinkel class with Datalog). Let ϕ = φ ∧

P∧ Q and M be a finite structure overΣE such that

– Structure MP, that is the least extension of M wrt. P, obeys functionalityand
bounded-sharing restrictions,

4

– MP |= φ ∧ Q,

Then M is said to satisfyϕ, in symbols M|= ϕ.

Remark 1.Contrary to our definition ofΣE, in [7] vocabulary ofφ doesn’t contain unary
relational symbols. One can however get rid of them by introducing additional constant
(sayd) and replacing each occurrence of atomr(x) by r ′(x,d), wherer ′ is fresh binary
symbol. Thus presence of unary symbols inΣE incurs no increase in asymptotic com-
plexity of satisfiability problem. Furthermore in [7] queriesQ are limited to be conjunc-
tion of constant positive atoms, only one-sliced Datalog programs were allowed and ad-
missible models obeyed additional semantic restriction called intersection-freeness. We
removed here this last restriction since it is expressible as a query

∧

p(·)∈ΣI

∧

q(·)∈ΣI ,q,p ∀v(p(v)∧
q(v)→ const(v)). These extensions didn’t however increase asymptoticalcomplexity of
satisfiability and entailment problems compared to [7]. Lower bound proof from section
4 holds as is for logic defined in [7].

Definition 6 (Derivation). Let M be a structure overΣE satisfying the bounded-sharing
restriction, let P be a monadic sliced t.a. like Datalog program, let p∈ ΣI and e∈ M.
A derivationderiv(p(e)) is a tree labeled with atoms of the form q(a) with q ∈ ΣI and
a ∈ M such that

– the root of deriv(p(e)) is labeled with p(e),
– if a leaf of deriv(p(e)) is labeled with q(a) then there exists a clause[q(x)← B] ∈ P

and a valuationΘ such thatΘ(x) = a and M |= BΘ,
– for every inner node of deriv(p(e)) labeled with q(a) there exists a clause[q(u) ←

B∧
∧k

i=1(r i(u, vi) ∧ qi(vi))] ∈ P and a valuationΘ, such thatΘ(u) = a, M |= BΘ ∧
∧k

i=1 r i(a, Θ(vi)) and the children of q(a) are roots of derivations deriv(qi(Θ(vi)) for
all 1 ≤ i ≤ k.

Note that since vocabularies of different slices are disjoint, the whole treederiv(p(e))
contains only symbols from one slice.

A constant atom is an atom of the formp(c) wherec is an element interpreting a
constant symbol. A constant derivation is a derivation of a constant atom. A minimal
derivation is a derivation whose all subderivations have the minimal possible height.
Unless otherwise specified, all derivations we consider areminimal.

Remark 2.Without loss of generality we assume that all leaves in derivations are con-
stant atoms, that is, for all clauses of the formp(u) ← B in P there exists a constant
c ∈ ΣE such thatu = c is a conjunct inB. If p(u)← B does not satisfy this requirement,
then it is replaced byp(u) ← B, c(u, y), c(y) andc(x) ← x = c, wherec, c(·) andc(·, ·)
are fresh constant, fresh unaryΣI -predicate and fresh binaryΣP-predicate, respectively.
By definition of vocabulariesc(·, ·) is then also a freshΣE-predicate.

Definition 7 (p(e)-tree). A p(e)-tree is a maximal subtree of a derivation deriv(p(e))
with root labeled p(e) and no inner nodes labeled with constant atoms.

By remark 2 leaves of each finite derivation are labeled by constant atoms, so are leaves
of anyp(e)-tree. The least extension (Definition 2) gives a model-theoretic semantics of
Datalog programs overΣE-structures; derivations (Definition 6) gives a proof-theoretic
semantics. By a simple inductive proof it is not difficult to see that they are equivalent.

5

Proposition 1. Let M be a finite structure satisfying the bounded-sharing restriction.
There exists a finite derivation of p(e) if and only if p(e) ∈ TP

M .

3 NEXPTIME upper bound

In this section we prove that the satisfiability and entailment problem for Bernays-
Schönfinkel class with Datalog is decidable in NEXPTIME. We give a satisfiability
(resp. entailment) preserving polynomial translation from Bernays-Schönfinkel class
with Datalog to two-variable logic with counting quantifiers.

The two variable logic with counting (C2) is a fragment of first order logic contain-
ing formulas whose all subformulas have at most two free variables, but these formulas
may contain counting quantifiers∃≤k,∃≥k,∃=k. Decidability of the satisfiability problem
was discovered independently in [11] and [26]. First NEXPTIME results, under unary
encoding of counts were obtained in [26], [27] and under binary coding in [28]. While
C2 doesn’t enjoy the finite model property it is natural to ask for finite satisfiability. This
question was positively answered in [11], NEXPTIME complexity was established by
[28] even under binary encoding. The (finite) satisfiabilityof C2 is NEXPTIME-hard
as a consequence of NEXPTIME-hardness of the two variable fragment of first-order
logic.

Our translation is done in two steps. First we translate the input formula to an in-
termediate logicC2

r + Datalog+ bsr (restrictedC2 with Datalog and bounded-sharing
restriction), and then we translate the resulting formula to C2. The reason to introduce
this intermediate logic is that it is more expressive than Bernays-Schönfinkel class with
Datalog and may be of its own interest. In this logic the Bernays-Schönfinkel part of
the formula (that is, theφ conjunct in a formula of the formφ ∧ P ∧ Q) is relaxed to
use arbitrary quantifiers (not only the∀ quantifier), even with counting; the queryQ is
incorporated into the conjunctφ and relaxed to be arbitrary formula with constant atoms
and restricted occurrences of non-constantΣI -atoms. This is a good step forward in abil-
ity to express more complicated verification conditions of pointer programs. Moreover,
we skip one out of two semantic restrictions on models, namely functionality which
is expressible inC2. The bounded-sharing restriction could not be dropped — it is the
restriction that allows to keep the complexity of Datalog programs under control. In
Section 5 we show that the complexity of unrestrictedC2

r with Datalog is much worse
than NEXPTIME.

Let φ be aC2 formula overΣE ∪ΣI and letφ′ be its negational normal form. We say
that aΣI -atomp(x) has a restricted occurrence inφ if either p(x) occurs positively inφ′

and only in in scope of existential quantifiers orp(x) occurs negatively inφ′ and only in
scope of universal quantifiers. For examplep(x) has a restricted occurrence in formulas
∀x p(x) → ψ, ∀x (p(x) ∧ q(x)) → ψ, ∃x p(x) ∧ ψ or ∃x p(x) ∧ q(x) ∧ ψ, whereψ is
someC2 formula with one free variablex andq(·) is someΣI -predicate. An occurrence
of atomp(x) in formula∀y∃xp(x)∧ψ is not restricted, becausep(x) is occurs positively
and in scope of a∀ quantifier.

Definition 8 (Syntax of C2
r + Datalog+ bsr). A formula of C2

r + Datalog+ bsr is a
conjunction of the formφ ∧ P such that

6

– φ is a formula of the two-variable logic with counting quantifiers over the signature
ΣE ∪ ΣI ,

– all ΣI -literals occurring inφ are either constant literals or have only restricted
occurrences inφ, and

– P is a sliced monadic tree-automaton like Datalog program.

Definition 9 (Semantics ofC2
r + Datalog+ bsr). Let ϕ = φ ∧ P be a formula of C2r +

Datalog+ bsrand let M be a finite structure overΣE such that

– Structure MP, that is the least extension of M wrt. P, obeys bounded-sharing re-
striction, and

– MP |= φ.

Then M is said to satisfyϕ, in symbols M|= ϕ.

The following proposition reduces satisfiability ofBS2 +Datalog to satisfiability of
C2

r + Datalog+ bsr.

Proposition 2. For every formulaϕ = φ ∧ P ∧ Q in Bernays-Schönfinkel class with
Datalog there exists an equivalent formulaψ of C2

r + Datalog+ bsrof size polynomial
in the size ofϕ.

Proof. Let ψ be the conjunction of the following formulas

1. φ ∧ Q,
2.
∧

r(·,·)∈ΣE
∀u∃≤1v r(u, v),

3. P.

Thenψ is a formula ofC2
r +Datalog+ bsr, becauseφ is aBS2 formula and allΣI−atoms

in φ ∧ Q are either constant atoms or have restricted occurrences only. Furthermore
conjunct 2 expresses the functionality restriction, soψ is equivalent toϕ. ⊓⊔

We say that a formulaϕ is entails a formulaϕ′ (in symbolsϕ |= ϕ′) if for all structuresM
we have thatM |= ϕ impliesM |= ϕ′. Below we show that entailment problem ofBS2 +

Datalog is reducible to satisfiability ofC2
r +Datalog+ bsr. We start with an observation

that names of predicates defined by Datalog programs may be arbitrarily changed. By
a renaming function we mean here any bijection between different vocabularies.

Lemma 1. Let ϕ = φ ∧ P ∧ Q be a BS2 + Datalogclass formula, where P is a sliced
Datalog program overΣI andΣP. Let ϕren be a formulaϕ whereΣI -predicates were
arbitrarily renamed. Then M|= ϕ if and only if M |= ϕren.

Proposition 3 (entailment).For every formulasϕ = φ∧P∧Q andϕ′ = φ′∧P′∧Q′ in
the BS2+Datalogclass there exists a formulaψ of C2

r +Datalog+ bsrof size polynomial
in the size ofϕ andϕ′, such thatϕ |= ϕ′ if and only ifψ is unsatisfiable.

Proof. Let ΣI ,ΣP be vocabularies of sliced monadic t.a. like Datalog programP, let
ΣI ′ ,ΣP′ be vocabularies ofP′. By previous lemma it may be w.l.o.g assumed, that
ΣI ∩ ΣI ′ = ∅. Furthermore ifr(·, ·) ∈ ΣP ∩ ΣP′ then replacing each occurrence ofr(·, ·)
in P by a fresh predicater ′(·, ·) and adding conjunct∀x∀yr(x, y) ⇐⇒ r ′(x, y) to φ

7

decreases cardinality ofΣP ∩ ΣP′ while preserving entailment. By iteratively applying
this procedure it can be ensured, that alsoΣP ∩ ΣP′ = ∅. Let P = {P1, . . . ,Pk} and
P′ = {P

′

1, . . . ,P
′

l }. It follows that{P1, . . . ,Pk,P
′

1, . . . ,P
′

l } is also a sliced monadic Data-
log program. Formulaψ is defined to be (φ∧Q∧ ¬(φ′ ∧Q)) ∧ {P1, . . . ,Pk,P

′

1, . . . ,P
′

l }.
Notice also, that by definition ofBS2+Datalog formulas, allΣI−atoms in¬(φ′∧Q′) are
either constant atoms or have restricted occurrences, soψ is a correctC2

r +Datalog+ bsr
formula. We now prove, thatϕ |= ϕ′ if and only if ψ is unsatisfiable. LetΣ be a dictio-
nary of formulasφ andφ′ (in particularΣP ∪ ΣP′ ⊆ Σ). Let M be an arbitrary structure
overΣ. ThenM |= φ ∧ P ∧ Q if and only if the least extension ofM wrt. P models
φ ∧ P: MP |= φ ∧ Q. SinceΣP ∩ ΣP′ = ∅, this is equivalent toMP∧P′ |= φ ∧ Q. Simi-
larly, M |= φ′ ∧ P′ ∧ Q′ is equivalent toMP∧P′ |= φ

′ ∧ Q′. Therefore, by definition of
entailment,φ ∧ P ∧ Q 6|= φ′ ∧ P′ ∧ Q′ if and only if there exists a structureM, such
that MP∧P′ |= φ ∧ Q andMP∧P′ 6|= φ

′ ∧ Q′, that is if (φ ∧ Q∧ ¬(φ′ ∧ Q)) ∧ (P∧ P′) is
satisfiable. ⊓⊔

We now give a polynomial translation from satisfiability ofC2
r +Datalog+ bsr to finite

satisfiability ofC2. First the problem is simplified a bit by removing positive occur-
rences of non-constantΣI− atoms.

Proposition 4. Letϕ = φ ∧ P be a C2
r + Datalog+ bsr formula. Then there exists C2

r +

Datalog+ bsrformulaϕ′ = φ′∧P, such thatϕ′ is satisfiable if and only ifϕ is satisfiable
and no atom of the form p(x) (p(·) ∈ ΣI and x is a variable) occurs positively inφ′.

Proof. Assume w.l.o.g. thatφ is in negational normal form. By definition ofC2
r +

Datalog+ bsr, each positive occurrence of atomp(x) is in scope of∃ quantifiers only.
In particular variablex is existentially quantified, so it can be skolemized. This process
replacesx by a fresh constant. By iteration a required formulaφ′ can be obtained. ⊓⊔

Definition 10 (Translation from C2
r +Datalog+ bsrto C2). Letϕ = φ∧P be a formula

of C2
r + Datalog+ bsrover the vocabularyΣE ∪ ΣI , such that no atom of the form p(x)

(p(·) ∈ ΣI and x is a variable) occurs positively inφ. LetΣP be the set of binary relations
from P = {P1, . . . ,Pk} and letΣ be a vocabulary containingΣE ∪ ΣI and predicates
const(·), {p(c)-nodeq(·),p(c)-edgeq(·, ·),p(c)-leafq(·) | p,q ∈ ΣI , c ∈ ΣE}. The translation
τ(ϕ) of ϕ to C2 overΣ is the conjunction of the following formulas.

1. φ
2. ∀xconst(x)↔

∨

c∈ΣE
x = c

3.
k
∧

i=1

∀v(¬const(v)→ ∃≤1u(
∨

r(·,·)∈Σ i
P

r(u, v)))

whereΣ1
P, . . . , Σ

k
P are vocabularies of binary symbols used by clauses from slices

P1, . . . ,Pk respectively,
4.

k
∧

i=1

∧

r(·,·)∈Σ i
P

∧

s(·,·)∈Σ i
P,s,r

∀u∀v(r(u, v) ∧ s(u, v)→ const(v))

8

5.

∀u p(u)←
l
∧

i=1

∃v(r i(u, v) ∧ qi(v)) ∧ B(u)

for all Datalog clauses p(u)← B(u), r1 (u, v1) ,q1(v1), . . . , r l(u, vl),ql(vl) from P,
6.

(q(c)→
m
∨

j=1

(
l j
∧

i=1

∃v(r j
i (c, v) ∧ q j

i (v) ∧ p(c)-edgeq j (c, v)) ∧ Bj(c)))

and

∀u(q(u) ∧ ¬const(u)∧p(c)-nodeq(u)→
∨m

j=1(
∧l j

i=1 ∃v(r j
i (u, v) ∧ q j

i (v) ∧ p(c)-edgeq j (u, v)) ∧ Bj(u)))

for all q ∈ ΣI , all c ∈ ΣE and all p ∈ ΣI where{q(u) ← Bj(u) ∧
∧l j

i=1(r j
i (u, vi) ∧

q j
i (vi))}mj=1 is the set of all clauses from P defining the predicate q,

7.
∀x∀y p(c)-edgeq(x, y) ∧ ¬const(y)→ p(c)-nodeq(y)

for all p(·),q(·) ∈ ΣI and all c∈ ΣE

8.
∀x p(c)-edgeq(x,d)→ p(c)-leafq(d)

for all p(·),q(·) ∈ ΣI and all c,d ∈ ΣE,
9.

p(c)-leafq(d) ∧ q(d)-leafr (e)→ p(c)-leafr (e)

for all p(·),q(·), r(·) ∈ ΣI and all c,d,e ∈ ΣE

10.
¬p(c)-leafp(c)

for all p(·) ∈ ΣI and all c∈ ΣE.

The intuition behind this translation is the following. First, observe that the conjuncts 3
and 4 express the bounded-sharing restriction. Then we wantto rewrite Datalog clauses
to implications (conjunct 5), but we need also the reverse directions of these impli-
cations — this is done with conjunct 6, separately for elements interpreting and not
interpreting constants. Now we are almost done, but this construction possibly leads
to cyclic structures (that would correspond to infinite derivations), but thanks to the
bounded-sharing restriction it is possible to forbid cycles containing constant elements,
which is enough for correctness since only formulas fromCr are allowed. LetM |= τ(ϕ).
Then for any givenp(c), such thatM |= p(c), the set{p(c)-nodeq(e) | q ∈ ΣI ∧

M |= p(c)-nodeq(e)} forms a superset of non-constant nodes of ap(c) − tree, the set
{p(c)-edgeq(e1,e2) | q ∈ ΣI ∧M |= p(c)-edgeq(e1,e2)} a superset of its edges and finally
the set{p(c)-leafq(d) | q ∈ ΣI ∧ M |= p(c)-leafq(d)} is a superset of its leaves. This is
enforced by conjuncts 6–8. Irreflexivity (conjunct 10) of transitive closure (conjunct 9)
of “being a leaf of” relation assures inexistence of cycles.More formally, we have the
following proposition that we prove in the appendix.

9

Proposition 5. Letϕ = φ ∧ P be a C2
r + Datalog+ bsr formula. Thenϕ is satisfiable if

and only if the C2 formulaτ(ϕ) is finitely satisfiable.

Observe that the size ofτ(ϕ) is polynomial in the size ofϕ, which together with
Proposition 4 gives us the following corollary.

Corollary 1. The satisfiability problem for C2r + Datalog+ bsr is in NEXPTIME.

Together with Proposition 2 and Proposition 3 this gives us our main theorem.

Theorem 1. The satisfiability and entailment problems for Bernays-Schönfinkel class
with Datalog are in NEXPTIME.

4 NEXPTIME lower bound

In this section we prove that the satisfiability problem for Bernays-Schönfinkel class
with Datalog is NEXPTIME-hard. This is done by a reduction from the following
version of a tiling problem. It is known [9] that this versionof the tiling problem is
NEXPTIME-complete.

Definition 11 (Tiling problem).
Instance: a tuple 〈T,H,V, k〉 where T is a finite set of tile colors, H,V ⊆ T × T are
binary relations and k is a positive integer encoded in binary (on⌈logk⌉ bits).
Question: does there exist a tiling of k× k square by1 × 1 tiles such that colors of
each pair of horizontally adjacent tiles satisfy the relation H and colors of each pair of
vertically adjacent tiles satisfy V?

If the question in the tiling problem has a positive answer then we say that the
instance〈T,H,V, k〉 has a solution or that there exists a good tiling for this instance. In
the following, for a given instance〈T,H,V, k〉 we define a formulaϕ of the Bernays-
Schönfinkel class with Datalog such thatϕ is satisfiable if and only if there exists an
appropriate tiling.

The idea is that any model of the formula describes a good tiling and any such tiling
defines a model ofϕ. The size of the formula will be polynomial in|T | + |H| + |V| +
⌈logk⌉. Using simple Datalog program and simulating two counters by ∀∀ formulas it
is enforced that any model ofϕ hask × k square as a substructure. Is is then enough to
constrain pairs of adjacent nodes according toH andV. Conversely any good tiling can
be labelled byΣE predicates to form model ofϕ. The detailed description is given in
the appendix.

Theorem 2. The satisfiability problem for Bernays-Schönfinkel class with Datalog is
NEXPTIME-hard.

The monadic Datalog program of theBS2 + Datalog formula constructed here has only
one slice and its queryQ is simply a constantΣI -atom. There are also no two distinct
ΣI -predicates. Hence, this reduction also establishes NEXPTIME lower bound for the
satisfiability and entailment problems for the logic definedin [7].

10

5 Hardness ofC2
r + Datalog

In Section 3 we have shown that the logicC2
r + Datalog+ bsr is decidable in NEXP-

TIME. In this section we show that if we skip the bounded-sharing restriction then the
obtained logicC2

r + Datalog becomes much harder. Dropping this restriction is quite
tempting, because it would allow to reason about data structures that do share substruc-
tures, like DAG representations of trees. Here we prove thatwith the possibility to share
structure, the logic becomes powerful enough to express vector addition systems (VAS).
The reduction in Section 3 relied on the fact that in order to conform with the least fixed
point semantics of Datalog we have to keep cycles on the heap under control, and with
the bounded-sharing restriction we have to worry only aboutcycles with occurrences
of constants. Without this restriction we would have to additionally handle cycles that
avoid constants, which is out of scope of theC2 logic.

Vector addition systems [25] is a very simple formalism equivalent to Petri Nets. It is
known that its reachability problem is decidable [18,23,21] and EXPSPACE-hard [22],
but precise complexity is not known, and after almost 40 years of research it is even not
known if the problem is elementary. Below we give an exponential reduction from the
reachability problem for VAS to the satisfiability problem for C2

r + Datalog. Although
we believe thatC2

r + Datalog is decidable, it is very unlikely that it has an elemen-
tary decision algorithm since existence of such an algorithm implies existence of an
elementary algorithm for VAS reachability.

Now we recall definitions from [25]. Ann-dimensional vector addition system is an
ordered pair〈v,W〉wherev is ann-tuple of non-negative integers andW is a finite set of
n-tuples of integers. Given twon-tuplesx = 〈x1, . . . , xn〉 andy = 〈y1, . . . , yn〉 we write
x ≤ y if xi ≤ yi for all i = 1, . . . ,n and we definex+y to be the tuple〈x1+y1, . . . , xn+yn〉.
The reachability problem for VAS is the problem whether for agiven VAS〈v,W〉 there
exists a finite sequencew1, . . . ,wm such that

– wi ∈W for all i = 1, . . . ,m,
– v + w1 + . . . + wi ≥ 0 for all i = 1, . . . ,m, and
– v + w1 + . . . + wm = 0

where0 is then-tuple〈0, . . . ,0〉.
To reduce VAS reachability problem to satisfiability inC2

r + Datalog we first rep-
resent solutions to the reachability problem as directed acyclic graphs and then write
a formula that describes such graphs.

Definition 12 (Transition sequence dag).Let〈v,W〉 be an n-dimensional VAS. A tran-
sition sequence dag for〈v,W〉 is a directed acyclic multigraph G such that

– nodes of G are n0,n1, . . . ,nm for some positive integer m,
– node n0 corresponds to vectorv, each node ni for i = 1, . . . ,m corresponds so some

vector in W,
– edges of G are colored with colors numbered from 1 to n (the dimension of the VAS)
– if an edge of G starts in ni and ends in nj then i< j,
– if v = 〈v1, . . . , vn〉 then for all i = 1, . . . ,n there are vi edges of color i starting in

n0,

11

– if a node n corresponds to a vectorw = 〈w1, . . . ,wn〉 and wi ≥ 0 then there are wi
edges of color i starting in n, and there are no edges of color iending in n,

– if a node n corresponds to a vectorw = 〈w1, . . . ,wn〉 and wi ≤ 0 then there are wi
edges of color i ending in n, and there are no edges of color i starting in n.

Figure 1 shows an example of a transition sequence dag for thevector addition system
〈〈4,4〉, {〈−1,−2〉, 〈−1,2〉}〉. Edges of color 1 are drawn with solid arrows while edges of
color 2 are drawn with dotted arrows. Nodesn1,n3 andn4 correspond to vector〈−1,−2〉;
noden2 corresponds to vector〈−1,2〉.

n0 n1 n2 n3 n4

Fig. 1.Transition sequence dag for the vector addition system〈〈4,4〉, {〈−1,−2〉, 〈−1,2〉}〉

It is not difficult to see that the following lemma holds.

Lemma 2. The reachability problem for a vector addition system〈v,W〉 has a solution
if and only if there exists a transition sequence dag for〈v,W〉.

Now we are ready to give the reduction. Let〈v,W〉 be ann-dimensional vector addition
system. We construct aC2

r +Datalog formulaϕ = φ ∧ P as follows. The vocabularyΣE

is {ei(·, ·) | 1 ≤ i ≤ n} ∪ {ei, j(·, ·) | 1 ≤ i ≤ n∧ 1 ≤ j ≤ maxj} ∪ {tosink(·, ·), src, sink}. We
use the predicateei for edges of colori. Additionally, to capture multiple edges of the
same color starting in the same node we shall use touches of colors: the predicateei, j

is used for touchj of color i. Here j ranges from 1 to the maximum number occurring
in a vector inW ∪ {v} as i-th component, denoted maxi . The constantsrc is used to
model the starting node of a transition sequence dag. To haveexactly one ending node
we introduce additionalsinknode and connect all nodes of outdegree 0 to it.

The vocabularyΣI is {nodew(·) | w ∈W} ∪ {colori(·) | 1 ≤ i ≤ n} ∪ {start(·),end(·)}.
First we give Datalog programP. It consists of the following clauses.

1.

start(x)← x = src∧
n
∧

i=1

vi
∧

j=1

ei, j(x, yi, j) ∧ colori(yi, j)

wherev = 〈v1, . . . , vn〉,
2. colori(x)← ei(x, y),nodew(y) for all w ∈W,
3.

nodew(x)← x , src∧
∧

k:wk>0

wk
∧

j=1

ek, j(x, yk, j) ∧ colork(yk, j)

for all w ∈W such that{k | wk > 0} , ∅

12

4.
nodew(x)← x , src∧ tosink(x, y),end(y)

for all w ∈W such that{k | wk > 0} = ∅
5. end(x)← x = sink.

To define the formulaφ we use two macro-definitions:forbid-out(x,S) is an abbrevia-
tion for∀y(

∧

r(·,·)∈S ¬r(x, y)) andforbid-in(S, x) is∀y(
∧

r(·,·)∈S ¬r(y, x)). Thenφ is defined
as the conjunction of

1. Functionality restriction and intersection freeness (expressed as in the proof of
Proposition 2 in Section 3 and as in Remark 1 in Section 2 respectively),

2.
∀x nodew(x)→ forbid-out(x, ΣE \ {ei, j(·, ·) | wi > 0∧ j ≤ wi}),

∀x nodew(x)→ forbid-in(ΣE \ {ei(·, ·) | wi < 0}, x)

∀x nodew(x)→ (
∧

i:wi<0

(∃=−wi
y ei(y, x)))

for all w ∈W
3. ∀y colori(y) → ∃=1

x (
∨maxi

j=1 (ei, j(x, y) ∧ forbid-in(ΣE \ {ei, j}, y))) and∀y colori(x) →
forbid-out(x, ΣE \ {ei})

4. ∀y end(y)→ forbid-out(x, ΣE) ∧ forbid-in(ΣE \ {tosink}, y)
5. ∀xstart(x) → forbid-in(ΣE, x) ∧ forbid-out(x, ΣE \ {ei, j(·, ·) | vi > 0 ∧ j ≤ vi})

wherev = 〈v1, . . . , vn〉

6. start(src).

Proposition 6. Let 〈v,W〉 be an n-dimensional vector addition system and letϕ be
the C2

r + Datalogformula constructed above. The reachability problem for〈v,W〉 has
a solution if and only ifϕ is satisfiable.

Proof (sketch).(⇒) Assume that〈v,W〉 has a solution. LetG be a transition sequence
dag for〈v,W〉. For every edgee= 〈ni ,n j〉 of colork in G introduce an intermediate node
ne; label the nodene and the edge〈ne,n j〉 with color k; if e was thel-th edge of color
k starting in the nodeni then label the edge〈ni ,ne〉 with touch l of color k. Removee
fromG. Add a new nodesinkto the graph and connect all nodes that have no successors
in G to it via edges labeledtosink. Label noden0 by constantsrc. Compute the least
extension of the constructed structure wrt P. The obtained graph is a model ofϕ.

(⇐) Take a model ofϕ. By clauses 3 and 4 each element labelednodew has at least
required by the vectorw number of successors of each color, by conjuncts 2 inφ it has
exactly required number of successors and predecessors. Clause 2 ofP together with
conjuncts 3 ofφ ensures that all elements labeledcolori are intermediate elements on
edges of colori. By removing these intermediate elements and the element interpreting
thesink constant we obtain some graphG. SinceG comes from a model of a Datalog
program, it is acyclic. A topological sorting of this graph shows that it is a transition
sequence dag for〈v,W〉, so〈v,W〉 has a solution. ⊓⊔

13

6 Related work

Automated verification of programs manipulating dynamically allocated pointer struc-
tures is a challenging and important problem. It has received a lot of attention recently.
We refer the reader to [7] for a discussion of relations between our approach and work
based on abstract interpretation and shape analysis [15,34,31], fragments of first-order
logic with transitive closure or least fixed point [14,32], reachability logic [1], monadic
second order logic [17,24], graph logics based on C2 [19,29], separation logic [30,4] and
bounded model checking [5,16,8,12]. More recent work includes [2,33,20,3,6]. The last
three papers focus on reasoning about lists and cannot express properties like reachabil-
ity in a tree between a pair of program variables. In [2] the authors are able to analyze
trees without sharing by simulating them by a set of converging lists. They then ap-
ply abstraction refinement framework and verify a finite-state over-approximation of
the input program. In contrast, we allow bounded sharing andin our bounded-model-
checking application we check properties of an under-approximation (due to a bounded
execution of a program) of an infinite-state system. It seemsthat in terms of expressibil-
ity the logic most related to ours is the one from [33]. The exact difference in expressive
needs to be investigated, but the two logics differ in terms of complexity and underlying
decision procedures. The satisfiability problem for the logic in [33] has NEXPTIME
lower bound and elementary upper bound and it is based on a translation to monadic
second-order logic on trees (the authors say that they have another doubly-exponential
procedure, but it is not published).

7 Conclusion and future work

We extended the work from [7] on bounded model checking of imperative programs
that manipulate dynamically allocated pointer structureson the heap. We improved the
complexity of this method and increased the expressibilityof the logic. We solved the
entailment problem which opens the possibilities to use thelogic not only in bounded
model checking but also in verification.

Our algorithms are based on a translation to two-variable logic with counting quan-
tifiers (C2). One may ask why we do not use directly this logic. The most important
reason is that in Datalog it is relatively easy to express common data structures; the
semantics based on least fixed points allows to control in a simple way (a)cyclicity of
these structures. Trying to express it inC2 leads to formulas like our translation, which
is of course too complicated to be used.

There are several possibilities for future work. An obviousone is to implement
the method. Another one is investigation of applications inverification, like analysis
whether counterexamples generated by tools based on abstraction-refinement are spu-
rious. Still another one is further extension of the expressibility. Although we have
relaxed some restrictions from [7] (now we are able to express lists that may share
some nodes or that are forbidden to share nodes), we are stillnot able to express DAG
representations of trees. In a separate work (not published) we have developed a direct
algorithm (not based on a translation toC2) for satisfiability of Bernays-Schönfinkel
class with Datalog; we believe that it will be more suitable for implementation and that
it will allow us to express quantitative properties like a tree being balanced.

14

References

1. N. Alechina and N. Immerman. Reachability logic: An efficient fragment of transitive closure
logic. Logic Journal of IGPL, 8:325–337, 2000.

2. Ittai Balaban, Amir Pnueli, and Lenore D. Zuck. Shape analysis of single-parent heaps. In
Proc. of the8th Int. Conference on Verification, Model Checking, and Abstract Interpretation,
Lect. Notes in Comp. Sci. Springer, 2007.

3. Kshitij Bansal, Rémi Brochenin, and Etienne Lozes. Beyond shapes: Lists with ordered data.
In Proceedings of the 12th International Conference on Foundations of Software Science
and Computational Structures: Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2009, pages 425–439, Berlin, Heidelberg, 2009. Springer-
Verlag.

4. J. Berdine, C. Calcagno, and P. O’Hearn. A decidable fragment of separation logic. InProc.
FSTTCS’04, LNCS 3328, pages 97–109. Springer, 2004.

5. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without BDD. In
Proc. TACAS’99, LNCS 1579, pages 193–207. Springer, 1999.

6. Ahmed Bouajjani, Cezara Drăgoi, Constantin Enea, and Mihaela Sighireanu. A logic-based
framework for reasoning about composite data structures. InCONCUR 2009: Proceedings
of the 20th International Conference on Concurrency Theory, pages 178–195, Berlin, Hei-
delberg, 2009. Springer-Verlag.

7. Witold Charatonik, Lilia Georgieva, and Patrick Maier. Bounded model checking of pointer
programs. InProceedings of the 19th Annual Conference of the European Association for
Computer Science Logic (CSL’05), pages 397–412, 2005.

8. E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-Cprograms. InProc.
TACAS’04, LNCS 2988, pages 168–176. Springer, 2004.

9. Martin Fürer. The computational complexity of the unconstrained limited domino problem
(with implications for logical decision problems). InProceedings of the Symposium "Rekur-
sive Kombinatorik" on Logic and Machines: Decision Problems and Complexity, pages 312–
319, London, UK, 1984. Springer-Verlag.

10. Erich Grädel, Martin Otto, and Eric Rosen. Undecidability results on two-variable logics. In
STACS ’97: Proceedings of the 14th Annual Symposium on TheoreticalAspects of Computer
Science, pages 249–260, London, UK, 1997. Springer-Verlag.

11. Erich Graedel, Martin Otto, and Eric Rosen. Two-variable logic with counting is decid-
able. InLICS ’97: Proceedings of the 12th Annual IEEE Symposium on Logic in Computer
Science, page 306, Washington, DC, USA, 1997. IEEE Computer Society.

12. M. Huth and S. Pradhan. Consistent partial model checking.Electronic Notes in Theoretical
Computer Science, 23, 2003.

13. N. Immerman, A. Rabinovich, T. Reps, M.Sagiv, and G. Yorsh.The boundary between
decidability and undecidability for transitive-closure logics. InProceedings of the 18th An-
nual Conference of the European Association for Computer Science Logic (CSL’04), pages
160–174, 2004.

14. N. Immerman, A. Rabinovich, T. Reps, M. Sagiv, and G. Yorsh.The boundary between
decidability and undecidability for transitive-closure logics. InProc. CSL’04, LNCS 3210,
pages 160–174. Springer, 2004.

15. N. Immerman, A. Rabinovich, T. Reps, M. Sagiv, and G. Yorsh.Verification via structure
simulation. InProc. CAV’04, LNCS 3114, pages 281–294. Springer, 2004.

16. D. Jackson and M. Vaziri. Finding bugs with a constraint solver. InProc. ISSTA’00, pages
14–25, 2000.

17. N. Klarlund and M. I. Schwartzbach. Graph types. InProc. POPL’93, pages 196–205, 1993.

15

18. S. Rao Kosaraju. Decidability of reachability in vector addition systems (preliminary ver-
sion). InProceedings of the Fourteenth Annual ACM Symposium on Theory of Computing,
pages 267–281, 1982.

19. V. Kuncak and M. Rinard. On role logic. Technical Report 925, MIT Computer Science and
Artificial Intelligence Laboratory, 2003.

20. Shuvendu Lahiri and Shaz Qadeer. Back to the future: revisiting precise program verification
using smt solvers. InPOPL ’08: Proceedings of the 35th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 171–182, New York, NY, USA,
2008. ACM.

21. Jérôme Leroux. The general vector addition system reachability problem by presburger
inductive invariants. InProceedings of the 24th Annual IEEE Symposium on Logic in Com-
puter Science, pages 4–13, 2009.

22. R. J. Lipton. The reachability problem requires exponential space.62, New Haven, Con-
necticut: Yale University, Department of Computer Science, Research, Jan, 1976.

23. Ernst W. Mayr. An algorithm for the general petri net reachability problem.SIAM J. Comput.,
13(3):441–460, 1984.

24. A. Møller and M. I. Schwartzbach. The pointer assertion logic engine. In Proc. PLDI’01,
pages 221–231, 2001.

25. B. O. Nas. Reachability problems in vector addition systems.The American Mathematical
Monthly, 80(3):292–295, 1973.

26. Leszek Pacholski, Wieslaw Szwast, and Lidia Tendera. Complexity oftwo-variable logic
with counting. InLICS ’97: Proceedings of the 12th Annual IEEE Symposium on Logic in
Computer Science, page 318, Washington, DC, USA, 1997. IEEE Computer Society.

27. Leszek Pacholski, Wieslaw Szwast, and Lidia Tendera. Complexity results for first-order
two-variable logic with counting.SIAM J. Comput., 29(4):1083–1117, 2000.

28. Ian Pratt-Hartmann. Complexity of the two-variable fragment with counting quantifiers.J.
of Logic, Lang. and Inf., 14(3):369–395, 2005.

29. A. Rensink. Canonical graph shapes. InProc. ESOP’04, LNCS 2986, pages 401–415.
Springer, 2004.

30. J. Reynolds. Intuitionistic reasoning about shared mutable data structure, 1999. Proc. of the
1999 Oxford-Microsoft Symposium in Honour of Sir Tony Hoare.

31. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape-analysis problems via 3-valued logic.
ACM TOPLAS, 24(2):217–298, 2002.

32. T. Wies. Symbolic shape analysis. Master’s thesis, MPI Informatik,Saarbrücken, Germany,
2004.

33. G. Yorsh, A. Rabinovich, M. Sagiv, A. Meyer, and A. Bouajjani. Alogic of reachable patterns
in linked data-structures.Journal of Logic and Algebraic Programming, 73(1-2):111 – 142,
2007. Foundations of Software Science and Computation Structures 2006 (FOSSACS 2006).

34. G. Yorsh, T. Reps, and M. Sagiv. Symbolically computing most-precise abstract operations
for shape analysis. InProc. TACAS’04, LNCS 2988, pages 530–545. Springer, 2004.

A Proof of Proposition 5

Proof. (⇒) Assume thatϕ is satisfiable. Take a structureM, such thatM |= ϕ. We
extendM to a structureM′ overΣ by adding some facts. InitiallyM′ = M. Conjunct 1
of τ(ϕ) is satisfied by definition. Label each constant nodee ∈ M′ by const(e) in order
to satisfy 2. Conjuncts 3 and 4 express bounded-sharing restriction and are obviously
satisfied by definition of semantics of our logic. Conjunct 5 is satisfied by definition
of the least extension. Consider the set{p(c) | p ∈ ΣI ∧ c ∈ ΣE} ∩ TP

M. For each its

16

elementp(c) take arbitraryp(c) − tree. Let i be its height. Ifi > 0 then consider each
p(e) − subtreeof p(c) − tree, wheree is a non-constant. Assumep(e) was derived by
ground rule [p(e) ← B∧

∧k
j=1(r j(e,ej) ∧ q j(ej))]. To a newly constructed structureM′

add the facts

– p(c)-edgeq j
(e,ej) for 1 ≤ j ≤ k,

– p(c)-nodeq j
(ej) for each 1≤ j ≤ k, such thatej is non-constant,

– p(c)-leafq j
(ej) for each 1≤ j ≤ k, such thatej is a constant.

This process leads to satisfiability of conjuncts 6, 7 and 8. In order to satisfy conjunct 9
compute the transitive closure of “being a leaf of” relation. That is saturateM′ accord-
ing to conjunct 9. By definition ofTP

M andp(c)−derivationno p(c) is its own leaf. This
leads to satisfaction of conjunct 10. That isM′ |= τ(ϕ) as required.

(⇐) Assume thatτ(ϕ) is satisfiable. LetM |= τ(ϕ). Let M′ be a structureM stripped
to vocabularyΣE and letM′P be the least extension ofM’ with respect toP. Conjunct 5
of τ(ϕ) defines some superset ofTP

M′ , so all negativeΣI -facts true inM remain true in
M′P. To show that thatM′P |= φ it is then enough to prove equivalence thatp(c) ∈ TP

M′ if
and only ifM |= p(c) for all constant literalsp(c) occurring inφ.

Again by Conjunct 5, implicationp(c) ∈ TP
M′ ⇒ M |= p(c) holds . We now show that

the reverse implication is also true. Take anyp(c), such thatM |= p(c). By conjuncts 6 a
derivationderiv(p(c)) of p(c) in structureM can be constructed. WhileM′ is identical
to M onΣE predicates,deriv(p(c)) is also a correct derivation inM′. If deriv(p(c)) were
infinite, then sinceM′ satisfies the bounded-sharing restriction, some path ofderiv(p(c))
would contain multiple occurrences of some factq(d) and , (withq ∈ ΣI andd ∈ ΣE).
But it is impossible since conjunct 10 ensuresM |= ¬q(d)-leafq(d). Soderiv(p(c)) is
finite and by Proposition 1p(c) ∈ TP

M′ . ⊓⊔

B NEXPTIME lower bound

In this section we prove that the satisfiability problem for Bernays-Schönfinkel class
with Datalog is NEXPTIME-hard. This is done by a reduction from the following
version of a tiling problem. It is known [9] that this versionof the tiling problem is
NEXPTIME-complete.

Definition 13 (Tiling problem).
Instance: a tuple 〈T,H,V, k〉 where T is a finite set of tile colors, H,V ⊆ T × T are
binary relations and k is a positive integer encoded in binary (on⌈logk⌉ bits).
Question: does there exist a tiling of k× k square by1 × 1 tiles such that colors of
each pair of horizontally adjacent tiles satisfy the relation H and colors of each pair of
vertically adjacent tiles satisfy V?

If the question in the tiling problem has a positive answer then we say that the
instance〈T,H,V, k〉 has a solution or that there exists a good tiling for this instance. In
the following, for a given instance〈T,H,V, k〉 we define a formulaϕ of the Bernays-
Schönfinkel class with Datalog such thatϕ is satisfiable if and only if there exists an
appropriate tiling.

17

The idea is that any model of the formula describes a good tiling and any such tiling
defines a model ofϕ. The size of the formula will be polynomial in|T | + |H| + |V| +
⌈logk⌉. Using simple Datalog program and simulating two counters by ∀∀ formulas it
is enforced that any model ofϕ hask × k square as a substructure. Is is then enough to
constrain pairs of adjacent nodes according toH andV. Conversely any good tiling can
be labelled byΣE predicates to form model ofϕ. Below we give a detailed description.

We start by defining the vocabularyΣI = {element(·)} andΣE = {start,end,next(·, ·),
adjacentv(·, ·),adjacenth(·, ·)} ∪

⋃⌈logk⌉
i=1 {bv

i (·),b
h
i (·)} ∪

⋃|T |
i=1{ti(·)}.

The formulaϕ is a conjunctionφ ∧ P ∧ Q where the Datalog programP has only
one slice and consists of the following two clauses.

element(x)← x = end
element(x)← next(x, y),element(y)

and the queryQ is element(start).
Before we define the formulaφ, we need some more explanation. We shall use

predicatesbv
1(·), . . . ,bv

⌈logk⌉(·) (and bh
1(·), . . . ,bh

⌈logk⌉(·)) in φ to encode in binary verti-
cal (respectively horizontal) positions of structure nodes. These positions are numbers
from {0, . . . , k − 1}, we usebv

1 andbh
1 to represent the most significant bit. Predicates

t1(·), . . . , t|T |(·) define node’s color. ProgramP and queryQ enforce existence of a path
made ofnextedges betweenstart andendin the structure. The purpose of formulaφ is
to ensure that this path traverses ak × k square node by node, that nodes have correct
horizontal and vertical positions, precisely one tile color and that horizontal (respec-
tively, vertical) adjacent nodes satisfyH (respectively,V). To simplify the definition of
φ we use some macro-definitions.

– Let zv(e) denote thate’s vertical position is 0. Simplyzv(x) is an abbreviation for
∧⌈logk⌉

i=1 ¬bv
i (x).

– Let k(e) denote thate’s vertical position is k-1. Sokv(x) is an abbreviation for
∧⌈logk⌉

i=1 (bv
i (x) ↔ bi), whereb1, . . . ,b⌈logk⌉ is the binary representation ofk − 1 (that

is, bi is the constanttrue if the i-th bit of k− 1 is 1, andfalseotherwise).
– Let lesskv(e) denote thate’s vertical position is less thank − 1. Solesskv(x) is an

abbreviation for
⌈logk⌉
∨

j=1

((
j−1
∧

i=1

(bv
i (x)↔ bi) ∧ (¬bv

j (x) ∧ b j)),

whereb1, . . . ,b⌈logk⌉ is binary representation ofk − 1. As usual empty conjunction
is the constanttrue.

– Let samev(e1,e2) denote that both its arguments are in the same row. Sosamev(x, y)
is an abbreviation for

∧⌈logk⌉
i=1 (bv

i (x)↔ bv
i (y)).

– For each j ∈ {1, . . . , ⌈logk⌉} let switchv
j (e1,e2) denote thate1’s vertical position

incremented by one givese2’s vertical position andj is the first position of a bit
that differs in both positions. Macroswitchv

j (x, y) is an abbreviation for

j−1
∧

i=1

(bv
i (x)↔ bv

i (y)) ∧ (¬bv
j (x) ∧ bv

j (y)) ∧ (
⌈logk⌉
∧

i= j+1

bv
i (x) ∧ ¬bv

i (y).

18

– Let neighborv(e1,e2) denote thate1’s vertical position is less thank − 1 and incre-
mented by one givese2’s vertical position. Soneighborv(x, y) is an abbreviation for
lesskv(x) ∧

∨⌈logk⌉
i=1 switchv

i (x, y).
– Macroszh(·), kh(·), sameh(·, ·), switchh

j (·, ·),neighborh(·, ·), lesskh(·) are defined anal-
ogously.

Now we are ready to define the formulaφ. It is a conjunction of

1. zv(start) ∧ zh(start) ∧ kv(end) ∧ kh(end)
2. ∀x∀y adjacentv(x, y)↔ sameh(x, y) ∧ neighborv(x, y)
3. ∀x∀y adjacenth(x, y)↔ samev(x, y) ∧ neighborh(x, y)
4. ∀x∀y next(x, y)↔ adjacenth(x, y) ∨ (kh(x) ∧ zh(y) ∧ neighborv(x, y))
5. ∀x

∨|T |
i=1 ti(x)

6. ∀x
∨|T |

i=1 ti(x)→ (
∧i−1

j=1¬ti(x)) ∧ (
∧|T |

j=i+1¬ti(x))

7. ∀x∀y adjacenth(x, y)→
∨m

i=1 thi (x) ∧ th′i (y), whereH = {〈th1, th′1〉, . . . , 〈thm, th′m〉}
8. ∀x∀y adjacentv(x, y)→

∨n
i=1 tvi (x) ∧ tv′i (y), whereV = {〈tv1, tv′1〉, . . . , 〈tvn, tv′n〉}.

Think of startas an element in the upper left corner of a square andendas its lower right
corner. The elementstart has coordinates〈0,0〉 andendhas coordinates〈k − 1, k − 1〉
as defined by conjunct 1. Conjunct 2 ensures that the predicate adjacentv(e1,e2) holds
if and only if e1 ande2 are in the same column ande′1s vertical coordinate is less than
k−1 and this coordinate incremented by one givese′2s vertical coordinate; that ise1 and
e2 are vertically adjacent. Conjunct 3 does the same for the predicateadjacenth(x, y).
Conjunct 4 defines the predicatenext(e1,e2) to hold if and only if

– e1 ande2 are horizontally adjacent or
– e1 is the last element of some row ande2 is the first element in next row.

Conjuncts 5 and 6 state that each node has has precisely one tile color. Conjuncts 7 and 8
enforce respectively relationsH and V between horizontally and vertically adjacent
elements.

Notice that because of the functionality restriction none of the binary macros can
be turned into a predicate. Observe that the size of the formula ϕ is polynomial in
|T | + |H| + |V| + ⌈logk⌉.

Lemma 3. Let 〈T,H,V, k〉 be an instance of the tiling problem andϕ be the Bernays-
Schönfinkel formula with Datalog defined above. Then the instance〈T,H,V, k〉 is solv-
able if and only ifϕ is satisfiable.

Proof. (⇒) Assume that the instance〈T,H,V, k〉 has a solution. This means that there
exists a relational structureM on k ∗ k nodes{ei, j | 0 ≤ i, j < k} such that the following
holds.

– For eachei, j ∈ M there exists precisely onet ∈ {t1(·), . . . , t|T |(·)} such thatM |=

t(ei, j). That is each tile has precisely one color.
– Let M |= t1(ei, j) andM |= t2(ei+1, j) where 0≤ i < k − 1 and 0≤ j ≤ k − 1. Then
〈t1, t2〉 ∈ V, that is, colors of vertical neighbors satisfyV.

– Let M |= t1(ei, j) andM |= t2(ei, j+1) where 0≤ j < k − 1 and 0≤ i ≤ k − 1. Then
〈t1, t2〉 ∈ H, that is, colors of horizontal neighbors satisfyH.

19

We shall modifyM by adding some facts to form a model ofϕ. First we add facts
{next(ei, j ,ei, j+1) | 0 ≤ i < k−1,0 ≤ j < k} and facts{next(ej,k−1,ej+1,0) | 0 ≤ j < k−1} to
M. The elemente0,0 ∈ M interprets the constantstartandek−1,k−1 interprets the constant
end. For eachei, j encode j on ⌈logk⌉ bits using predicates{bh

1(·), . . . ,bh
⌈logk⌉(·)} and

encodei on ⌈logk⌉ bits using predicates{bv
1(·), . . . ,bv

⌈logk⌉(·)}. It can now be checked by
case inspection that the macro-definitions have indeed their intended meaning and that
conjuncts 1–8 are satisfied. Finally, observe that the functionality and bounded-sharing
restrictions are satisfied: every element points to at most one horizontally adjacent, at
most one one vertically adjacent and at most one next element; bounded-sharing is
required only for thenext predicate (the only predicate occurring in programP) and
there is no no element pointednextby two different elements.

(⇐) Let M be a model ofϕ. Let M′ be a substructure ofM generated by elements
e ∈ M such thate is reachable fromstart via nextedges andendis reachable fromevia
nextedges. By conjuncts 1, 4 and the definition ofP andQ the nodes ofM′ are{ei, j |

0 ≤ i < k∧ 0 ≤ j < k}, where j coordinate ofei, j is defined by its{bh
1(·), . . . ,bh

⌈logk⌉(·)},
andi coordinate by{bv

1(·), . . . ,bv
⌈logk⌉(·)} predicates. By conjuncts 6 and 5 each tile has

precisely one color and by conjuncts 7 and 8 constraintsH andV are preserved. ⊓⊔

As a direct corollary from Lemma 3 and the construction above, we get Theorem 2.

C Verification Example

While BS2 + Datalog was designed to solve bounded model checking problem for
pointer programs (see [7] for details), it can also be used tospecify verification con-
ditions of nontrivial program manipulating linked data structures. Decidability of en-
tailment problem for this class leads to automated verification of partial correctness
for such programs. We found it interesting, because: 1) our logic allows at most two
variables 2) we use only universal quantifiers 3) ability of specifying reachability prop-
erties is rather limited, e.g.ΣI predicates cannot be used in formulas in an unrestricted
way, 4) satisfiability as well as entailment of our logic areNEXPT IME-complete via a
translation to a decidable fragment of first order logic (hereC2).

We encode the verification problem (pre-, post-conditions,loop invariants) as con-
junctions ofBS2+Datalog formulas with assumptions. Assumptions state properties of
additional instrumentation predicates and have the following property: each structure
over vocabulary of the original problem can be extended to a structure interpreting in-
strumentation predicates, such that the assumptions are satisfied. Different assumptions
state properties of different instrumentation predicates, so conjunction of assumptions
is also an assumption. Instrumentation predicates can beΣE orΣI predicates and are de-
noted by primed symbols (f ′(·, ·),g′(·, ·), reach′(·) etc.). To improve readability we also
use macros, which are shorthands forBS2+Datalog formulas with assumptions and are
intended to be used in conjunction withBS2 + Datalog formulas and other macros. In
the following, when we say that some predicate is fresh, we mean that each time when
a macro is unfolded, a new predicate of appropriate arity is added to appropriate (ΣE or
ΣI) vocabulary. Each Datalog program occurring in the formulas constructed below is
put into separate slice. To verify thatφ with assumptionφ′ entailsψ with assumptionψ′

20

it is then checked ifφ ∧ φ′ ∧ ψ′ |= ψ. SinceBS2 + Datalog is closed under conjunction
(after an appropriate renaming of vocabularies), this problem can be solved by the using
results from Section 3.

C.1 Four useful macros

We start by defining some macros. The first two of them are assumptions to be used by
the last two. Anf -path is a path on the heap whose consecutive elements are chained by
the predicatef . Note that due to the functionality restriction a maximalf -path starting
in a given element is uniquely determined.

– the macrorevpatha, f ,b, f ′ states that for all elementse1,e2 of the f -path starting ina,
if f (e1,e2) ande1 , b holds then alsof ′(e2,e1) holds. The formularevpatha, f ,b, f ′ is
made of conjuncts

∀x∀y f ′(y, x)→ f (x, y)
{reach′(x)← x = a; reach′(x)← f ′(x, y), reach′(y)}
(a , b)→ (∀y¬ f ′(y,b) ∧ ∀x¬ f ′(a, x))
∀xreach′(x)→ ∀y((x , b∧ f (x, y))→ f ′(y, x))

The predicatereach′(·) is fresh here. It labels all elements reachable froma via an
f -path up tob (whereb may but need not to occur on the path froma).

– the macrosamepatha, f ,b,g′ states that for all elementse1,e2 of the f -path starting in
a, if f (e1,e2) ande1 , b holds then alsog′(e1,e2) holds. It consists of all conjuncts
of the macrorevpatha, f ,b, f ′ in addition to the conjunct

∀xreach′(x)→ ∀y(g
′(y, x) ⇐⇒ f ′(x, y)).

– the macroinversea, f ,b,g states that there is a doubly linked list betweena andb with
forward edgef and backward edgeg. More formally: constantb is reachable from
constanta by an f -path and for all elementse1,e2 on this path such thate1 , b,
if f (e1,e2), theng(e2,e1). Predicatereach(·) is a freshΣI predicate andf ′(·, ·) is
a freshΣE predicate.

{reach(x)← x = a; reach(x)← f ′(x, y), reach(y)},

the query isreach(b) ∧ ∀xreach(x) → ∀y(f ′(y, x) ⇐⇒ g(y, x)). This formula uses
the assumptionrevpatha, f ,b, f ′ .

– samea, f ,b,g states that there is a singly linked list betweena andb with forward edge
f and that edgesf andg on this list are parallel. Formally,b is reachable from
constanta by an f -path and for all elementse1,e2 on this path such thate , b,
if f (e,e′) then alsog(e,e′). The definition of this formula is very similar to the
definition of inversea, f ,b,g. The predicatereach(·) is a freshΣI predicate andf ′(·, ·)
is a freshΣE predicate.

{reach(x)← x = a; reach(x)← f ′(x, y), reach(y)},

the query isreach(b) ∧ ∀xreach(x)→ ∀y(f ′(y, x) ⇐⇒ g(x, y)). This formula uses
the assumptionrevpatha, f ,b, f ′ .

21

C.2 List reversal

Now we are ready to show that we are able to formulate verification conditions in our
logic. The following example is inspired by an example in Section 4.2 in [33].

Node reverse(Node x) {

[0] Node y = NULL;

[1] while (x != NULL) {

[2] Node t = x->next;

[3] x->next = y;

[4] y = x;

[5] x = t;

[6] }

[7] return y;

The procedurereverseperforms reversal of a singly linked list. Similarly to[33]we
introduce new symbols to the vocabulary: for each program point p ∈ {0, . . . 7} and each
program variablev ∈ {x, y, z} we introduce a new constant symbolvp, new predicate
nextp and new data structurelistp.

The precondition requires that on entry to the procedurereverse, at program point
0, the variablex points to an acyclic list.

prereverse= {list0(u)← u = NULL; list0(u)← next0(u, v), list0(y)} ∧ list0(x0).
The postcondition ensures that the result is an acyclic listpointed to byy, further-

more it ensures that each edge of the original list is reversed in the returned list.
postreverse= {list7(u)← u = NULL; list7(u)← next7(u, v), list7(v)}∧
∧list7(y7) ∧ inversex0,next0,y7,next7 ∧ x0 , NULL→ next7(x0,NULL).
The most interesting formula is the the loop invariant. It relates the state of the heap

at the beginning of each iteration to the state of the heap at the beginning of the proce-
dure. It states that bothy1 andx1 point to singly linked lists and thatappend(reverse(y1), x1) =
x0. The invariant is encoded as the formulaϕ = {list1(u) ← u = NULL; list1(u) ←
next1(u, v), list1(v)} ∧ list1(x1) ∧ list1(y1) ∧ samex0,next0,NULL,next′ . The assumption of the
formulaϕ is revpathy1,next1,NULL,next′∧next′(y1, x1)∧samepathx1,next1,NULL,next′ . Herenext′(·, ·)
is a fresh instrumentation predicate. The assumption encodesappend(rev(y1), x1) as a
path fromNULL following next′ edges. A subpath of this path should contain the orig-
inal list. This is encoded by the conjunctsamex0,next0,NULL,next′ in ϕ, which states that on
the path fromx0 to NULL the edgesnext0 andnext′ are parallel. The following entail-
ments must now be proven

– prereverse∧ y0 = NULL |= ϕ,
– ϕ∧(x1 , NULL)∧(y6 = x1)∧next1(x1, x6)∧next6(x1, y1)∧samepathy1,n1,NULL,next6∧

∧samepathx6,next1,NULL,next6 |= ϕ
6 and

– ϕ7 ∧ x7 = NULL |= postreverse.

Hereϕ6(resp.ϕ7 andϕ0) is a formulaϕ where all predicates and constants indexed by
1 were replaced by corresponding predicates indexed by6 (resp.7 and0).

22

