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Abstract. Bernays-Schonfinkel class with Datalog is a 2-variable fragment of
the Bernays-Schonfinkel class extended with least fixed points eXipledy
certain monadic Datalog programs. It was used in a bounded modekioge
procedure for programs manipulating dynamically allocated pointertstes;
where the bounded model checking problem was reduced to the silttgfiatb
formulas in this logic. The best known upper bound on the complexity of the
satisfiability problem for this logic was 2NEXPTIME.

In this paper we extend the Bernays-Schonfinkel class with Datalog tora mo
expressive logic — a fragment of two-variable logic with counting quangifie
extended with the same kind of fixed points. We prove that both satisfiability an
entailment for the new logic are decidable in NEXPTIME and we give a niragch
lower bound for the original logic, which establishes NEXPTIME-compless

of the satisfiability and entailment problems for both of them. Our algorithm is
based on a translation to 2-variable logic with counting quantifiers.

1 Introduction

Automated verification of programs manipulating dynamycallocated pointer struc-
tures is a challenging task. The reachable state space lofpsagrams is infinite and
the verification problem is undecidable. Moreover, to reasoout sets of nodes reach-
able from a program variable one often wants to be able to aterpansitive closure
or least fixed points of some operators. Unfortunately, eyaite simple logics like
two-variable fragments of first-order logic or even twoiahte fragments of Bernays-
Schonfinkel class extended with either transitive closurkeast fixed points quickly
become undecidable [10,13].

In [7] the authors proposed a bounded model checking praedduimperative pro-
grams that manipulate dynamically allocated pointer stmeés on the heap. Although
in this procedure an explicit bound is assumed on the lenfytheoprogram execu-
tion, the size of the initial data structure is not bounddtkréfore, such programs form
infinite and infinitely branching transition systems. Thegadure is based on the fol-
lowing four observations. First, error conditions like efierence of a dangling pointer,
are expressible in the two-variable fragment of Bernaysd8finkel class with equal-
ity. Second, the fragment is closed under weakest predonditvrt. finite paths. Third,
data structures like trees, lists (singly or doubly linkedeven circular) are expressible
in a fragment of monadic Datalog. Finally, the combinatifthe Bernays-Schonfinkel



fragment with Datalog fragment is decidable. The boundedehchecking problem for
pointer programs is then reduced to the satisfiability affa@ias in Bernays-Schonfinkel
class with Datalog. The authors gave an algorithm solviegstitisfiability problem in

2NEXPTIME.

In this paper, we improve the logic from [7] in terms of bothpeessibility and
complexity. The two-variable fragment of Bernays-Schdlrclass BS for short) is
simply a fragment of first-order logic restricted to two werisally quantified variables.
In the new logic, we are able to use both universal and exiatequantifiers and addi-
tionally we may use counting in quantifiers. Moreover, thgiddn [7] has additional
semantic restrictions, some of which we are able to drop. fidris gives us an increase
of expressibility.

We give an algorithm for testing satisfiability of our logieat runs in NEXPTIME.
The algorithm is based on a translation to 2-variable logih wounting quantifiers.
Since our logic subsumes the Bernays-Schonfinkel class®athlog (further called
BS + Datalog), we improve the previous complexity upper boune. &éo give a
matching lower bound and establish NEXPTIME-completernés®th logics. Finally,
we also solve the entailment problem, which was left ope7jnif has further conse-
quences for the applicability of the logic in verification.

The paper is organized as follows. The main results on saiifify and entailment
are proved in Section 3. Section 4 gives the correspondingriound. In Section 5
we show that dropping one of the restrictions on sharing ttetgforbids us to model
directed acyclic graphs leads to a very complex logic. Thérpart of the paper is
finished with the discussion on related and future work. tndppendix we give some
proofs that did not fit in the page limit and an example showtireg our logic can also
be used to specify verification conditions of nontrivial gr@m manipulating linked
data structures.

2 Preliminaries

Let2g (extensional database vocabulary) be a vocabulary camggielational symbols

of arity at most 2 and functional symbols of arity O (that ispstants). Le£, (inten-
sional database vocabulary) be a relational vocabulartagdng unary symbols only
and let2r be a set containing some BE binary predicates. Assume in addition that a
countably infinite set of variabléé is available 2k is a vocabulary of some (to be pre-
cised later) two-variable logic formula; defines symbols that occur in heads of clauses
from Datalog programs antk — binary symbols used in their bodies. Following [7],
we are interested imonadic tree-automaton likeatalog programs, which are Datalog
programs whose clauses are similar to transitions in ealgeléd tree automata.

Definition 1. A monadic tree-automaton like Datalog program ovgRe and2p is
a conjunction of clauses of the form

p(u) < B,ry(u,va), da(va), ..., ri(u,vi), ai(vi)
where

— B is a conjunction ofg-literals containing constants and possibly the variable u



- P, ...,q are X -predicates,
- Iy,...,n are distinctZp-predicates,
—1>0,u,vy,...,V are distinct variables from V.

Monadic tree-automata like Datalog programs are furthefl@d (monadic, t.a. like)
Datalog programs for short.

Example 1.A binary tree withleft andright pointers, whose leaves point to constant
NULL is defined by Datalog program

treg(X) <« x = NULL; treg(x) « left(x,y), treg(y), right(x, 2), treg(2).

Let P be a monadic Datalog program. GiveggstructureM, theleast extensionf M
wrt. Pis the leastXg U X))-structure that is a model of the clause BeMore formally,
we have the following definition.

Definition 2 (Least extension)Let M be a relational structure overg, P be a monadic
Datalog program oveg|,2p and Zg whose variables come from V. Let'F= {p(e) |
p(-) € i A e € M}. The direct consequence operatd)! Ts a function from™ — 2F"
defined as follows.

T,ﬁ"(l) =lu{p(e) | Ap(X) « body e P.AP eV - M. O(X) =e A MU E (bodyv)}

Let TY = U2, (TM)'(0). Then the least extension of M with respect to P is a structure
Mp overZe U %), such that M = MU TH.

Definition 3 (Sliced Datalog program).A monadic tree-automaton like Datalog pro-
gram P overs|, Zg andZp is called sliced if, for some natural k, £ AX ; P; where

— each R is a monadic tree-automaton like Datalog program over vamabeszli
2p and2e,

—sinzl=0andsinz) =0fori#j 1<i,j<k,

— UK 2 =2 andUE, 26 = Zp.

We sometimes writ@P,, . . ., Py} instead of/\}<=1 P;. In the following, we will use sliced
programs in two ways. The first is to control if some data $tmes are allowed or are
forbidden to share substructures (see the bounded-shastriction below). The sec-
ond way is to solve the entailment problem, where we havedoradhat the structures
defined by the two formulas may interfere.

The two-variable fragment of Bernays-Schonfinkel cldS (for short) is the set
of all formulas of the fornxvy ¢, where¢ is a quantifier-free first-order formula over
2e. We specify reachability predicates via sliced Dataloggpams.

Definition 4 (BS + Datalog. A formula of Bernays-Schdnfinkel class with Datalog is
a conjunctionp A P A Q where

— ¢ is a BS formula overZg,
— P ={P,...,Py} is a sliced monadic tree-automaton like Datalog program



— query Q is conjunction of constant positive atopspi(c;) (where p € 2, and
G € 2g) and B$S class formulas oveEg U %) with negative occurrences of(p)
atoms only (pe 2| and x is a variable).

Example 2.Tree rooted in a constanbot whose nodes have backward linko root

is specified aBS + Datalog formulap A P A Q, whereQ is tregroot) A Vytreg(x) —

(X # NULL — r(x,root)), P is Datalog program from example 1 (with one slice only)
and¢ is simplytrue.

For a giverzg-formulag¢ and a quen@Q, we say thakg-structureM satisfiesp APA Q,
denoted byM E ¢ APAQ, if Mp is a model ofp A Q, whereMp is the least extension of
M wrt. P. However, this still does not define the semantics of Ber&glginfinkel class
with Datalog. The logic was designed to model heaps of ppprtegrams, therefore we
are not interested in general satisfiability of formulashiis tlass, but we impose two
additional restrictions on models.

Functionality We require that all binary relations are functional, ifer,all pred-
icatesr in 2g, structureM (and thus alsdMp must be a model ofu, vy, vo(r(u, vi) A
r(u,v2) — vi = Vp). This ensures that every pointer at any given moment poings t
most one heap cell.

Bounded-SharingWe require that the binary relations occurring in eachedfic
of the Datalog progran® = {P,, ..., Px} represent pointers in data structures that do
not share memory with other data structures define@;byhat is, structuréMp must
be a model of all sentences of the fokfay, up, v (S1(U1, V) A Sp(Up,V) AUy # Up —
cons{v)) andYuy, Uy, V(S (Ug, V) A S2(Uz, V) — constv)), wheres; ands; are two distinct
predicates occurring iEiP andconsty) is a shorthand for the disjunctioyi..s, v = c.
Note that the bounded-sharing restriction is not imposedlbhinary predicates but
just on the ones occurring in the Datalog program

As an example consider two programs defining lists

list;(X) « x = NULL,; list;(X) « next(x,y), listi(y).
listo(X) <« x = NULL; listy(X) <« nexb(x,y), lista(y).

together with a formula/x=next (NULL, X) A =next(NULL, X). If the two programs
are in the same slice then, with the exception of constamy,dre not allowed to have
common nodes. On the other hand, if they are ffedent slices, they may freely share
nodes.

The functionality and bounded-sharing restrictions agressible in the Bernays-
Schonfinkel class with equality, but they require more tham tariables, so we can-
not add them to the formula. Each Datalog slicé; can define multiple structures.
Constant elements are intended to model nodes pointed toogygm variables. Such
nodes are allowed to be pointed to by elements fidint structures, even from the
same slice.

Definition 5 (Semantics of Bernays-Schonfinkel class with Dalog). Lety = ¢ A
P A Q and M be a finite structure ovels such that

— Structure M, that is the least extension of M wrt. P, obeys functionadity
bounded-sharing restrictions,



Then M is said to satisfy, in symbols M= ¢.

Remark 1.Contrary to our definition g, in [7] vocabulary ofy doesn’t contain unary
relational symbols. One can however get rid of them by intodalg additional constant
(sayd) and replacing each occurrence of atofx) by r’(x, d), wherer’ is fresh binary
symbol. Thus presence of unary symbolginincurs no increase in asymptotic com-
plexity of satisfiability problem. Furthermore in [7] quesiQ are limited to be conjunc-
tion of constant positive atoms, only one-sliced Datalaggpams were allowed and ad-
missible models obeyed additional semantic restrictidledantersection-freeness. We
removed here this last restriction since it is expressib@uery/\ pyes; Age)es .gep YVIP(V)A
g(v) — cons{v)). These extensions didn’'t however increase asymptataraplexity of
satisfiability and entailment problems compared to [7]. Eotyound proof from section
4 holds as is for logic defined in [7].

Definition 6 (Derivation). Let M be a structure oveXg satisfying the bounded-sharing
restriction, let P be a monadic sliced t.a. like Datalog prai, let pe 2} and ec M.

A derivationderiv(p(e)) is a tree labeled with atoms of the fornfajjwith q € 2, and

a e M such that

— the root of deriyp(e)) is labeled with ge),

— if aleaf of deriv{p(e)) is labeled with ¢a) then there exists a claugg(x) < B] € P
and a valuation® such that9(x) = a and ME B,

— for every inner node of der{p(e)) labeled with da) there exists a clausg(u) «
BA /\le(ri(u,vi) A gi(w))] € P and a valuatior®, such that®(u) = a, M = BO A
Ak, ri(a, ©(v;)) and the children of () are roots of derivations der{g (6(v;)) for
all<i<k

Note that since vocabularies offidirent slices are disjoint, the whole trderiv(p(e))
contains only symbols from one slice.

A constant atom is an atom of the forpfc) wherec is an element interpreting a
constant symbol. A constant derivation is a derivation obastant atom. A minimal
derivation is a derivation whose all subderivations hawertiinimal possible height.
Unless otherwise specified, all derivations we considenanémal.

Remark 2.Without loss of generality we assume that all leaves in d#dns are con-
stant atoms, that is, for all clauses of the fopfu) < B in P there exists a constant
¢ € 2g such thau = cis a conjunct irB. If p(u) « B does not satisfy this requirement,
then it is replaced bp(u) « B, c(u,y), c(y) andc(X) « x = ¢, wherec, ¢(-) andc(:, -)
are fresh constant, fresh unafy:predicate and fresh bina&p-predicate, respectively.
By definition of vocabularies(:, -) is then also a freshg-predicate.

Definition 7 (p(e)-tree). A p(e)-tree is a maximal subtree of a derivation d€p(e))
with root labeled jfe) and no inner nodes labeled with constant atoms.

By remark 2 leaves of each finite derivation are labeled bytzon atoms, so are leaves
of any p(e)-tree. The least extension (Definition 2) gives a modebittbtc semantics of
Datalog programs ove¥e-structures; derivations (Definition 6) gives a proof-tretic
semantics. By a simple inductive proof it is noffitiult to see that they are equivalent.



Proposition 1. Let M be a finite structure satisfying the bounded-sharirsjrietion.
There exists a finite derivation ofg) if and only if f(e) € Tj,.

3 NEXPTIME upper bound

In this section we prove that the satisfiability and entaiitngroblem for Bernays-
Schonfinkel class with Datalog is decidable in NEXPTIME. Weega satisfiability
(resp. entailment) preserving polynomial translatiomfrBernays-Schonfinkel class
with Datalog to two-variable logic with counting quantier

The two variable logic with countingd?) is a fragment of first order logic contain-
ing formulas whose all subformulas have at most two freeates, but these formulas
may contain counting quantifiefs, 32k, 3=, Decidability of the satisfiability problem
was discovered independently in [11] and [26]. First NEXREIresults, under unary
encoding of counts were obtained in [26], [27] and under tyiading in [28]. While
C? doesn't enjoy the finite model property it is natural to agkfiisite satisfiability. This
question was positively answered in [11], NEXPTIME comjiiexvas established by
[28] even under binary encoding. The (finite) satisfiabitfyC? is NEXPTIME-hard
as a consequence of NEXPTIME-hardness of the two variabtgfent of first-order
logic.

Our translation is done in two steps. First we translate nipati formula to an in-
termediate logicC? + Datalog+ bsr (restrictedC? with Datalog and bounded-sharing
restriction), and then we translate the resulting formal@2. The reason to introduce
this intermediate logic is that it is more expressive thamBgs-Schoénfinkel class with
Datalog and may be of its own interest. In this logic the Bgsa8chonfinkel part of
the formula (that is, theé conjunct in a formula of the formp A P A Q) is relaxed to
use arbitrary quantifiers (not only tivequantifier), even with counting; the que®yis
incorporated into the conjungtand relaxed to be arbitrary formula with constant atoms
and restricted occurrences of non-consgaratoms. This is a good step forward in abil-
ity to express more complicated verification conditions @ifhper programs. Moreover,
we skip one out of two semantic restrictions on models, nariwictionality which
is expressible if€2. The bounded-sharing restriction could not be dropped -s-tié
restriction that allows to keep the complexity of Dataloggnams under control. In
Section 5 we show that the complexity of unrestric®dwith Datalog is much worse
than NEXPTIME.

Let ¢ be aC? formula overZg U X, and lety’ be its negational normal form. We say
that aX)-atomp(x) has a restricted occurrencedrif either p(x) occurs positively i’
and only in in scope of existential quantifiersg{k) occurs negatively i’ and only in
scope of universal quantifiers. For examp(&) has a restricted occurrence in formulas
YX p(X) — ¢, YX (P(X) A Q(X)) = &, Ix p(X) Ay or Ay p(X) A d(X) A ¥, wherey is
someC? formula with one free variablg andq(-) is someZ, -predicate. An occurrence
of atomp(x) in formula¥y3xp(x) Ay is not restricted, becaug¥x) is occurs positively
and in scope of & quantifier.

Definition 8 (Syntax of C? + Datalog+ bsy). A formula of G + Datalog+ bsris a
conjunction of the fornp A P such that



— ¢ is a formula of the two-variable logic with counting quargi§ over the signature
22U,

— all Z;-literals occurring in¢ are either constant literals or have only restricted
occurrences i, and

— P is a sliced monadic tree-automaton like Datalog program.

Definition 9 (Semantics ofC? + Datalog+ bsi). Lety = ¢ A P be a formula of € +
Datalog+ bsrand let M be a finite structure ovel: such that

— Structure M, that is the least extension of M wrt. P, obeys bounded-shae-
striction, and

- MpE¢.
Then M is said to satisfy, in symbols M= ¢.

The following proposition reduces satisfiability B&, + Datalog to satisfiability of
C? + Datalog+ bsr.

Proposition 2. For every formulap = ¢ A P A Q in Bernays-Schonfinkel class with
Datalog there exists an equivalent formuteof C? + Datalog+ bsrof size polynomial
in the size of.

Proof. Lety be the conjunction of the following formulas

1. ¢ AQ,
2. Ar(oyese YUI=tv r(u, v),
3. P

Theny is a formula ofC? + Datalog+ bsr, because is aBS, formula and all>; —atoms
in ¢ A Q are either constant atoms or have restricted occurrendgsFanthermore
conjunct 2 expresses the functionality restrictionyde equivalent tap. O

We say that a formula is entails a formulg’ (in symbolsy | ¢’) if for all structuresM
we have thaM E ¢ impliesM E ¢’. Below we show that entailment problemB$, +
Datalog is reducible to satisfiability €2 + Datalog+ bsr. We start with an observation
that names of predicates defined by Datalog programs maybiieasity changed. By
a renaming function we mean here any bijection betwefarént vocabularies.

Lemma l. Lety = ¢ A P A Q be a B3 + Datalogclass formula, where P is a sliced
Datalog program over; and Xp. Let ¢ren be a formulay whereX|-predicates were
arbitrarily renamed. Then Mg ¢ if and only if ME ¢ren.

Proposition 3 (entailment).For every formulag = g APAQandy’ = ¢’ AP’ AQ' In
the BS +Datalogclass there exists a formujaof C? + Datalog+ bsrof size polynomial
in the size ofp andy’, such thaty | ¢’ if and only ify is unsatisfiable.

Proof. Let 2},2p be vocabularies of sliced monadic t.a. like Datalog progfnhet
2,2 be vocabularies of’. By previous lemma it may be w.l.o.g assumed, that
2y N2y = 0. Furthermore ifr(-,-) € Zp N Zp then replacing each occurrenceréf -)
in P by a fresh predicate’(-,-) and adding conjunct,¥yr(x,y) < r’(x,y)to ¢



decreases cardinality af> N Zp while preserving entailment. By iteratively applying
this procedure it can be ensured, that algon 2p = 0. Let P = {P4,..., Py} and
P ={P],...,P}. It follows that{Py,..., Py P,,..., P} is also a sliced monadic Data-
log program. Formulg is defined to beg A QA =(¢’ A Q)) A {P1...., P, Py,.... P},
Notice also, that by definition S, + Datalog formulas, alt; —atoms in—(¢’ A Q') are
either constant atoms or have restricted occurrencesisa correcC?+ Datalog+ bsr
formula. We now prove, that = ¢’ if and only if ¢ is unsatisfiable. LeE be a dictio-
nary of formulasp and¢’ (in particularzZp U 2p C X). Let M be an arbitrary structure
overX. ThenM E ¢ A P A Qif and only if the least extension dfl wrt. P models
¢ AP: Mp E ¢ AQ. SinceZp N 2p = 0, this is equivalent tMp,p E ¢ A Q. Simi-
larly, M E ¢’ A P’ A Q' is equivalent tdMp,p = ¢’ A Q. Therefore, by definition of
entailmentgp A PA Q £ ¢’ A P’ A Q if and only if there exists a structud, such
thatMpap = ¢ A QandMp,p £ ¢’ A Q' thatisif @A QA =(¢) AQ) A(PAP)Is
satisfiable. O

We now give a polynomial translation from satisfiability@f + Datalog+ bsr to finite
satisfiability of C2. First the problem is simplified a bit by removing positivecoc
rences of non-constasi— atoms.

Proposition 4. Lety = ¢ A P be a G + Datalog+ bsrformula. Then there exists$’G-
Datalog+ bsrformulagy’” = ¢’ AP, such thaty’ is satisfiable if and only i is satisfiable
and no atom of the form(g) (p(-) € 2} and x is a variable) occurs positively i#i.

Proof. Assume w.l.0.g. that is in negational normal form. By definition d&? +
Datalog+ bsr, each positive occurrence of atqtx) is in scope ofi quantifiers only.
In particular variable is existentially quantified, so it can be skolemized. Thizcess
replacesx by a fresh constant. By iteration a required formgil@an be obtained. O

Definition 10 (Translation from C?+Datalog+ bsrto C2). Lety = ¢ AP be aformula
of C? + Datalog+ bsrover the vocabularye U X, such that no atom of the form(x)
(p(-) € 2} and x is a variable) occurs positively ¢n Let>p be the set of binary relations
from P = {Py,..., Py} and letX be a vocabulary containingg U X, and predicates
const), {p(c)-nodg(-), p(c)-edgg(-, ), p(c)-leaf() | p.g € Zi, ¢ € 2¢}. The translation
7(¢) of ¢ to C? overX is the conjunction of the following formulas.

1. ¢
2. ¥xconstx) <> Ve X=C
3.

K
/\ Yv(=constv) — 3F=u( \/ r(u,v)))
i=1 r(-)ez,

wherexl,. .. ,ZE are vocabularies of binary symbols used by clauses froreslic
Pi, ..., Px respectively,
4,

/k\ /\ /\ Yuvv(r(u, v) A s(u,v) — constv))

i=1 r(-)eZl, o, )ezh, s#r



|
Yu p(u) « A v(ri(u, v) A Gi(V)) A B(u)
i=1

for all Datalog clauses ) < B(u),r1 (U, V1), qi(v1), ..., r(u,v), q(v) from P,

m ) ) '
@© - \/(/\ Mr{(c.v) A ¢/(v) A p(c)-edgg (c. V) A BI(c)))

j=1 i=1

and

Yu(g(u) A ~constu)Ap(c)-nodg(u) - _
\/’,-‘ll(A:Ll Av(r!(u,v) A g/(v) A p(c)-edggi(u. v)) A Bi(u))

forall g € 2, all ¢ € 2 and all p € 2} where{q(u) < Bi(u) A /\:"zl(rij (u,vi) A
qiJ (vi))}’j“:l is the set of all clauses from P defining the predicate g,

YXVYy p(c)-edgg(x, y) A -consty) — p(c)-nodg(y)
forall p(-),q(-) € 2, and all ce Zg

Vx p(c)-edgg(x, d) — p(c)-leaf,(d)
forall p(-),q(:) € 2y and all ¢ d € 2,

p(c)-leaf,(d) A g(d)-leaf(e) — p(c)-leaf(e)

forall p(-),q(-),r() € 2y and allcd,ee 2
10.

—p(c)-leaf,(c)
forall p(-) € 2y and all ce Zg.

The intuition behind this translation is the following. §tirobserve that the conjuncts 3
and 4 express the bounded-sharing restriction. Then wetawaeivrite Datalog clauses
to implications (conjunct 5), but we need also the reversections of these impli-
cations — this is done with conjunct 6, separately for eleisémterpreting and not
interpreting constants. Now we are almost done, but thistcoction possibly leads
to cyclic structures (that would correspond to infinite dations), but thanks to the
bounded-sharing restriction it is possible to forbid cgalentaining constant elements,
which is enough for correctness since only formulas firare allowed. LeM E ().
Then for any givenp(c), such thatM  p(c), the set{p(c)-nodg(e) | q € 2| A

M E p(c)-nodg(e)} forms a superset of non-constant nodes @@ - tree, the set
{p(c)-edgg(er. ) | g € 21 A M E p(c)-edgg(er, &)} a superset of its edges and finally
the set{p(c)-leaf(d) | q € 21 A M E p(c)-leaf,(d)} is a superset of its leaves. This is
enforced by conjuncts 6-8. Irreflexivity (conjunct 10) @rnisitive closure (conjunct 9)
of “being a leaf of” relation assures inexistence of cycMsre formally, we have the
following proposition that we prove in the appendix.



Proposition 5. Lety = ¢ A P be a € + Datalog+ bsrformula. Thenp is satisfiable if
and only if the € formulat(y) is finitely satisfiable.

Observe that the size afy) is polynomial in the size of, which together with
Proposition 4 gives us the following corollary.

Corollary 1. The satisfiability problem for £+ Datalog+ bsris in NEXPTIME.
Together with Proposition 2 and Proposition 3 this givesursneain theorem.

Theorem 1. The satisfiability and entailment problems for Bernayséafinkel class
with Datalog are in NEXPTIME.

4 NEXPTIME lower bound

In this section we prove that the satisfiability problem farBays-Schonfinkel class
with Datalog is NEXPTIME-hard. This is done by a reductionnfr the following
version of a tiling problem. It is known [9] that this versiarf the tiling problem is
NEXPTIME-complete.

Definition 11 (Tiling problem).

Instance: a tuple (T, H,V,k) where T is a finite set of tile colors,,M C T x T are
binary relations and k is a positive integer encoded in bin@gm[logk] bits).

Question: does there exist a tiling of k k square byl x 1 tiles such that colors of
each pair of horizontally adjacent tiles satisfy the retetiH and colors of each pair of
vertically adjacent tiles satisfy V?

If the question in the tiling problem has a positive answamtlive say that the
instance(T, H, V, k) has a solution or that there exists a good tiling for thisanse. In
the following, for a given instancér, H, V, k) we define a formula of the Bernays-
Schonfinkel class with Datalog such thats satisfiable if and only if there exists an
appropriate tiling.

The idea is that any model of the formula describes a goodjtdind any such tiling
defines a model ap. The size of the formula will be polynomial i | + [H| + V| +
[logk]. Using simple Datalog program and simulating two countgrg¥ formulas it
is enforced that any model gfhask x k square as a substructure. Is is then enough to
constrain pairs of adjacent nodes accordingltandV. Conversely any good tiling can
be labelled byrr predicates to form model af. The detailed description is given in
the appendix.

Theorem 2. The satisfiability problem for Bernays-Schonfinkel clash Wiatalog is
NEXPTIME-hard.

The monadic Datalog program of tB&, + Datalog formula constructed here has only
one slice and its quer§ is simply a constank|-atom. There are also no two distinct
2\ -predicates. Hence, this reduction also establishes NEBMETower bound for the
satisfiability and entailment problems for the logic defime{r].
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5 Hardness ofC? + Datalog

In Section 3 we have shown that the logi¢ + Datalog+ bsr is decidable in NEXP-
TIME. In this section we show that if we skip the bounded-stgarestriction then the
obtained logicC? + Datalog becomes much harder. Dropping this restrictioruiteq
tempting, because it would allow to reason about data stresthat do share substruc-
tures, like DAG representations of trees. Here we provevithithe possibility to share
structure, the logic becomes powerful enough to expregswvaddition systems (VAS).
The reduction in Section 3 relied on the fact that in orderteform with the least fixed
point semantics of Datalog we have to keep cycles on the hedgrcontrol, and with
the bounded-sharing restriction we have to worry only aleyates with occurrences
of constants. Without this restriction we would have to &ddally handle cycles that
avoid constants, which is out of scope of telogic.

Vector addition systems [25] is a very simple formalism gglgint to Petri Nets. Itis
known that its reachability problem is decidable [18,23&1d EXPSPACE-hard [22],
but precise complexity is not known, and after almost 40 yeéresearch it is even not
known if the problem is elementary. Below we give an expoianéduction from the
reachability problem for VAS to the satisfiability problewr C? + Datalog. Although
we believe thaC? + Datalog is decidable, it is very unlikely that it has an eleme
tary decision algorithm since existence of such an algaritmplies existence of an
elementary algorithm for VAS reachability.

Now we recall definitions from [25]. An-dimensional vector addition system is an
ordered paifv, W) wherev is ann-tuple of non-negative integers akdis a finite set of
n-tuples of integers. Given twa-tuplesx = (X, ..., Xy) andy = (y1, ..., Yn) we write
x<yifx <y foralli =1,...,nand we definex+yto be the tupléx; +yi, . .., Xn+Yn).
The reachability problem for VAS is the problem whether fgiven VAS (v, W) there
exists a finite sequena®, . . ., Wy, such that

—w, eWforalli=1,...,m,
—V+Wp+...+w;>0foralli=1,...,m and
—V+Wi+...+Wy=0

where0 is then-tuple(0,.. ., 0).

To reduce VAS reachability problem to satisfiability@$ + Datalog we first rep-
resent solutions to the reachability problem as directgdlecgraphs and then write
a formula that describes such graphs.

Definition 12 (Transition sequence dag)Let(v, W) be an n-dimensional VAS. A tran-
sition sequence dag fdv, W) is a directed acyclic multigraph G such that

nodes of G are g1 ny,.. ., Ny for some positive integer m,

node ry corresponds to vector, each nodefori = 1,..., m corresponds So some
vector in W,

edges of G are colored with colors numbered from 1 to n (thedsion of the VAS)
if an edge of G starts injrand ends in pthen i< j,

if v=<(v,...,vpythenforalli=1,...,n there are vedges of color i starting in
No,

11



— if a node n corresponds to a vecter= (wi,...,W,) and w > 0 then there are w
edges of color i starting in n, and there are no edges of coknding in n,

— if a node n corresponds to a vecter= (w,...,W,) and w < 0 then there are w
edges of color i ending in n, and there are no edges of colartisig in n.

Figure 1 shows an example of a transition sequence dag faetier addition system
4,4, (-1, -2),{-1, 2)}). Edges of color 1 are drawn with solid arrows while edges of
color 2 are drawn with dotted arrows. Nodgsnz andn, correspond to vectdr1, —2);
noden, corresponds to vectdr1, 2).

Fig. 1. Transition sequence dag for the vector addition sysi@n®), {(—1, -2), (-1, 2)})

It is not difficult to see that the following lemma holds.

Lemma 2. The reachability problem for a vector addition systénW) has a solution
if and only if there exists a transition sequence dagfowW).

Now we are ready to give the reduction. etW) be ann-dimensional vector addition
system. We construct@? + Datalog formulap = ¢ A P as follows. The vocabularye
is{e(,)l1<i<niu{e;(,)11<i<nAl<]j<max}u/itosink:,-),src sink. We
use the predicate for edges of coloi. Additionally, to capture multiple edges of the
same color starting in the same node we shall use touchedarcthe predicat®
is used for touch of colori. Herej ranges from 1 to the maximum number occurring
in a vector inW U {v} asi-th component, denoted maxXhe constansrc is used to
model the starting node of a transition sequence dag. Todxaetly one ending node
we introduce additionadinknode and connect all nodes of outdegree 0 to it.
The vocabulang is {nodé'(-) | w e W} U {color(:) | 1 < i < n} U {start(:), end-)}.
First we give Datalog prograr. It consists of the following clauses.

n Vi
start(x) « X = SrcA /\ /\ €.j(% ¥i.j) A colori(yij)
i=1 j=1

wherev = (vq,...,Vn),
2. colori(X) < &(x,y), node'(y) for all we W,
3.

Wi
node’(x) « x # srcA /\ /\ &.j(X Yk j) A colori(ykj)
kwi>0 j=1

for all w e W such thatk | wx > 0} # 0

12



node’(x) « x # src A tosinkx, y), endy)

for all w e W such thatk | w, > 0} = 0
5. endx) « x = sink

To define the formul@ we use two macro-definitionforbid-ouf(x, S) is an abbrevia-
tion for Vy(Ar(.)es —r (X, y)) andforbid-in(S, x) is Yy( A (.)es = (Y. X))- Theng is defined
as the conjunction of

1. Functionality restriction and intersection freenesgfessed as in the proof of
Proposition 2 in Section 3 and as in Remark 1 in Section 2 atispdy),
2.
Vx nodé'(x) — forbid-out(x, Zg \ {& j(-,-) [Wi > O A j < w;}),

¥x nodé'(x) — forbid-in(Zg \ {&(, ") | wi < 0}, X)

vxnode(x) - ( /\ (35" ey, )

i:w;<0

forallwe W

3. Vy color(y) — 3;1(\/’1.‘1a1>‘(a,j(x, y) A forbid-in(Ze \ {e j},y))) andVy color(x) —
forbid-out(x, 2t \ {e})

4. Yy endy) — forbid-out(x, 2g) A forbid-in(Zg \ {tosink,y)

5. Vystart(x) — forbid-in(Zg, ) A forbid-out(x, 2 \ {&j(,-) | i > OA | < v})
wherev = (vq,...,Vn)

6. start(src).

Proposition 6. Let (v, W) be an n-dimensional vector addition system andgddie
the G + Datalogformula constructed above. The reachability problemfoiV) has
a solution if and only ifp is satisfiable.

Proof (sketch)(=) Assume thatv, W) has a solution. Le& be a transition sequence
dag for¢v, W). For every edge = (n;, n;) of colorkin G introduce an intermediate node
ne; label the noden, and the edgéne, n;) with colork; if e was thel-th edge of color
k starting in the node; then label the edgé;, ne) with touchl of color k. Removee
from G. Add a new nodsinkto the graph and connect all nodes that have no successors
in G to it via edges labeletbsink Label nodeng by constantsrc. Compute the least
extension of the constructed structure wrt P. The obtaimaplgis a model of.

(<) Take a model of. By clauses 3 and 4 each element labeledée has at least
required by the vectow number of successors of each color, by conjuncts®itrhas
exactly required number of successors and predecessarsseC? ofP together with
conjuncts 3 ofp ensures that all elements labelealor; are intermediate elements on
edges of color. By removing these intermediate elements and the elemtamphneting
the sink constant we obtain some gragh SinceG comes from a model of a Datalog
program, it is acyclic. A topological sorting of this graphosvs that it is a transition
sequence dag f@w, W), so(v, W) has a solution. O
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6 Related work

Automated verification of programs manipulating dynamycallocated pointer struc-
tures is a challenging and important problem. It has recesvt of attention recently.
We refer the reader to [7] for a discussion of relations betweur approach and work
based on abstract interpretation and shape analysis [B3]3&agments of first-order
logic with transitive closure or least fixed point [14,3Zachability logic [1], monadic
second order logic [17,24], graph logics based 8§i®,29], separation logic [30,4] and
bounded model checking [5,16,8,12]. More recent work ideki[2,33,20,3,6]. The last
three papers focus on reasoning about lists and cannotsxpreperties like reachabil-
ity in a tree between a pair of program variables. In [2] théhars are able to analyze
trees without sharing by simulating them by a set of conveydists. They then ap-
ply abstraction refinement framework and verify a finiteestaver-approximation of
the input program. In contrast, we allow bounded sharingiaralir bounded-model-
checking application we check properties of an under-appration (due to a bounded
execution of a program) of an infinite-state system. It setliaisn terms of expressibil-
ity the logic most related to ours is the one from [33]. Theatxtifference in expressive
needs to be investigated, but the two logidsattiin terms of complexity and underlying
decision procedures. The satisfiability problem for thadag [33] has NEXPTIME
lower bound and elementary upper bound and it is based omsldten to monadic
second-order logic on trees (the authors say that they mastber doubly-exponential
procedure, but it is not published).

7 Conclusion and future work

We extended the work from [7] on bounded model checking oferafive programs
that manipulate dynamically allocated pointer structuneshe heap. We improved the
complexity of this method and increased the expressibilitthe logic. We solved the
entailment problem which opens the possibilities to usddfgi not only in bounded
model checking but also in verification.

Our algorithms are based on a translation to two-varialgi lvith counting quan-
tifiers (C?). One may ask why we do not use directly this logic. The mogtartant
reason is that in Datalog it is relatively easy to expressmomdata structures; the
semantics based on least fixed points allows to control imalsi way (a)cyclicity of
these structures. Trying to express itdfleads to formulas like our translation, which
is of course too complicated to be used.

There are several possibilities for future work. An obviare is to implement
the method. Another one is investigation of applicationsenfication, like analysis
whether counterexamples generated by tools based on ctistreefinement are spu-
rious. Still another one is further extension of the exgleldy. Although we have
relaxed some restrictions from [7] (now we are able to expiists that may share
some nodes or that are forbidden to share nodes), we areattdble to express DAG
representations of trees. In a separate work (not publjshedhave developed a direct
algorithm (not based on a translation@3) for satisfiability of Bernays-Schénfinkel
class with Datalog; we believe that it will be more suitaldeifnplementation and that
it will allow us to express quantitative properties like egbeing balanced.
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Proof of Proposition 5

Proof. (=) Assume thaty is satisfiable. Take a structuid, such thatM E ¢. We
extendM to a structureM’ overX by adding some facts. Initialli)’” = M. Conjunct 1

of
to

7(¢) is satisfied by definition. Label each constant nedgeM’ by conste) in order
satisfy 2. Conjuncts 3 and 4 express bounded-sharingctést and are obviously

satisfied by definition of semantics of our logic. ConjuncsSatisfied by definition

of

the least extension. Consider the &gfc) | p € X A ¢ € 2g} n T},. For each its
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elementp(c) take arbitraryp(c) — tree Leti be its height. Ifi > 0 then consider each
p(e) — subtreeof p(c) — tree wheree is a hon-constant. Assungge) was derived by
ground rule p(e) « B A /\'j<=1(r,-(e, €j) A d;(ej))]. To a newly constructed structuhé’
add the facts

— p(c)-edgg (e e)) for1 < j <k,
- p(c)—nod(gli () for each 1< j <k, such that; is non-constant,
- p(c)—leagj (gy) for each 1< j < k, such that; is a constant.

This process leads to satisfiability of conjuncts 6, 7 and &rtler to satisfy conjunct 9
compute the transitive closure of “being a leaf of” relatidhat is saturat®’ accord-
ing to conjunct 9. By definition 01"5I andp(c) — derivationno p(c) is its own leaf. This
leads to satisfaction of conjunct 10. Thati®  7(¢) as required.

(<) Assume that(y) is satisfiable. LeM = 7(¢). Let M’ be a structuréM stripped
to vocabularyXg and letM(, be the least extension &’ with respect toP. Conjunct 5
of 7(¢) defines some superset Bf,, so all negativeX;-facts true inM remain true in
Mj,. To show that thaM;, = ¢ it is then enough to prove equivalence tpét) € T}, if
and only ifM E p(c) for all constant literalgp(c) occurring ing.

Again by Conjunct 5, implicatiomp(c) € T,\F,’l, = M E p(c) holds . We now show that
the reverse implication is also true. Take qfg), such thatM = p(c). By conjuncts 6 a
derivationderiv(p(c)) of p(c) in structureM can be constructed. Whilg’ is identical
to M on Xg predicatesderiv(p(c)) is also a correct derivation idl’. If deriv(p(c)) were
infinite, then sincéV’ satisfies the bounded-sharing restriction, some padle o p(c))
would contain multiple occurrences of some fgfd) and , (withg € 2, andd € 2g).
But it is impossible since conjunct 10 ensuMdsk —q(d)-leaf(d). Soderiv(p(c)) is
finite and by Proposition p(c) € TF,. O

B NEXPTIME lower bound

In this section we prove that the satisfiability problem farBays-Schonfinkel class
with Datalog is NEXPTIME-hard. This is done by a reductionnfr the following
version of a tiling problem. It is known [9] that this versiarf the tiling problem is
NEXPTIME-complete.

Definition 13 (Tiling problem).

Instance: a tuple (T, H, V,k) where T is a finite set of tile colors,,M C T x T are
binary relations and k is a positive integer encoded in bin@mlogk] bits).

Question: does there exist a tiling of k k square byl x 1 tiles such that colors of
each pair of horizontally adjacent tiles satisfy the redatiH and colors of each pair of
vertically adjacent tiles satisfy V?

If the question in the tiling problem has a positive answeamntlwve say that the
instanceg(T, H, V, k) has a solution or that there exists a good tiling for thisanse. In
the following, for a given instancérT, H, V, k) we define a formula of the Bernays-
Schonfinkel class with Datalog such thats satisfiable if and only if there exists an
appropriate tiling.
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The idea is that any model of the formula describes a goodytéind any such tiling
defines a model op. The size of the formula will be polynomial iff| + [H| + [V] +
[logk]. Using simple Datalog program and simulating two countgrg¥ formulas it
is enforced that any model gfhask x k square as a substructure. Is is then enough to
constrain pairs of adjacent nodes accordingltandV. Conversely any good tiling can
be labelled by predicates to form model @f. Below we give a detailed description.

We start by defining the vocabulaky = {elemen{)} andXg = {start,end nex{-, -),
adjacent(-, -), adjacenf(-, -)} U U2 (b¥(), b(-)y U UL 6 ().

The formulagp is a conjunctiony A P A Q where the Datalog prograf has only
one slice and consists of the following two clauses.

elementx) — x = end
elemenfx) < nex(x,y), elementy)

and the query is elementstart).

Before we define the formula we need some more explanation. We shall use
predicates)("),... “0 k1() (andb ... nogk]()) in ¢ to encode in binary verti-
cal (respectively horlzontal) positions of structure redehese positions are numbers
from {0,...,k - 1}, we useb; and bh to represent the most significant bit. Predicates
t1(), . tm() define node’s color Prograﬁ’n and quenryQ enforce existence of a path
made ofnextedges betweestart andendin the structure. The purpose of formulas
to ensure that this path traversek & k square node by node, that nodes have correct
horizontal and vertical positions, precisely one tile cadad that horizontal (respec-
tively, vertical) adjacent nodes satidfly(respectivelyV). To simplify the definition of
¢ we use some macro-definitions.

— Let 2(e) denote that's vertical position is 0. Simplyg'(x) is an abbreviation for
Ap ! =D/(x).
— Let k(e) denote thag's vertical position is k-1. S&kY(x) is an abbreviation for
APIK(BY(x) o by), whereby, .. ., bog) iS the binary representation kf- 1 (that
is, by is the constantrue if the i-th bit of k — 1 is 1, andfalseotherwise).
— Let lessK(e) denote that's vertical position is less thak— 1. SolessK(x) is an
abbreviation for

flogkl -1
\/ (\B) © b) A (SbY) A by)),
=1 =1

whereby, .. ., brogk is binary representation &f— 1. As usual empty conjunction
is the constantrue.

— Letsamé(e;, ;) denote that both its arguments are in the same rowaBe¥(x, y)
is an abbreviation fop\°?¥(b¥(x) & bY(y)).

— For eachj € {1,...,[logk]} let switci‘((el, &) denote thatky’s vertical position
incremented by one gives'’s vertical position and is the first position of a bit
that difers in both positions. MacrswitcP{(x, y) is an abbreviation for

[logk]

-1
A © b)) A B A B A (A DY) A ~B).
i=1

i=j+1
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— Let neighbot'(e;, &) denote thag;’s vertical position is less thak— 1 and incre-
mented by one gives's vertical position. Smeighbol'(x, y) is an abbreviation for
lessR(x) A \/[°9 switch (x, y).

— Macrosz'(-), k(-), samé(-, ), switcH(-, -), neighbof(-, -), lessK(") are defined anal-
ogously.

Now we are ready to define the formualt is a conjunction of

2'(start) A Z'(start) A k¥(end A k'(end

vxVy adjacent(x,y) < samé(x,y) A neighbot(x, y)

vxvy adjacent(x,y) & samé&(x,y) A neighbof(x, y)

VXYY nextx,y) < adjacenf(x,y) v (k"(x) A 2'(y) A neighbol'(x, y))

Vx VI (%)

VX VI () — (AT (X)) A (/\le:'Hl =ti(X))

vxvy adjacent(x,y) = V[ th (X) A tiy (), whereH = {(tn,, thy), . .. (th,,. tiy, )}
vxvy adjacent(x,y) — ViL; tv(X) Aty (y), whereV = {(ty,, tv,), ..., (ty,, tv, )}

©ON O rwNE

Think of startas an element in the upper left corner of a squaresgudas its lower right
corner. The elemerdtart has coordinated), 0) andendhas coordinate&k — 1,k — 1)
as defined by conjunct 1. Conjunct 2 ensures that the predidicent(e;, &) holds

if and only if &, ande, are in the same column amis vertical coordinate is less than
k-1 and this coordinate incremented by one gie/gsvertical coordinate; that & and
e, are vertically adjacent. Conjunct 3 does the same for theigageadjacenf(x, y).
Conjunct 4 defines the predicatex{e;, &) to hold if and only if

— €1 ande;, are horizontally adjacent or
— gy is the last element of some row aagis the first element in next row.

Conjuncts 5 and 6 state that each node has has preciselyeoo@dr. Conjuncts 7 and 8
enforce respectively relatiortd andV between horizontally and vertically adjacent
elements.

Notice that because of the functionality restriction nofi¢he binary macros can
be turned into a predicate. Observe that the size of the flargaus polynomial in
IT|+ [H| + V| + [logk].

Lemma 3. Let(T, H,V, k) be an instance of the tiling problem agdbe the Bernays-
Schonfinkel formula with Datalog defined above. Then thames(T, H, V, k) is solv-
able if and only ify is satisfiable.

Proof. (=) Assume that the instanc@, H, V, k) has a solution. This means that there
exists a relational structud onk = k nodes{e; j | 0 < i, j < k} such that the following
holds.

— For eache ; € M there exists precisely ortee {ti(-),...,tr ()} such thatM
t(e,;). That is each tile has precisely one color.

— LetM [ ti(e ;) andM E ty(e.1,j)) where 0<i < k—1and 0< j < k-1. Then
(t1,t2) € V, that is, colors of vertical neighbors satidfy

— LetM E t1(e ;) andM E t(g j+1) where 0< j <k—1and 0<i < k-1. Then
(t1,t2) € H, that is, colors of horizontal neighbors satify
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We shall modifyM by adding some facts to form a model @f First we add facts
{nex(e j, e j+1) 1 0<i<k-1,0< j <k} and factnexi(ejx-1, €j+10) | 0 < j < k—-1}to
M. The elemengyo € M interprets the constastartandec_i k-1 interprets the constant
end For eache j encodej on [logk] bits using predicateslofl‘(),...,bﬂogk]()} and
encode on[logk] bits using predicatei®](-), ..., b\rllogk](')}' It can now be checked by
case inspection that the macro-definitions have indeedititehded meaning and that
conjuncts 1-8 are satisfied. Finally, observe that the fanatity and bounded-sharing
restrictions are satisfied: every element points to at moesttmrizontally adjacent, at
most one one vertically adjacent and at most one next elerbeanded-sharing is
required only for thenext predicate (the only predicate occurring in progr&@nand
there is no no element pointe@xtby two different elements.

(&) Let M be a model ofp. Let M’ be a substructure dfl generated by elements
e € M such thakis reachable fronstart via nextedges anéndis reachable frone via
nextedges. By conjuncts 1, 4 and the definitionFofind Q the nodes oM’ are{e j |
0<i<kAO< j<Kk}, wherej coordinate of  is defined by itgb{(-), .. .,bﬂog,q(-)},
andi coordinate by{bj(-),..., b\rllogm(')} predicates. By conjuncts 6 and 5 each tile has
precisely one color and by conjuncts 7 and 8 constrainédV are preserved. 0O

As a direct corollary from Lemma 3 and the construction abaxeget Theorem 2.

C \Verification Example

While BS + Datalog was designed to solve bounded model checking probbe
pointer programs (see [7] for details), it can also be usesptxify verification con-
ditions of nontrivial program manipulating linked dataustiures. Decidability of en-
tailment problem for this class leads to automated veriticadf partial correctness
for such programs. We found it interesting, because: 1) agiclallows at most two
variables 2) we use only universal quantifiers 3) abilitydcfying reachability prop-
erties is rather limited, e.d.; predicates cannot be used in formulas in an unrestricted
way, 4) satisfiability as well as entailment of our logic &EXPT IMEcomplete via a
translation to a decidable fragment of first order logic ¢@¥).

We encode the verification problem (pre-, post-conditidmap invariants) as con-
junctions ofBS, + Datalog formulas with assumptions. Assumptions stateetms of
additional instrumentation predicates and have the fatigwproperty: each structure
over vocabulary of the original problem can be extended tioueire interpreting in-
strumentation predicates, such that the assumptions tgstesh Different assumptions
state properties of ffierent instrumentation predicates, so conjunction of aptioms
is also an assumption. Instrumentation predicates caiz loe >, predicates and are de-
noted by primed symbols((-,-),d (-, ), reach(:) etc.). To improve readability we also
use macros, which are shorthandsB& + Datalog formulas with assumptions and are
intended to be used in conjunction wi§ + Datalog formulas and other macros. In
the following, when we say that some predicate is fresh, wamtleat each time when
a macro is unfolded, a new predicate of appropriate aritdéed to appropriateXg or
2)) vocabulary. Each Datalog program occurring in the forrmaanstructed below is
put into separate slice. To verify thatvith assumptioy’ entailsy with assumptiony’
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it is then checked i A ¢’ A Y’ E ¢. SinceBS + Datalog is closed under conjunction
(after an appropriate renaming of vocabularies), this lgralzan be solved by the using
results from Section 3.

C.1 Four useful macros

We start by defining some macros. The first two of them are gssons to be used by
the last two. Anf-path is a path on the heap whose consecutive elements aned g
the predicatef. Note that due to the functionality restriction a maxinigbath starting
in a given element is uniquely determined.

— the macraevpath, ¢, + states that for all elements, e, of the f-path starting ira,
if f(e1, &) ande; # b holds then alsd’(e;, &) holds. The formulaevpath ¢, 1 is
made of conjuncts

vayf/()@ X) - f(X, y)

{reacH(X) « x = a;reach(x) « f’(x,y), reach(y)}
(a#b) - (Vy=f'(y,b) A Vy='(a X))

VxreacH(x) — Yy((x# b A f(xy)) = f'(y, X))

The predicateeacH() is fresh here. It labels all elements reachable feovia an
f-path up tab (whereb may but need not to occur on the path frajn

— the macrcsamepathy; , , States that for all elements, e; of the f-path starting in
a, if f(er, &) ande; # b holds then alsg/' (ey, &) holds. It consists of all conjuncts
of the macraevpath, ¢, ;, in addition to the conjunct

VyreacH(x) - Vy(@'(y, X) = f'(xy)).

— the macrdnverseg 14 states that there is a doubly linked list betweeandb with
forward edgef and backward edgg More formally: constanb is reachable from
constanta by an f-path and for all elements, e, on this path such thag; # b,
if f(e,e), theng(ey, e1). Predicatereach) is a freshZ| predicate and’(-,-) is
a fresh2g predicate.

{reach(x) « x = a;reach(x) « f’(x,y),reachy)},

the query igeach(b) A Vyreach(x) — Yy(f'(y,X) < d(y, X)). This formula uses
the assumptiorevpath, ¢, ¢..

— same 14 States that there is a singly linked list betweeandb with forward edge
f and that edges andg on this list are parallel. Formally is reachable from
constanta by an f-path and for all elements,, e, on this path such that # b,
if f(e &) then alsog(e, €). The definition of this formula is very similar to the
definition ofinverse s pg. The predicateeach(:) is a fresh; predicate and’(:, -)
is a fresh>g predicate.

{reachx) « x = a;reach(x) « f’(x,y), reachy)},

the query igeach(b) A Vyreach(x) — Vy(f'(y,X) < 9(x¥)). This formula uses
the assumptiorevpath, ¢, ..
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C.2 Listreversal

Now we are ready to show that we are able to formulate veiificatonditions in our
logic. The following example is inspired by an example int®et4.2 in [33].

Node reverse(Node x) {
[0] Node y = NULL;
[1] while (x !'= NULL) {
[2] Node t = x->next;
[3] X->next = y;

[41 vy =x;
[5] X = t;
[6] }

[7] return y;

The procedureeverseperforms reversal of a singly linked list. Similarly to[38F
introduce new symbols to the vocabulary: for each prograimtgmoe {0, ... 7} and each
program variables € {x,y, z} we introduce a new constant symhal new predicate
nexf and new data structutistP.

The precondition requires that on entry to the procedeverse at program point
0, the variablex points to an acyclic list.

Preeverse= {ist®(U) « u = NULL; list®(u) « nex®(u, v), list®(y)} A list®(x®).

The postcondition ensures that the result is an acyclipbgited to byy, further-
more it ensures that each edge of the original list is redarséhe returned list.

POSteyerse= Hlist’ (U) « u = NULL,; list”(u) « next (u, V), listz(v)}A

Alist’(y”) A Inversgs nexs y7 next A X° # NULL — next (x®, NULL).

The most interesting formula is the the loop invariant. lates the state of the heap
at the beginning of each iteration to the state of the heapedbéginning of the proce-
dure. It states that bogt andx! point to singly linked lists and thappendreverséy), x!) =
x®. The invariant is encoded as the formyla= {list'(u) « u = NULL; list'(u) «
next (u, v), list' (v)} A list!(x*) A list!(y!) A SaM&s nexe NULLnext- The assumption of the
formulay isrevpathy neye nuLLnext ANEXE(Y", X')Asamepathl neye nuLLnext- HErenext(:, -)
is a fresh instrumentation predicate. The assumption ersagpendrev(y?), x!') as a
path fromNULL following next edges. A subpath of this path should contain the orig-
inal list. This is encoded by the conjurEames nexe NULLnext iN ¢, Which states that on
the path fromx® to NULL the edgesiexf andnext are parallel. The following entail-
ments must now be proven

— Pr€everseh y@ = NULL E ¢,
— oA (X' £ NULDA(Y® = x) Anext(xt, x®) AnexE(x, y') Asamepath n nuLLnexe A

Asamepatb,nexﬂ,NULL,nexﬁ E 906 and
— ¢” A X" = NULL E pOSteyerse

Heree®(resp.¢” andy?) is a formulap where all predicates and constants indexed by
1 were replaced by corresponding predicates indexegl (ogsp.7 and®).
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