Kurs jezyka C++

2. Klasy i obiekty

Spis tresci

» Pojecie klasy i obiektu

» Sktadowe w klasie - pola i metody

» Abstrakcja i hermetyzacja

» Konstruktor i destruktor

» Wskaznik this

» Ukrywanie sktadowych

» Przecigzanie nazw funkcji i metod

» Uogolnione wyrazenia state

» Argument bedacy referencja do statej
» Konstruktor kopiujacy i przypisanie kopiujac
» Pola state, zawsze modyfikowalne i ulotn

Klasy

» Klasa to nowy typ danych (projekt).
» Obiekt to instancja klasy (realizacja projektu).

» Klasa posiada rozne pola i metody:
» wartosci pol w obiekcie okreslajg stan obiektu,
» metody okreslaja funkcjonalnosc obiektu.
» Klase definiuje sie nastepujaco:
class klasa {
// definicje pdl
// deklaracje metod
¥

Klasy

» Przyktad klasy:
class Punkt ({

public:
double x, vy;
Punkt (double a, double Db)
volid przesun x (double dx);
)
)

4

4

vold przesun y (double dy
double odleglosc (Punkt p

4

}

Klasy

» Metody w klasie tylko deklarujemy (jak funkcje'w
plikach nagtowkowych).

» Definicje metod umieszczamy poza klasg (definicj
te sg kwalifikowane nazwga kasy za pomoca
operatora zakresu : :).

» Przyktad definicji metody poza klasa:
void Punkt::przesun x (double dx) {
X += dx;
}

» Zmienne globalne czy funkcje globalne
kwalifikujemy operatorem zakresu globalnego:
s s zZimlienna,
112 0) 7

Konstruktor

» Konstruktor to specjalna metoda uruchamiana
tylko podczas inicjalizacji obiektu.

» Konstruktor ma takg sama nazwe jak klasa.
» Konstruktor nie zwraca zadnego wyniku.

» Przyktad konstruktora:

Punkt: :Punkt (double a, double b) {

J

Obiekty

» Mozna utworzyc obiekt na stosie za pomocg
zwyktej deklaracji potaczonej z inicjalizacja.

» Przyktad obiektu automatycznego:
Punkt a = Punkt (4,0);
Punkt b (5,7);

Punkt ¢ {3, 8};

» Mozna tez utworzyc obiekt na stercie za pomoca
operatora new. Pamietaj o usunieciu go
operatorem delete, gdy bedzie niepotrzebny.

» Przyktad obiektu w pamieci wolnej:
Punkt *p = new Punkt(-2,-3);

[/ ..
delete p;

Sktadowe w obiekcie

» Do sktadowych w obiekcie odwotujemy sie za
pomocya operatora dostepu do sktadowych (kropk
. dla obiektow i referencji albo strzatka -> dla
wskaznikow).

» Metoda jest wywotywana na rzecz konkretnego
jednego obiektu.

» Przyktady odwotania do funkcji sktadowych w
obiekcie:
Punkt a(17,23), b((20,19), *p = &a;
double d = a.odleglosc(b);
b.przesun vy (8);
p->przesun x(6);

Abstrakcja i hermetyzacja

O Programowanie obiektowe to paradygmat
programowania, w ktorym programy definiuje
sie za pomocg obiektow - elementow taczacych
stan (czyli dane, nazywane najczesciej polami) i
zachowanie (czyli funkcje sktadowe, nazywane
tez metodami).

O Abstarkcja to | paradygmat programowania
obiektowego - kazdy obiekt w systemie jest
modelem abstrakcyjnego wykonawcy, ktory
moze wykonywac prace, opisywac i zmieniac
swoj stan oraz komunikowac sie z innymi
obiektami bez ujawniania, w jaki sposob
zaimplementowano jego cechy.

Abstrakcja i hermetyzacja

O Hermetyzacja (nazywana tez enkapsulacjg) to
Il paradygmat programowania obiektowego -
oznacza zamkniecie w obiekcie danych i
funkcji sktadowych do operowania na tych
danych. Hermetyzacja to rowniez ukrywanie
implementacji - zapewnia, ze obiekt nie moze
zmieniac stanu wewnetrznego innych obiektow
w nieoczekiwany sposob (tylko wtasne metody
obiektu sa uprawnione do zmiany jego stanu).
Kazdy typ obiektu prezentuje innym obiektom
swoj interfejs, ktory okresla dopuszczalne
metody wspotpracy.

Klasy

» Klasa to typ zdefiniowany przez programiste.

Program to zbior deklaracji i definicji klas.

» Klasa jest modelem (projektem) a obiekt jest instancja
klasy (realizacja projektu).

» Klasa posiada rozne pola i metody:
» wartosci pol w obiekcie okreslajg stan obiektu.

» Obiekt posiada wtasne pola a wspolne dla wszystkich
obiektow sg funkcje sktadowe (metody):

» metody pracuja na rzecz konkretnego obiektu.

Klasy

» Klase definiuje sie nastepujaco:
class klasa {
// definicije pdl
// deklaracje metod
i

» Po zrobieniu definicji mozna tworzyc obiekty klasy:
klasa x, vy, z;

» Mozemy tez tworzyc wskazniki, referencje i tablice obiektow
danej klasy:
klasa *wsk = &x;
klasa &ref = vy;
klasa *&r2w = wsk;
klasa tab[10];

Klasy

» Przyktad definicji klasy (w pliku nagtowkowym
. hpp) z wykorzystaniem hermetyzacji:
class punkt {
private:
double x, vy;
public:
punkt (double a, double Db);
~punkt () ;
vold przesun x (double dx);
void przesun y (double dy);
double wsp x ()7
double wsp vy ()7
double odleglosc (punkt &p):;

}

Obiekty

» Mozna utworzyc obiekt na stosie za pomoca
zwyktej deklaracji potaczonej z inicjalizacja.

» Przyktad obiektu automatycznego:
punkt a = punkt (4,0);
punkt b (5,7);

» Mozna tez utworzyc obiekt na stercie za pomoca
operatora new. Pamietaj o usunieciu go
operatorem delete, gdy bedzie niepotrzebny.

» Przyktad obiektu w pamieci wolnej:
punkt *p = new punkt (-2,-3);
[/ ..
delete p;

Sktadowe w klasie

» Wewnatrz klasy mozna zdefiniowac pola sktadowe
(podobnie jak zmienne) oraz zadeklarowac funkc
sktadowe (podobnie jak funkcje globalne).

» Kazdy obiekt ma wtasny zestaw pol sktadowych
Wartosci pol sktadowych w obiekcie wyznaczaja
jego stan.

» Funkcje sktadowe okreslaja funkcjonalnosc klasy.
pomocg funkcji sktadowych mozna sterowac sta
obiektow i ich zachowaniem.

Odwotania do sktadowych w
klasie

» Do sktadowych w obiekcie odwotujemy
si¢ za pomocg operatora dostepu do
sktadowych (kropka . dla obiektow i
referencji albo strzatka -> dla
wskaznikow).

» Metoda jest wywotywana na rzecz
konkretnego jednego obiektu.

» Przyktady odwotania do sktadowych w
obiekcie:
punkt a(l7,23), b(20,19);
punkt *p &a, &r = b;
double d a.odleglosc (b);
r.przesun vy (8);
p->przesun x(6);

Pola sktadowe

» Pola w klasie mogg by¢ danymi typu podstawowego (bool, cha
int, double, itd), ale mogg tez byc obiektami innych klas.

» Przytady:
struct lwymierna {
int licznik, mianownik;
I
struct osoba {
int rok ur;
double waga, wzrost;
string imile, nazwisko;

s

» Budowanie nowej klasy w oparciu o obiekty innych klas nazy
sie kompozycja.

Funkcje sktadowe

» Funkcje sktadowe w klasie tylko deklarujemy (jak funkcj
globalne w plikach nagtowkowych).

» Definicje metod umieszczamy poza klasa (definicje te sg
kwalifikowane nazwa kasy za pomocg operatora zakresu : :

» Przyktad definicji metod poza klasg (w pliku zrodtowym . cp
volid punkt::przesun x (double dx) { x += dx; }
volid punkt::przesun y (double dy) { y += dy; }
double punkt::wsp x () { return x; }
double punkt::wsp y () { return y; }
double punkt::odleglosc (Punkt &p) {

double dx=x-p.x, dy=y-p.y;
return sqgrt (dx*dx+dy*dy) ;
}

» W ciele metody mozemy sie odnosic do wszystkich sktadow
w tej samej klasie bez operatora zakresu : :.

Konstruktor

» Konstruktor to specjalna metoda uruchamiana tylko podc
inicjalizacji obiektu - jego celem jest nadanie poczatkow
stanu obiektowi.

Konstruktor ma takg sama nazwe jak klasa.
Konstruktor nie zwraca zadnego wyniku.
Konstruktor mozna przetadowac.

Przyktad konstruktora:
punkt: :punkt (double a, double b) {
X =a, y=Db;

v vyvyy

}

Konstruktor domyslny

» Jesli programista nie zdefiniuje Zadnego konstruktora w
klasie, wowczas kompilator wygeneruje konstruktor
domyslny (konstruktor bezargumentowy), ktory nic nie
robi.

» Przyktad konstruktora bezargumentowego zdefiniowanego
jawnie:
punkt: :punkt () {
x =y = 0;
}

» Deklaracja obiektu z konstruktorem domyslnym:
// punkt p(); - to jest Zle!
punkt p = punkt(); // to samo co; Punkt p;
// punkt p; - to jest tez dobrze!

Konstruktor domyslny

» Jesli programista zdefiniowat jakies
konstruktory w klasie i chciatby miec
konstruktor domysiny, to moze wymusic na
kompilatorze wygenerowanie konstruktora
domyslnego za pomoca frazy =default
umieszczonej na koncu deklaracji.

» Przyktad konstruktora domyslnego, ktory
zostanie wygenerowany przez kompilator:
punkt () = default;

Konstruktory delegatowe

» Konstruktor delegatowy wywotuje inny
konstruktor do zainicjalizowania obiektu.

» Wywotanie konstruktora wtasciwego w
konstruktorze delegatowym nastepuje na
liscie inicjalizacyjnej (jest to jedyne
wywotanie na liscie inicjalizacyjnej):
K::K(...) : K(..) { ..}

» Tresc konstruktora delegatowego pracuje na
zainicjalizowanym juz obiekcie.

Konstruktory delegatowe

» Wywotanie innych rownorzednych konstrukt
zwanych delegacjami, umozliwia wykorzysta
cech innego konstruktora za pomoca niewielk
dodatku kodu.

» Przyktad:
class SomeType {
int number;

public:
SomeType (1nt num) : number (num)
SomeType () : SomeType (45) {}

// ..
b

Konstruktory delegatowe

» W C++ obiekt jest skonstruowany, jesli
dowolny konstruktor zakonczy swe
dziatanie.

» Jesli wielokrotne wykonywanie
konstruktorow jest dozwolone, to znaczy,
ze kazdy konstruktor delegatowy bedzie
wykonywany na juz skonstruowanym
obiekcie.

» Konstruktory klas pochodnych beda
wywotane wtedy, gdy wszystkie
konstruktory delegatowe ich klas
bazowych beda zakonczone.

Destruktor

v

Destruktor to specjalna metoda uruchamiana
podczas likwidacji obiektu - jego celem jest
posprzatanie po obiekcie (zwolnienie jego
zasobow - pamiec na stercie, pliki, itp.).

Nazwa destruktora to nazwa klasy poprzedzona
tylda.

Destruktor nie zwraca zadnego wyniku.
Destruktor nie przyjmuje zadnych argumentow.

Przyktad destruktora:
punkt: :~punkt () {
x =v = 0;

}

Destruktor

» Destruktor mozna wywotac jawnie w czasie zyc
obiektu tak jak zwykta funkcje sktadowa:
punkt p(1,2);
punkt *pp = &p;

// ...
p.~punkt () ;
pp—>~punkt () ;

» Destruktor mozna wywotac w jawny sposob na
przyktad w przypisaniu kopiujgcym.

» Destruktora nie powinno sie wywotywac w
sposob jawny w programie!

Wskaznik this

» Wskaznik this jest ukrytym parametrem
kazdej instancyjnej funkcji sktadowej.

» Wskaznik this pokazuje na biezacy obiekt.

» Wskaznika tego uzywany tylko w funkcjach
sktadowych.

» Typ wskaznika this jest taki jak klasy, w ktorej
jest uzywany.
» this stosujemy najczesciej w przypadku:

» zastoniecia nazwy sktadowej przez nazwe lokalng (na
przyktad przez nazwe argumentu);

» jawnego wywotania destruktora (this->~Klasa () ;

Ukrywanie sktadowych

» Cata definicje klasy mozna podzielic¢ na bloki o
roznych zakresach widocznosci.

» Poczatek blo

private:

» Sktadowe
w klasie i

» Sktadowe

a
DU

KU rozpoczyna sie od frazy publi
bo protected:.

noza klasa.

Dry
tylko w klasie (rowniez w zewnetrznej deflmcp
funkcji sktadowej danej klasy).

» Sktadowe chronione (blok protected:) sg
widoczne tylko w klasie i w klasach pochod
od danej klasy.

oliczne (blok public:) sg widocz

watne (blok private:) sq widocz

Ukrywanie sktadowych

>

>

>

Domyslnie wszystkie sktadowe w klasie sq
prywatne a w strukturze publiczne.

Ukrywamy informacje wrazliwe, by ktos sp
Klasy przypadkiem nie zniszczyt stanu
obiektu.

Dobrym obyczajem w programowaniu jest
ukrywanie pol sktadowych, do ktorych dostep
jest tylko poprzez specjalne funkcje sktado
(zwane metodami dostepowymi albo

akcesorami - gettery do czytania i sette
pisania).

Przecigzanie nazw funkcji

» Przecigzanie albo przetadowanie nazwy funkcji
polega na zdefiniowaniu kilku funkcji o takiej samej
nazwie.

» Funkcje przecigzone muszg sie roznic lista ar%umenté
- kompilator rozpoznaje po argumentach, o kiora
wersje danej funkcji chodzi.

» Mozemy rzeciakzac':.réwniez funkcje sktadowe i
konstruktory w klasie.

» Przyktad przecigzenia konstruktora:
class punkt {
double x, vy;
public:
punkt ()
{ x =y =0; }
punkt (double x, double vy)
{ this->x = x; this->y =vy; }

State

» Modyfikator const oznacza statosc (brak zmian) zmienn
albo argumentow funkcji.

» State trzeba zainicjalizowac.

» Przyktad definicji statej:
const double pi =
3.1415926535897932386426433832795;

» W programie niewolno modyfikowac wartosci zmiennych
ustalonych (poprzez przypisanie nowych wartosci).

» Zmienne o ustalonej wartosci to przewaznie state globalne.

» Pola state bardzo czesto sa deklarowane w klasie jako p
publiczne.

State kontra #define

» Rozwazmy nastepujace definicje:
» #define E 2.718281828459
» const double E = 2.718281828459;

» W przypadku makrodefinicji nazwa E jest
kompilatorowi zupetnie nieznana (bedzie
usunieta w fazie preprocesingu).

» Nazwa E w przypadku statej ma swoj
zakres waznosci.

» Stata E to obiekt w pamieci i ma swoj
adres.

» Stata E to obiekt o okreslonym typie.

Uogolnione wyrazenia state

» State wyrazenia to wyrazenia, ktore zawsze zwracaja ten sam
wynik i nie wywotujg zadnych dodatkowych efektow ubocznyc
(na przyktad 3+5).

» State wyrazenia sg dla kompilatora okazja do optymalizacji,
poniewaz kompilator czesto wylicza te wyrazenia w czasie
kompilacji i wstawia ich wyniki do programu.

» Zmienne typu constexpr (statowyrazeniowe) sa niejawnie
przeksztatcane do typu const - mogg one przechowac wynik
wyrazen statych lub statowyrazeniowych konstruktorow (czyli
zdefiniowanych ze stowem kluczowym constexpr).

» Przyktad:
constexpr double grawitacja = 9.8;

constexpr double grawitKsiezyca grawitacj

Uogolnione wyrazenia state

» Za pomoca stowa kluczowego constexpr mozna
zagwarantowac, ze funkcja lub konstruktor obiektu sg statymi
podczas kompllaCJl

» Zastosowanie constexpr do funkcji narzuca bardzo sciste
ograniczenia na to, co funkcja moze robic:

>
>

>

funkcja musi posiadac typ zwracany rozny od void;

zaleca sie aby cata zawartosc funkcji sktadata sie tylko z instruk
return,

wyrazenie musi byc statym wyrazeniem po zastapieniu argumentu
- to state wyrazenie moze albo wywotac inne funkcje tylko wtedy,
gdy te funkcje tez sg zadeklarowane ze stowem kluczowym
constexpr albo uzywac innych statych wyrazen;

wszystkie formy rekursji w statych wyrazeniach sg zabronione;

funkcja zadeklarowana ze stowem kluczowym constexp
moze by¢ wywotywana, dopoki nie bedzie zdefiniowana
jednostce translachneJ

Uogolnione wyrazenia state

» Statowyrazeniowy konstruktor stuzy do konstrukcji
wartosci statowyrazeniowych z typow zdefiniowanych
przez uzytkownika, konstruktory takie musza byc
zadeklarowane jako constexpr.

» Statowyrazeniowy konstruktor musi byc zdefiniowany
przed uzyciem w jednostce translacyjnej (podobnie jak
metoda statowyrazeniowa) i musi miec puste ciato
funkcji i musi inicjalizowac swoje sktadowe za pomocga
statych wyrazen na liscie inicjalizacyjnej.

» Destruktory takich typow powinny byc trywialne.

Argumenty state

» Modyfikator const moze wystepowac przy
argumentach w funkcji.

» Jesli argument jest staty to argumentu takiego nie
wolno w funkcji zmodyfikowac.

» Przyktad funkcji z argumentami statymi:
int abs (const int a) {
return a<0 ? -a : a;
}

» Czesto argumentami statymi sg referencje.

» Przyktad funkcji z argumentami statymi:
int min (const 1nt &a, const int &b)
return a<b ? a : Db;
}

» Argument staty jest inicjalizowany przy wyw
funkcji.

{

Referencja do statej
jako argument w funkcji

» Referencja do statej moze sie odnosic do obiek
zewnetrznego (moze byc zadeklarowany jako st
ale rowniez do obiektu tymczasowego.

» Przyktad referencji do statej:
const int &rc = (2*3-5)/7+11;

» Przyktad argumentu funkcji, ktory jest referencj
do statej:
int fun (const int &r);
// wywolanie moze miel postacd
// fun (13+17) ;

// gdzie argumentem moze byé¢ wyraz

Staty wskaznik
i wskaznik do statej

» Wskaznik do statej pokazuje na obiekt, ktorego nie m
modyfikowac. Przyktad:
int a=7, b=5;
const int *p = &a;
// *p = 12; to jest biad
p = &b; // ok

» Staty wskaznik zawsze pokazuje na ten sam obiekt. Przykt
int a=13, b=11;
int *const p = &a;
*p = 12; // ok
// p = &b; to jest btad

» Mozna rowniez zdefiniowac staty wskaznik do statej. Pr
int c=23;
const int *const p = &c;

Pola state w klasie

» W klasie mozna zdefiniowac pola state z deklaratorem const.
Przyktad:
class zakres {
const int MIN, MAX;
public:
zakres (int mi, int ma);
// ..
I

» Inicjalizacji pola statego (i nie tylko statego) mozna dokonac
tylko poprzez liste inicjalizacyjnq w konstruktorze (po
dwukropku za nagtowkiem). Przyktad:
zakres::zakres (int mi, int ma) : MIN(mi),
MAX (ma) {

if (MIN<O| |MIN>=MAX)
throw string("zte zakresy");
}
Inicjalizacja pol na liscie ma postac konstruktorowa.

» Konstruktor kopiujacy nie zostanie wygenerowany
automatycznie tylko wtedy, gdy w klasie nie ma pol

State funkcje sktadowe

» W klasie mozna zadeklarowac state funkcje sktadowe z
deklaratorem const. Przyktad:
class zakres {

const int MIN, MAX;

public:
int min () const;
int max () const;
// ..

s

» Stata funkcja sktadowa gwarantuje nam, ze nie bedzie
modyfikowac zadnych pol w obiekcie (nie zmieni stanu obi

Przyktad:
int zakres::min () const { return MIN; }
int zakres::max () const { return MAX; }

» Na obiektach statych mozemy dziatac tylko statymi f
sktadowymi.

Pola zawsze modyfikowalne

» Jesli obiekt zostanie zadeklarowany jako staty, to mozna na ni
wywotywac tylko state funkcje sktadowe, ktore nie zmieniajg
stanu obiektu.

» W klasie mozna jednak zdefiniowac zawsze modyfikowalne pola
sktadowe za pomocg deklaratora mutable. Przyktad:
class zakres
{
mutable int wsp;
public:
void nowyWsp (int w) const;
/] ..
} i

» Pole zawsze modyfikowalne moze by¢ zmieniane w statym
obiekcie przez statg funkcje sktadowa. Przyktad:
vold zakres::nowyWsp (int w) const
{

if (w<O| |w<wsp/2| |w>wsp*2)
throw string("z1y wspdiczynnik");
WSp = W;

Ulotne funkcje sktadowe

» W klasie mozna rowniez zadeklarowac ulotne funkcje
sktadowe z deklaratorem volatile. Przyktad:
class licznik {

volatile int ile;
public:
int 1losc () wvolatile;
/] ..
I

» Ulotna funkcja sktadowa gwarantuje nam, ze nie bedzie
optymalizowac kodu przy korzystaniu z pol w obiekcie (nie
przechowywac stanu obiektu w podrecznej pamieci). Przyk
int licznik::1losc () wvolatile {

return ile;

}

» Na obiektach ulotnych mozemy dziatac tylko ulotnymi
funkcjami sktadowymi.

