
Kurs języka C++
2. Klasy i obiekty

Spis treści

 Pojęcie klasy i obiektu

 Składowe w klasie – pola i metody

 Abstrakcja i hermetyzacja

 Konstruktor i destruktor

 Wskaźnik this

 Ukrywanie składowych

 Przeciążanie nazw funkcji i metod

 Uogólnione wyrażenia stałe

 Argument będący referencją do stałej

 Konstruktor kopiujący i przypisanie kopiujące

 Pola stałe, zawsze modyfikowalne i ulotne

Klasy

 Klasa to nowy typ danych (projekt).

 Obiekt to instancja klasy (realizacja projektu).

 Klasa posiada różne pola i metody:

 wartości pól w obiekcie określają stan obiektu,

 metody określają funkcjonalność obiektu.

 Klasę definiuje się następująco:
class klasa {

// definicje pól

// deklaracje metod

};

Klasy

 Przykład klasy:
class Punkt {

public:

double x, y;

Punkt (double a, double b);

void przesun_x (double dx);

void przesun_y (double dy);

double odleglosc (Punkt p);

};

Klasy

 Metody w klasie tylko deklarujemy (jak funkcje w
plikach nagłówkowych).

 Definicje metod umieszczamy poza klasą (definicje
te są kwalifikowane nazwą kasy za pomocą
operatora zakresu ::).

 Przykład definicji metody poza klasą:
void Punkt::przesun_x (double dx) {

x += dx;

}

 Zmienne globalne czy funkcje globalne
kwalifikujemy operatorem zakresu globalnego:
::zmienna;

::f();

Konstruktor

 Konstruktor to specjalna metoda uruchamiana

tylko podczas inicjalizacji obiektu.

 Konstruktor ma taką samą nazwę jak klasa.

 Konstruktor nie zwraca żadnego wyniku.

 Przykład konstruktora:
Punkt::Punkt (double a, double b) {

x = a, y = b;

}

Obiekty

 Można utworzyć obiekt na stosie za pomocą
zwykłej deklaracji połączonej z inicjalizacją.

 Przykład obiektu automatycznego:
Punkt a = Punkt(4,6);
Punkt b(5,7);
Punkt c {3, 8};

 Można też utworzyć obiekt na stercie za pomocą
operatora new. Pamiętaj o usunięciu go
operatorem delete, gdy będzie niepotrzebny.

 Przykład obiektu w pamięci wolnej:
Punkt *p = new Punkt(-2,-3);
// …
delete p;

Składowe w obiekcie

 Do składowych w obiekcie odwołujemy się za
pomocą operatora dostępu do składowych (kropka
. dla obiektów i referencji albo strzałka -> dla
wskaźników).

 Metoda jest wywoływana na rzecz konkretnego
jednego obiektu.

 Przykłady odwołania do funkcji składowych w
obiekcie:
Punkt a(17,23), b(20,19), *p = &a;

double d = a.odleglosc(b);

b.przesun_y(8);

p->przesun_x(6);

Abstrakcja i hermetyzacja

 Programowanie obiektowe to paradygmat
programowania, w którym programy definiuje
się za pomocą obiektów – elementów łączących
stan (czyli dane, nazywane najczęściej polami) i
zachowanie (czyli funkcje składowe, nazywane
też metodami).

Abstarkcja to I paradygmat programowania
obiektowego – każdy obiekt w systemie jest
modelem abstrakcyjnego wykonawcy, który
może wykonywać pracę, opisywać i zmieniać
swój stan oraz komunikować się z innymi
obiektami bez ujawniania, w jaki sposób
zaimplementowano jego cechy.

Abstrakcja i hermetyzacja

Hermetyzacja (nazywana też enkapsulacją) to
II paradygmat programowania obiektowego –
oznacza zamknięcie w obiekcie danych i
funkcji składowych do operowania na tych
danych. Hermetyzacja to również ukrywanie
implementacji – zapewnia, że obiekt nie może
zmieniać stanu wewnętrznego innych obiektów
w nieoczekiwany sposób (tylko własne metody
obiektu są uprawnione do zmiany jego stanu).
Każdy typ obiektu prezentuje innym obiektom
swój interfejs, który określa dopuszczalne
metody współpracy.

Klasy

 Klasa to typ zdefiniowany przez programistę.

 Program to zbiór deklaracji i definicji klas.

 Klasa jest modelem (projektem) a obiekt jest instancją

klasy (realizacją projektu).

 Klasa posiada różne pola i metody:

 wartości pól w obiekcie określają stan obiektu.

 Obiekt posiada własne pola a wspólne dla wszystkich

obiektów są funkcje składowe (metody):

 metody pracują na rzecz konkretnego obiektu.

Klasy

 Klasę definiuje się następująco:
class klasa {

// definicje pól

// deklaracje metod

};

 Po zrobieniu definicji można tworzyć obiekty klasy:
klasa x, y, z;

 Możemy też tworzyć wskaźniki, referencje i tablice obiektów
danej klasy:
klasa *wsk = &x;

klasa &ref = y;

klasa *&r2w = wsk;

klasa tab[10];

Klasy

 Przykład definicji klasy (w pliku nagłówkowym
.hpp) z wykorzystaniem hermetyzacji:
class punkt {
private:

double x, y;
public:

punkt (double a, double b);
~punkt ();
void przesun_x (double dx);
void przesun_y (double dy);
double wsp_x ();
double wsp_y ();
double odleglosc (punkt &p);

};

Obiekty

 Można utworzyć obiekt na stosie za pomocą

zwykłej deklaracji połączonej z inicjalizacją.

 Przykład obiektu automatycznego:
punkt a = punkt(4,6);

punkt b(5,7);

 Można też utworzyć obiekt na stercie za pomocą
operatora new. Pamiętaj o usunięciu go
operatorem delete, gdy będzie niepotrzebny.

 Przykład obiektu w pamięci wolnej:
punkt *p = new punkt(-2,-3);

// …

delete p;

Składowe w klasie

 Wewnątrz klasy można zdefiniować pola składowe

(podobnie jak zmienne) oraz zadeklarować funkcje

składowe (podobnie jak funkcje globalne).

 Każdy obiekt ma własny zestaw pól składowych.

Wartości pól składowych w obiekcie wyznaczają

jego stan.

 Funkcje składowe określają funkcjonalność klasy. Za

pomocą funkcji składowych można sterować stanem

obiektów i ich zachowaniem.

Odwołania do składowych w

klasie

 Do składowych w obiekcie odwołujemy
się za pomocą operatora dostępu do
składowych (kropka . dla obiektów i
referencji albo strzałka -> dla
wskaźników).

 Metoda jest wywoływana na rzecz
konkretnego jednego obiektu.

 Przykłady odwołania do składowych w
obiekcie:
punkt a(17,23), b(20,19);
punkt *p = &a, &r = b;
double d = a.odleglosc(b);
r.przesun_y(8);
p->przesun_x(6);

Pola składowe

 Pola w klasie mogą być danymi typu podstawowego (bool, char,
int, double, itd), ale mogą też być obiektami innych klas.

 Przyłady:
struct lwymierna {

int licznik, mianownik;

};

struct osoba {

int rok_ur;

double waga, wzrost;

string imie, nazwisko;

};

 Budowanie nowej klasy w oparciu o obiekty innych klas nazywa
się kompozycją.

Funkcje składowe

 Funkcje składowe w klasie tylko deklarujemy (jak funkcje
globalne w plikach nagłówkowych).

 Definicje metod umieszczamy poza klasą (definicje te są
kwalifikowane nazwą kasy za pomocą operatora zakresu ::).

 Przykład definicji metod poza klasą (w pliku źródłowym .cpp):
void punkt::przesun_x (double dx) { x += dx; }
void punkt::przesun_y (double dy) { y += dy; }
double punkt::wsp_x () { return x; }
double punkt::wsp_y () { return y; }
double punkt::odleglosc (Punkt &p) {
double dx=x-p.x, dy=y-p.y;
return sqrt(dx*dx+dy*dy);

}

 W ciele metody możemy się odnosić do wszystkich składowych
w tej samej klasie bez operatora zakresu ::.

Konstruktor

 Konstruktor to specjalna metoda uruchamiana tylko podczas
inicjalizacji obiektu – jego celem jest nadanie początkowego
stanu obiektowi.

 Konstruktor ma taką samą nazwę jak klasa.

 Konstruktor nie zwraca żadnego wyniku.

 Konstruktor można przeładować.

 Przykład konstruktora:
punkt::punkt (double a, double b) {

x = a, y = b;
}

Konstruktor domyślny

 Jeśli programista nie zdefiniuje żadnego konstruktora w
klasie, wówczas kompilator wygeneruje konstruktor
domyślny (konstruktor bezargumentowy), który nic nie
robi.

 Przykład konstruktora bezargumentowego zdefiniowanego
jawnie:
punkt::punkt () {

x = y = 0;
}

 Deklaracja obiektu z konstruktorem domyślnym:
// punkt p(); - to jest źle!
punkt p = punkt(); // to samo co; Punkt p;
// punkt p; - to jest też dobrze!

Konstruktor domyślny

 Jeśli programista zdefiniował jakieś
konstruktory w klasie i chciałby mieć
konstruktor domyślny, to może wymusić na
kompilatorze wygenerowanie konstruktora
domyślnego za pomocą frazy =default
umieszczonej na końcu deklaracji.

 Przykład konstruktora domyślnego, który
zostanie wygenerowany przez kompilator:
punkt() = default;

Konstruktory delegatowe

 Konstruktor delegatowy wywołuje inny

konstruktor do zainicjalizowania obiektu.

 Wywołanie konstruktora właściwego w

konstruktorze delegatowym następuje na

liście inicjalizacyjnej (jest to jedyne

wywołanie na liście inicjalizacyjnej):
K::K(…) : K(…) { … }

 Treść konstruktora delegatowego pracuje na

zainicjalizowanym już obiekcie.

Konstruktory delegatowe

 Wywołanie innych równorzędnych konstruktorów,
zwanych delegacjami, umożliwia wykorzystanie
cech innego konstruktora za pomocą niewielkiego
dodatku kodu.

 Przykład:
class SomeType {

int number;

public:

SomeType (int num) : number(num) {}

SomeType () : SomeType(45) {}

// …

};

Konstruktory delegatowe

 W C++ obiekt jest skonstruowany, jeśli
dowolny konstruktor zakończy swe
działanie.

 Jeśli wielokrotne wykonywanie
konstruktorów jest dozwolone, to znaczy,
że każdy konstruktor delegatowy będzie
wykonywany na już skonstruowanym
obiekcie.

 Konstruktory klas pochodnych będą
wywołane wtedy, gdy wszystkie
konstruktory delegatowe ich klas
bazowych będą zakończone.

Destruktor

 Destruktor to specjalna metoda uruchamiana
podczas likwidacji obiektu – jego celem jest
posprzątanie po obiekcie (zwolnienie jego
zasobów – pamięć na stercie, pliki, itp.).

 Nazwa destruktora to nazwa klasy poprzedzona
tyldą.

 Destruktor nie zwraca żadnego wyniku.

 Destruktor nie przyjmuje żadnych argumentów.

 Przykład destruktora:
punkt::~punkt () {

x = y = 0;

}

Destruktor

 Destruktor można wywołać jawnie w czasie życia
obiektu tak jak zwykłą funkcję składową:
punkt p(1,2);

punkt *pp = &p;

//…

p.~punkt();

pp->~punkt();

 Destruktor można wywołać w jawny sposób na
przykład w przypisaniu kopiującym.

 Destruktora nie powinno się wywoływać w
sposób jawny w programie!

Wskaźnik this

 Wskaźnik this jest ukrytym parametrem
każdej instancyjnej funkcji składowej.

 Wskaźnik this pokazuje na bieżący obiekt.

 Wskaźnika tego używany tylko w funkcjach
składowych.

 Typ wskaźnika this jest taki jak klasy, w której
jest używany.

 this stosujemy najczęściej w przypadku:

 zasłonięcia nazwy składowej przez nazwę lokalną (na
przykład przez nazwę argumentu);

 jawnego wywołania destruktora (this->~Klasa();
).

Ukrywanie składowych

 Całą definicję klasy można podzielić na bloki o
różnych zakresach widoczności.

 Początek bloku rozpoczyna się od frazy public:,
private: albo protected:.

 Składowe publiczne (blok public:) są widoczne
w klasie i poza klasą.

 Składowe prywatne (blok private:) są widoczne
tylko w klasie (również w zewnętrznej definicji
funkcji składowej danej klasy).

 Składowe chronione (blok protected:) są
widoczne tylko w klasie i w klasach pochodnych
od danej klasy.

Ukrywanie składowych

 Domyślnie wszystkie składowe w klasie są
prywatne a w strukturze publiczne.

 Ukrywamy informacje wrażliwe, by ktoś spoza
klasy przypadkiem nie zniszczył stanu
obiektu.

 Dobrym obyczajem w programowaniu jest
ukrywanie pól składowych, do których dostęp
jest tylko poprzez specjalne funkcje składowe
(zwane metodami dostępowymi albo
akcesorami – gettery do czytania i settery do
pisania).

Przeciążanie nazw funkcji

 Przeciążanie albo przeładowanie nazwy funkcji
polega na zdefiniowaniu kilku funkcji o takiej samej
nazwie.

 Funkcje przeciążone muszą się różnić listą argumentów
– kompilator rozpoznaje po argumentach, o którą
wersję danej funkcji chodzi.

 Możemy przeciążać również funkcje składowe i
konstruktory w klasie.

 Przykład przeciążenia konstruktora:
class punkt {

double x, y;
public:

punkt ()
{ x = y = 0; }

punkt (double x, double y)
{ this->x = x; this->y = y; }

}

Stałe

 Modyfikator const oznacza stałość (brak zmian) zmiennych
albo argumentów funkcji.

 Stałe trzeba zainicjalizować.

 Przykład definicji stałej:
const double pi =

3.1415926535897932386426433832795;

 W programie niewolno modyfikować wartości zmiennych
ustalonych (poprzez przypisanie nowych wartości).

 Zmienne o ustalonej wartości to przeważnie stałe globalne.

 Pola stałe bardzo często są deklarowane w klasie jako pola
publiczne.

Stałe kontra #define

 Rozważmy następujące definicje:

 #define E 2.718281828459

 const double E = 2.718281828459;

 W przypadku makrodefinicji nazwa E jest
kompilatorowi zupełnie nieznana (będzie
usunięta w fazie preprocesingu).

 Nazwa E w przypadku stałej ma swój
zakres ważności.

 Stała E to obiekt w pamięci i ma swój
adres.

 Stała E to obiekt o określonym typie.

Uogólnione wyrażenia stałe

 Stałe wyrażenia to wyrażenia, które zawsze zwracają ten sam
wynik i nie wywołują żadnych dodatkowych efektów ubocznych
(na przykład 3+5).

 Stałe wyrażenia są dla kompilatora okazją do optymalizacji,
ponieważ kompilator często wylicza te wyrażenia w czasie
kompilacji i wstawia ich wyniki do programu.

 Zmienne typu constexpr (stałowyrażeniowe) są niejawnie
przekształcane do typu const – mogą one przechować wyniki
wyrażeń stałych lub stałowyrażeniowych konstruktorów (czyli
zdefiniowanych ze słowem kluczowym constexpr).

 Przykład:
constexpr double grawitacja = 9.8;

constexpr double grawitKsiezyca = grawitacja / 6;

Uogólnione wyrażenia stałe

 Za pomocą słowa kluczowego constexpr można
zagwarantować, że funkcja lub konstruktor obiektu są stałymi
podczas kompilacji.

 Zastosowanie constexpr do funkcji narzuca bardzo ścisłe
ograniczenia na to, co funkcja może robić:

 funkcja musi posiadać typ zwracany różny od void;

 zaleca się aby cała zawartość funkcji składała się tylko z instrukcji
return;

 wyrażenie musi być stałym wyrażeniem po zastąpieniu argumentu
– to stałe wyrażenie może albo wywołać inne funkcje tylko wtedy,
gdy te funkcje też są zadeklarowane ze słowem kluczowym
constexpr albo używać innych stałych wyrażeń;

 wszystkie formy rekursji w stałych wyrażeniach są zabronione;

 funkcja zadeklarowana ze słowem kluczowym constexpr nie
może być wywoływana, dopóki nie będzie zdefiniowana w swojej
jednostce translacyjnej.

Uogólnione wyrażenia stałe

 Stałowyrażeniowy konstruktor służy do konstrukcji

wartości stałowyrażeniowych z typów zdefiniowanych

przez użytkownika, konstruktory takie muszą być
zadeklarowane jako constexpr.

 Stałowyrażeniowy konstruktor musi być zdefiniowany

przed użyciem w jednostce translacyjnej (podobnie jak

metoda stałowyrażeniowa) i musi mieć puste ciało

funkcji i musi inicjalizować swoje składowe za pomocą

stałych wyrażeń na liście inicjalizacyjnej.

 Destruktory takich typów powinny być trywialne.

Argumenty stałe

 Modyfikator const może występować przy
argumentach w funkcji.

 Jeśli argument jest stały to argumentu takiego nie
wolno w funkcji zmodyfikować.

 Przykład funkcji z argumentami stałymi:
int abs (const int a) {

return a<0 ? -a : a;
}

 Często argumentami stałymi są referencje.

 Przykład funkcji z argumentami stałymi:
int min (const int &a, const int &b) {

return a<b ? a : b;
}

 Argument stały jest inicjalizowany przy wywołaniu
funkcji.

Referencja do stałej

jako argument w funkcji

 Referencja do stałej może się odnosić do obiektu

zewnętrznego (może być zadeklarowany jako stały)

ale również do obiektu tymczasowego.

 Przykład referencji do stałej:
const int &rc = (2*3-5)/7+11;

 Przykład argumentu funkcji, który jest referencją

do stałej:
int fun (const int &r);

// wywołanie może mieć postać

// fun(13+17);

// gdzie argumentem może być wyrażenie

Stały wskaźnik

i wskaźnik do stałej

 Wskaźnik do stałej pokazuje na obiekt, którego nie można
modyfikować. Przykład:
int a=7, b=5;

const int *p = &a;

// *p = 12; to jest błąd

p = &b; // ok

 Stały wskaźnik zawsze pokazuje na ten sam obiekt. Przykład:
int a=13, b=11;

int *const p = &a;

*p = 12; // ok

// p = &b; to jest błąd

 Można również zdefiniować stały wskaźnik do stałej. Przykład:
int c=23;

const int *const p = &c;

Pola stałe w klasie

 W klasie można zdefiniować pola stałe z deklaratorem const.
Przykład:
class zakres {

const int MIN, MAX;
public:

zakres(int mi, int ma);
// …

};

 Inicjalizacji pola stałego (i nie tylko stałego) można dokonać
tylko poprzez listę inicjalizacyjną w konstruktorze (po
dwukropku za nagłówkiem). Przykład:
zakres::zakres(int mi, int ma) : MIN(mi),
MAX(ma) {

if (MIN<0||MIN>=MAX)
throw string("złe zakresy");

}
Inicjalizacja pól na liście ma postać konstruktorową.

 Konstruktor kopiujący nie zostanie wygenerowany
automatycznie tylko wtedy, gdy w klasie nie ma pól stałych.

Stałe funkcje składowe

 W klasie można zadeklarować stałe funkcje składowe z
deklaratorem const. Przykład:
class zakres {

const int MIN, MAX;

public:

int min () const;

int max () const;

// …

};

 Stała funkcja składowa gwarantuje nam, że nie będzie
modyfikować żadnych pól w obiekcie (nie zmieni stanu obiektu).
Przykład:
int zakres::min () const { return MIN; }

int zakres::max () const { return MAX; }

 Na obiektach stałych możemy działać tylko stałymi funkcjami
składowymi.

Pola zawsze modyfikowalne

 Jeśli obiekt zostanie zadeklarowany jako stały, to można na nim
wywoływać tylko stałe funkcje składowe, które nie zmieniają
stanu obiektu.

 W klasie można jednak zdefiniować zawsze modyfikowalne pola
składowe za pomocą deklaratora mutable. Przykład:
class zakres
{

mutable int wsp;
public:

void nowyWsp (int w) const;
// …

};

 Pole zawsze modyfikowalne może być zmieniane w stałym
obiekcie przez stałą funkcję składową. Przykład:
void zakres::nowyWsp (int w) const
{

if (w<0||w<wsp/2||w>wsp*2)
throw string("zły współczynnik");

wsp = w;
}

Ulotne funkcje składowe

 W klasie można również zadeklarować ulotne funkcje
składowe z deklaratorem volatile. Przykład:
class licznik {

volatile int ile;

public:

int ilosc() volatile;

// …

};

 Ulotna funkcja składowa gwarantuje nam, że nie będzie
optymalizować kodu przy korzystaniu z pól w obiekcie (nie
przechowywać stanu obiektu w podręcznej pamięci). Przykład:
int licznik::ilosc() volatile {

return ile;

}

 Na obiektach ulotnych możemy działać tylko ulotnymi
funkcjami składowymi.

