Efektywnosc algorytmow




Algorytmika

* Algorytmika to dziat informatyki zajmujacy sie poszukiwaniem,
konstruowaniem i badaniem wtasnosci algorytmow, w
kontekscie ich przydatnosci do rozwigzywania problemow
obliczeniowych za pomocg komputerow.

* Nazwa ta zostata wprowadzona przez izraelskiego informatyka
Davida Harela w tytule jego ksigzki o algorytmach: Algorithmics.
The Spirit of Computing.

e Zadania algorytmiki:

e projektowanie algorytmow i szacowanie ich ztozonosci
obliczeniowej;

e tworzenie ogdlnych metod rozwigzujgcych pewne grupy zadan
obliczeniowych;

e badanie wtasciwosci pewnych klas problemow obliczeniowych;

e projektowanie struktur danych i operacji na tych strukturach;

e analizowanie stanu po modyfikacjach struktur danych;

e badanie ztozonosci obliczeniowej operacji na strukturach danych.

/




Od zadania do rozwigzania

* Analiza zadania

e Zaprojektowanie algorytmu

e Szacowanie ztozonosci

e Optymalizacja

* Implementacja i kompilacja

* Przygotowanie danych

e Uruchomienie i odczytanie wynikow




Zadanie obliczeniowe

* Problem obliczeniowy to zadanie, ktore moze byc¢
rozwigzane za pomocg komputera lub innej maszyny
liczgcej.

» Specyfikacja zadania:

e zbidr danych wyjsciowych

e warunki jakie ma spetnia¢ wynik

» zasoby komputerowe do dyspozycji obliczen (czas,
pamiec, komunikacja, itp.)

e Problem obliczeniowy to funkcja, ktora przeksztatca
zbior danych wejsciowych na zbiér danych
wyjsciowych.




Algorytm

e Algorytm to sposdb na rozwigzanie zadania obliczeniowego
(precyzyjnie zdefiniowany cigg czynnosci, koniecznych do
przeprowadzenia systemu z okreslonego stanu poczatkowego do
zadanego stanu koncowego).

e Stowo "algorytm" pochodzi od nazwy "Algoritmi" —
zlatynizowanej wersji nazwiska Abu Abdullaha Muhammada ibn
Musy al-Chuwarizmiego, matematyka perskiego z IX wieku.

* Moze istnie¢ wiele algorytmoéw rozwigzujgcych jeden problem
obliczeniowy.
e Zapis algorytmu:
e wskazowka
e lista krokow
e schemat blokowy
e pesudokod




/tozonosc¢ obliczeniowa algorytmu

» Ztozonosc obliczeniowa algorytmu to jego
zapotrzebowanie na zasoby komputerowe (czas,
pamiec, komunikacja, itp.) potrzebne realizacji
obliczen.

e 7Ztozonosc obliczeniowa jest funkcjg rozmiaru danych
wejsciowych.

e 7tozonosc obliczeniowg algorytmu szacujemy od gory:
ile zasobow z najgorszym przypadku wystarczy do
przeprowadzenia obliczen?

e Ztozonosc obliczeniowa problemu szacujemy z dotu:
ile zasobow zuzyje dowolny algorytm rozwigzujacy
okreslony problem w najgorszym przypadku?




/tozonosc¢ obliczeniowa algorytmu

e ZtozonosS¢ pamieciowa to zapotrzebowanie algorytmu
na pamiec, ktorg liczymy w komoérkach:
* dane wejsciowe dostarczone do algorytmu nie wchodzg
do kosztéw pamieciowych;
e wywotania funkcji generujg koszty pamieciowe —w
szczegolnosci wywotania rekurencyjne.
» Ztozonosc¢ czasowa to zapotrzebowanie algorytmu na
czas, ktorg liczymy za pomocga operacji dominujacych:
e operacja dominujgca to proste obliczenie, dziatajgce w

czasie statym, ktore ma najistotniejszy wptyw na liczbe
krokow algorytmu.




/tozonosc¢ obliczeniowa algorytmu

e 7tozonosc obliczeniowa zwykle nie zalezy wytacznie od
rozmiaru danych, ale moze sie znacznie roznic dla
danych wejsciowych o identycznym rozmiarze. Czesto
stosowanymi kryteriami sg:

* ztozonosc¢ pesymistyczna — rozpatrywanie przypadkow
najgorszych;

* ztozonosc¢ oczekiwana — zastosowanie okreslonego
sposobu usrednienia wszystkich mozliwych przypadkow;

e ztozonosS¢ optymistyczna — rozpatrywanie przypadkow
najprostszych (rzadko stosowane kryterium).




Asymptotyka

* 7tozonosc obliczeniowa jest zwykle bardzo
skomplikowang funkcjg, dlatego szacuje sie jg z
doktadnoscig do pewnego statego czynnika (czasem z
doktadnoscig do nieistotnego sktadnika) za pomoca
operatorow asymptotycznych.

e Zatozenia:

e rozpatrujemy funkcje N>R,
e funkcja graniczna to g(n)

e Notacja duzego O, Qi O zostata zaproponowana po
raz pierwszy w roku 1894 przez niemieckiego
matematyka Paula Bachmanna. W pdzniejszych latach
spopularyzowat ja w swoich pracach Edmund Landau,
niemiecki matematyk, stagd czasem nazywana jest
notacjg Landaua.




Asymptotyka

» Ograniczenie gorne wyznaczone przez funkcje g(n):
O(g(n)) ={f(n):3c>03Iny,Vn2n,:f(n)<cg(n)}

» Ograniczenie dolne wyznaczone przez funkcje g(n):
Q(g(n))={f(n):3c>03In,Vnz=n,:cg(n)<f(n)}

e Ograniczenie doktadne wyznaczone przez funkcje g(n):
© (g(n)) = O(g(n)) N Q (g(n))
© (g(n)) ={f(n):30<c<c, AN,V n2=n,:
c,-g(n) < f(n) < c,-g(n)}

e Asymptotyczna rownosc funkcji f(n) ~ g(n):
lim[n—e<] f(n)/g(n) =1




Potegowanie

e Dane: xeR, nelN
e Zadanie: obliczy¢ x"
* Rozwigzanie naiwne: X - X - X - ... - X (n razy)
e Algorytm:
function potega(x, n) {
if (n = 0) then return 1;
r:=x;
fori=2..ndor:=r-x;
returnr;

}

e 7Ztozonos¢ czasowa (liczba mnozen): O(n)
* Ztozonos¢ pamieciowa O(1)




Szybkie potegowanie

e |dea: najpierw policzymy x Ln/2] 3 potem podniesiemy
wynik do kwadratu
e Algorytm:
function gpow (x, n) {
if (n = 0) then return 1;
C := qpow(x, |_n/2J);
if (n jest parzyste) then return c - ¢;
elsereturnc:c: x;

}
e Ztozonosc czasowa (liczba mnozen): O(log n)
» Ztozonos¢ pamieciowa (gtebokosc rekurencji): O(log n)




Potegowanie binarne

* |dea: przedstawienie wyktadnika n w zapisie binarnym
n=(n, Nqy,-... Ny, Ng)

e Algorytm:
function bpow (x, n) {
y =X
r:=1;
while (n > 0) {
if (n jest nieparzyste) thenr:=r-vy;
y = 2.
n:= n/ZJ
}
return r;
}

» Ztozonos¢ czasowa (liczba mnozen): O(log n)
* Ztozonos$¢ pamieciowa: O(1)




Liczby Fibonacciego

e Liczby Fibonacciego to cigg liczb zdefiniowany
rekurencyjnie:

F,=0

F,.=1

F.=F +F ,dlan>1
e Algorytm:

function fib (n) {

if (n < 2) then return n;

else return fib(n-1) + fib(n-2);
}

* Funkcja rekurencyjna dziata w czasie wyktadniczym!
Niech R(n) oznacza liczbe wywotan rekurencyjnych funkcji
fib(n). Mozna indukcyjnie wykaza¢, ze
R(n) € Q(27/2)




Liczby Fibonacciego

e Algorytm iteracyjny wpisujacy kolejne liczby Fibonacciego
do tablicy.

e Algorytm:

function fib (n) {
if (n < 2) then return n;
new f[n+1];
f[0] :=0;
f[1] :=1;
fori=2..ndof[i] :=f[i-1] + f[i-2];
return f[n];

}

e Ztozonos¢ czasowa: O(n)
» Ztozonos¢ pamieciowa: O(n)




Liczby Fibonacciego

e Algorytm iteracyjny wyliczajacy kolejne liczby Fibonacciego i
pamietajgcy tylko dwie ostatnie liczby.

e Algorytm:
function fib (n) {
new f[3];
f[0] :=0O;
f[1] :=1;
fz —1-

if (.n.s 2)’ then return f[n];
fori=3..ndo {f[0] :=f[1]; f[1] := f[2]; f[2] := f[1]+f[O]; }
return f[2];

}

e Ztozonosc czasowa: O(n)
e Ztozonos¢ pamieciowa: O(1)




Liczby Fibonacciego

* |dea: macierz transformacji M przeksztatcajgca wektor
[Fn-ll Fn-Z] W [F n’ Fn-l]

e Wyjasnienie na Wikipedii:
https://pl.wikipedia.org/wiki/Ci%C4%85g Fibonaccieg
o#Obliczanie liczb Fibonacciego

e Ztozonosc¢ czasowa: O(log n), bo potrafimy potegowac
w czasie O(log n)

e Ztozonosc¢ pamieciowa: O(1), bo potegowanie binarne
wymaga jedynie pamieci O(1)



https://pl.wikipedia.org/wiki/Ci%C4%85g_Fibonacciego#Obliczanie_liczb_Fibonacciego

