
Efektywność algorytmów 



Algorytmika 
 Algorytmika to dział informatyki zajmujący się poszukiwaniem, 

konstruowaniem i badaniem własności algorytmów, w 
kontekście ich przydatności do rozwiązywania problemów 
obliczeniowych za pomocą komputerów. 

 Nazwa ta została wprowadzona przez izraelskiego informatyka 
Davida Harela w tytule jego książki o algorytmach: Algorithmics. 
The Spirit of Computing.

 Zadania algorytmiki:
 projektowanie algorytmów i szacowanie ich złożoności 

obliczeniowej; 

 tworzenie ogólnych metod rozwiązujących pewne grupy zadań 
obliczeniowych;

 badanie właściwości pewnych klas problemów obliczeniowych;

 projektowanie struktur danych i operacji na tych strukturach; 

 analizowanie stanu po modyfikacjach struktur danych; 

 badanie  złożoności obliczeniowej operacji na strukturach danych.



Od zadania do rozwiązania 
 Analiza zadania

 Zaprojektowanie algorytmu

 Szacowanie złożoności

 Optymalizacja

 Implementacja i kompilacja

 Przygotowanie danych

 Uruchomienie i odczytanie wyników



Zadanie obliczeniowe 
 Problem obliczeniowy to zadanie, które może być 

rozwiązane za pomocą komputera lub innej maszyny 
liczącej. 

 Specyfikacja zadania:
 zbiór danych wyjściowych 
 warunki jakie ma spełniać wynik
 zasoby komputerowe do dyspozycji obliczeń (czas, 

pamięć, komunikacja, itp.)

 Problem obliczeniowy to funkcja, która przekształca 
zbiór danych wejściowych na zbiór danych 
wyjściowych.



Algorytm 
 Algorytm to sposób na rozwiązanie zadania obliczeniowego 

(precyzyjnie zdefiniowany ciąg czynności, koniecznych do 
przeprowadzenia systemu z określonego stanu początkowego do 
zadanego stanu końcowego). 

 Słowo "algorytm" pochodzi od nazwy "Algoritmi" –
zlatynizowanej wersji nazwiska Abu Abdullaha Muhammada ibn
Musy al-Chuwarizmiego, matematyka perskiego z IX wieku.

 Może istnieć wiele algorytmów rozwiązujących jeden problem 
obliczeniowy.

 Zapis algorytmu:
 wskazówka
 lista kroków
 schemat blokowy
 pesudokod



Złożoność obliczeniowa algorytmu 
 Złożoność obliczeniowa algorytmu to jego 

zapotrzebowanie na zasoby komputerowe (czas, 
pamięć, komunikacja, itp.) potrzebne realizacji 
obliczeń.

 Złożoność obliczeniowa jest funkcją rozmiaru danych 
wejściowych. 

 Złożoność obliczeniową algorytmu  szacujemy od góry: 
ile zasobów z najgorszym przypadku wystarczy do 
przeprowadzenia obliczeń?

 Złożoność obliczeniową problemu szacujemy z dołu: 
ile zasobów zużyje dowolny algorytm rozwiązujący 
określony problem w najgorszym przypadku? 



Złożoność obliczeniowa algorytmu 
 Złożoność pamięciowa to zapotrzebowanie algorytmu 

na pamięć, którą liczymy w komórkach:

 dane wejściowe dostarczone do algorytmu nie wchodzą 
do kosztów pamięciowych; 

 wywołania funkcji generują koszty pamięciowe – w 
szczególności wywołania rekurencyjne.

 Złożoność czasowa to zapotrzebowanie algorytmu na 
czas, którą liczymy za pomocą operacji dominujących:

 operacja dominująca to proste obliczenie, działające w 
czasie stałym, które ma najistotniejszy wpływ na liczbę 
kroków algorytmu.



Złożoność obliczeniowa algorytmu 
 Złożoność obliczeniowa zwykle nie zależy wyłącznie od 

rozmiaru danych, ale może się znacznie różnić dla 
danych wejściowych o identycznym rozmiarze. Często 
stosowanymi kryteriami są:

 złożoność pesymistyczna – rozpatrywanie przypadków 
najgorszych; 

 złożoność oczekiwana – zastosowanie określonego 
sposobu uśrednienia wszystkich możliwych przypadków; 

 złożoność optymistyczna – rozpatrywanie przypadków 
najprostszych (rzadko stosowane kryterium).



Asymptotyka 
 Złożoność obliczeniowa jest zwykle bardzo 

skomplikowaną funkcją, dlatego szacuje się ją z 
dokładnością do pewnego stałego czynnika (czasem z 
dokładnością do nieistotnego składnika) za pomocą 
operatorów asymptotycznych.

 Założenia:
 rozpatrujemy funkcje ℕℝ+

 funkcja graniczna to g(n)

 Notacja dużego O, Ω i Θ została zaproponowana po 
raz pierwszy w roku 1894 przez niemieckiego 
matematyka Paula Bachmanna. W późniejszych latach 
spopularyzował ją w swoich pracach Edmund Landau, 
niemiecki matematyk, stąd czasem nazywana jest 
notacją Landaua.



Asymptotyka 
 Ograniczenie górne wyznaczone przez funkcję g(n): 

O(g(n)) = { f(n) : Ǝ c>0 Ǝ n0 ꓯ n ≥ n0 : f(n) ≤ cg(n) }

 Ograniczenie dolne wyznaczone przez funkcję g(n): 
Ω (g(n)) = { f(n) : Ǝ c>0 Ǝ n0 ꓯ n ≥ n0 : cg(n) ≤ f(n) }

 Ograniczenie dokładne wyznaczone przez funkcję g(n): 
ϴ (g(n)) = O(g(n))  Ω (g(n))
ϴ (g(n)) = { f(n) : Ǝ 0<c1<c2 Ǝ n0 ꓯ n ≥ n0 :
c1g(n) ≤ f(n) ≤ c2g(n)}

 Asymptotyczna równość funkcji f(n) ~ g(n):
lim[n∞] f(n)/g(n) = 1



Potęgowanie 
 Dane: xℝ, nℕ

 Zadanie: obliczyć xn

 Rozwiązanie naiwne: x ∙ x ∙ x ∙ … ∙ x (n razy)

 Algorytm:
function potega(x, n) {

if (n = 0) then return 1;
r := x;
for i = 2…n do r := r ∙ x;
return r;

}

 Złożoność czasowa (liczba mnożeń): O(n)

 Złożoność pamięciowa O(1)



Szybkie potęgowanie 
 Idea: najpierw policzymy x n/2 a potem podniesiemy 

wynik do kwadratu

 Algorytm:
function qpow (x, n) {

if (n = 0) then return 1;
c := qpow(x, n/2);
if (n jest parzyste) then return c ∙ c;
else return c ∙ c ∙ x;

}

 Złożoność czasowa (liczba mnożeń): O(log n)

 Złożoność pamięciowa (głębokość rekurencji): O(log n)



Potęgowanie binarne 
 Idea: przedstawienie wykładnika n w zapisie binarnym 

n = (nk, nk-1,… n1, n0)
 Algorytm:

function bpow (x, n) {
y := x;
r := 1;
while (n > 0) {

if (n jest nieparzyste) then r := r ∙ y;
y := y 2;
n := n/2;

}
return r;

}
 Złożoność czasowa (liczba mnożeń): O(log n)
 Złożoność pamięciowa: O(1)



Liczby Fibonacciego 
 Liczby Fibonacciego to ciąg liczb zdefiniowany 

rekurencyjnie:
F0 = 0
F1 = 1
Fn = Fn-1 + Fn-2 dla n > 1

 Algorytm:
function fib (n) {

if (n < 2) then return n;
else return fib(n-1) + fib(n-2);

}
 Funkcja rekurencyjna działa w czasie wykładniczym!

Niech R(n) oznacza liczbę wywołań rekurencyjnych funkcji 
fib(n). Można indukcyjnie wykazać, że 
R(n)  Ω(2n/2)



Liczby Fibonacciego 
 Algorytm iteracyjny wpisujący kolejne liczby Fibonacciego 

do tablicy.
 Algorytm:

function fib (n) {
if (n < 2) then return n;
new f[n+1];
f[0] := 0;
f[1] := 1;
for i = 2…n do f[i] := f[i-1] + f[i-2];
return f[n];

}
 Złożoność czasowa: O(n)
 Złożoność pamięciowa: O(n)



Liczby Fibonacciego 
 Algorytm iteracyjny wyliczający kolejne liczby Fibonacciego i 

pamiętający tylko dwie ostatnie liczby.

 Algorytm:
function fib (n) {

new f[3];
f[0] := 0;
f[1] := 1;
f[2] := 1;
if (n ≤ 2) then return f[n];
for i = 3…n do { f[0] := f[1]; f[1] := f[2]; f[2] := f[1]+f[0]; }
return f[2];

}

 Złożoność czasowa: O(n)

 Złożoność pamięciowa: O(1)



Liczby Fibonacciego 
 Idea: macierz transformacji M przekształcająca wektor 

[Fn-1, Fn-2] w [F n, Fn-1]

 Wyjaśnienie na Wikipedii: 
https://pl.wikipedia.org/wiki/Ci%C4%85g_Fibonaccieg
o#Obliczanie_liczb_Fibonacciego

 Złożoność czasowa: O(log n), bo potrafimy potęgować 
w czasie O(log n)

 Złożoność pamięciowa: O(1), bo potęgowanie binarne 
wymaga jedynie pamięci O(1)

https://pl.wikipedia.org/wiki/Ci%C4%85g_Fibonacciego#Obliczanie_liczb_Fibonacciego

