
Efektywność algorytmów

Algorytmika
 Algorytmika to dział informatyki zajmujący się poszukiwaniem,

konstruowaniem i badaniem własności algorytmów, w
kontekście ich przydatności do rozwiązywania problemów
obliczeniowych za pomocą komputerów.

 Nazwa ta została wprowadzona przez izraelskiego informatyka
Davida Harela w tytule jego książki o algorytmach: Algorithmics.
The Spirit of Computing.

 Zadania algorytmiki:
 projektowanie algorytmów i szacowanie ich złożoności

obliczeniowej;

 tworzenie ogólnych metod rozwiązujących pewne grupy zadań
obliczeniowych;

 badanie właściwości pewnych klas problemów obliczeniowych;

 projektowanie struktur danych i operacji na tych strukturach;

 analizowanie stanu po modyfikacjach struktur danych;

 badanie złożoności obliczeniowej operacji na strukturach danych.

Od zadania do rozwiązania
 Analiza zadania

 Zaprojektowanie algorytmu

 Szacowanie złożoności

 Optymalizacja

 Implementacja i kompilacja

 Przygotowanie danych

 Uruchomienie i odczytanie wyników

Zadanie obliczeniowe
 Problem obliczeniowy to zadanie, które może być

rozwiązane za pomocą komputera lub innej maszyny
liczącej.

 Specyfikacja zadania:
 zbiór danych wyjściowych
 warunki jakie ma spełniać wynik
 zasoby komputerowe do dyspozycji obliczeń (czas,

pamięć, komunikacja, itp.)

 Problem obliczeniowy to funkcja, która przekształca
zbiór danych wejściowych na zbiór danych
wyjściowych.

Algorytm
 Algorytm to sposób na rozwiązanie zadania obliczeniowego

(precyzyjnie zdefiniowany ciąg czynności, koniecznych do
przeprowadzenia systemu z określonego stanu początkowego do
zadanego stanu końcowego).

 Słowo "algorytm" pochodzi od nazwy "Algoritmi" –
zlatynizowanej wersji nazwiska Abu Abdullaha Muhammada ibn
Musy al-Chuwarizmiego, matematyka perskiego z IX wieku.

 Może istnieć wiele algorytmów rozwiązujących jeden problem
obliczeniowy.

 Zapis algorytmu:
 wskazówka
 lista kroków
 schemat blokowy
 pesudokod

Złożoność obliczeniowa algorytmu
 Złożoność obliczeniowa algorytmu to jego

zapotrzebowanie na zasoby komputerowe (czas,
pamięć, komunikacja, itp.) potrzebne realizacji
obliczeń.

 Złożoność obliczeniowa jest funkcją rozmiaru danych
wejściowych.

 Złożoność obliczeniową algorytmu szacujemy od góry:
ile zasobów z najgorszym przypadku wystarczy do
przeprowadzenia obliczeń?

 Złożoność obliczeniową problemu szacujemy z dołu:
ile zasobów zużyje dowolny algorytm rozwiązujący
określony problem w najgorszym przypadku?

Złożoność obliczeniowa algorytmu
 Złożoność pamięciowa to zapotrzebowanie algorytmu

na pamięć, którą liczymy w komórkach:

 dane wejściowe dostarczone do algorytmu nie wchodzą
do kosztów pamięciowych;

 wywołania funkcji generują koszty pamięciowe – w
szczególności wywołania rekurencyjne.

 Złożoność czasowa to zapotrzebowanie algorytmu na
czas, którą liczymy za pomocą operacji dominujących:

 operacja dominująca to proste obliczenie, działające w
czasie stałym, które ma najistotniejszy wpływ na liczbę
kroków algorytmu.

Złożoność obliczeniowa algorytmu
 Złożoność obliczeniowa zwykle nie zależy wyłącznie od

rozmiaru danych, ale może się znacznie różnić dla
danych wejściowych o identycznym rozmiarze. Często
stosowanymi kryteriami są:

 złożoność pesymistyczna – rozpatrywanie przypadków
najgorszych;

 złożoność oczekiwana – zastosowanie określonego
sposobu uśrednienia wszystkich możliwych przypadków;

 złożoność optymistyczna – rozpatrywanie przypadków
najprostszych (rzadko stosowane kryterium).

Asymptotyka
 Złożoność obliczeniowa jest zwykle bardzo

skomplikowaną funkcją, dlatego szacuje się ją z
dokładnością do pewnego stałego czynnika (czasem z
dokładnością do nieistotnego składnika) za pomocą
operatorów asymptotycznych.

 Założenia:
 rozpatrujemy funkcje ℕℝ+

 funkcja graniczna to g(n)

 Notacja dużego O, Ω i Θ została zaproponowana po
raz pierwszy w roku 1894 przez niemieckiego
matematyka Paula Bachmanna. W późniejszych latach
spopularyzował ją w swoich pracach Edmund Landau,
niemiecki matematyk, stąd czasem nazywana jest
notacją Landaua.

Asymptotyka
 Ograniczenie górne wyznaczone przez funkcję g(n):

O(g(n)) = { f(n) : Ǝ c>0 Ǝ n0 ꓯ n ≥ n0 : f(n) ≤ cg(n) }

 Ograniczenie dolne wyznaczone przez funkcję g(n):
Ω (g(n)) = { f(n) : Ǝ c>0 Ǝ n0 ꓯ n ≥ n0 : cg(n) ≤ f(n) }

 Ograniczenie dokładne wyznaczone przez funkcję g(n):
ϴ (g(n)) = O(g(n))  Ω (g(n))
ϴ (g(n)) = { f(n) : Ǝ 0<c1<c2 Ǝ n0 ꓯ n ≥ n0 :
c1g(n) ≤ f(n) ≤ c2g(n)}

 Asymptotyczna równość funkcji f(n) ~ g(n):
lim[n∞] f(n)/g(n) = 1

Potęgowanie
 Dane: xℝ, nℕ

 Zadanie: obliczyć xn

 Rozwiązanie naiwne: x ∙ x ∙ x ∙ … ∙ x (n razy)

 Algorytm:
function potega(x, n) {

if (n = 0) then return 1;
r := x;
for i = 2…n do r := r ∙ x;
return r;

}

 Złożoność czasowa (liczba mnożeń): O(n)

 Złożoność pamięciowa O(1)

Szybkie potęgowanie
 Idea: najpierw policzymy x n/2 a potem podniesiemy

wynik do kwadratu

 Algorytm:
function qpow (x, n) {

if (n = 0) then return 1;
c := qpow(x, n/2);
if (n jest parzyste) then return c ∙ c;
else return c ∙ c ∙ x;

}

 Złożoność czasowa (liczba mnożeń): O(log n)

 Złożoność pamięciowa (głębokość rekurencji): O(log n)

Potęgowanie binarne
 Idea: przedstawienie wykładnika n w zapisie binarnym

n = (nk, nk-1,… n1, n0)
 Algorytm:

function bpow (x, n) {
y := x;
r := 1;
while (n > 0) {

if (n jest nieparzyste) then r := r ∙ y;
y := y 2;
n := n/2;

}
return r;

}
 Złożoność czasowa (liczba mnożeń): O(log n)
 Złożoność pamięciowa: O(1)

Liczby Fibonacciego
 Liczby Fibonacciego to ciąg liczb zdefiniowany

rekurencyjnie:
F0 = 0
F1 = 1
Fn = Fn-1 + Fn-2 dla n > 1

 Algorytm:
function fib (n) {

if (n < 2) then return n;
else return fib(n-1) + fib(n-2);

}
 Funkcja rekurencyjna działa w czasie wykładniczym!

Niech R(n) oznacza liczbę wywołań rekurencyjnych funkcji
fib(n). Można indukcyjnie wykazać, że
R(n)  Ω(2n/2)

Liczby Fibonacciego
 Algorytm iteracyjny wpisujący kolejne liczby Fibonacciego

do tablicy.
 Algorytm:

function fib (n) {
if (n < 2) then return n;
new f[n+1];
f[0] := 0;
f[1] := 1;
for i = 2…n do f[i] := f[i-1] + f[i-2];
return f[n];

}
 Złożoność czasowa: O(n)
 Złożoność pamięciowa: O(n)

Liczby Fibonacciego
 Algorytm iteracyjny wyliczający kolejne liczby Fibonacciego i

pamiętający tylko dwie ostatnie liczby.

 Algorytm:
function fib (n) {

new f[3];
f[0] := 0;
f[1] := 1;
f[2] := 1;
if (n ≤ 2) then return f[n];
for i = 3…n do { f[0] := f[1]; f[1] := f[2]; f[2] := f[1]+f[0]; }
return f[2];

}

 Złożoność czasowa: O(n)

 Złożoność pamięciowa: O(1)

Liczby Fibonacciego
 Idea: macierz transformacji M przekształcająca wektor

[Fn-1, Fn-2] w [F n, Fn-1]

 Wyjaśnienie na Wikipedii:
https://pl.wikipedia.org/wiki/Ci%C4%85g_Fibonaccieg
o#Obliczanie_liczb_Fibonacciego

 Złożoność czasowa: O(log n), bo potrafimy potęgować
w czasie O(log n)

 Złożoność pamięciowa: O(1), bo potęgowanie binarne
wymaga jedynie pamięci O(1)

https://pl.wikipedia.org/wiki/Ci%C4%85g_Fibonacciego#Obliczanie_liczb_Fibonacciego

