
Zaawansowane technologie Javy 2019

JavaFX

Historia postania JavaFX
 Początkowym pakietem do tworzenia aplikacji GUI w

Javie był pakiet AWT.

 Niedługo po wprowadzeniu został on zastąpiony
pakietem Swing, który udostępnił znacznie lepsze
rozwiązania. Choć pakiet Swing odniósł ogromny
sukces, to jednak dosyć trudno w nim tworzyć
„wizualne cuda”.

 W końcowyn efekcie powstał system JavaFX —
platforma do tworzenia graficznych interfejsów
użytkownika nowej generacji. JavaFX dostarczona
została wraz z JDK 7.

Pakiety JavaFX
 Cała zawartość platformy JavaFX została umieszczona

w pakietach, których nazwy zaczynają się od javafx.

 Zaczynając od JDK 9, pakiety JavaFX zostały
zorganizowane w formie modułów javafx.base,
javafx.graphics oraz javafx.controls.

Klasy Stage oraz Scene
 Główną metaforą zaimplementowaną w JavaFX jest obszar

roboczy (ang. stage). W przypadku prawdziwych sztuk
scenicznych obszar roboczy zawiera scenę (ang. scene).

 A zatem potocznie mówiąc: obszar roboczy definiuje
przestrzeń, a scena określa, co się w tej przestrzeni pojawi.

 Obiekt Stage jest pojemnikiem najwyższego poziomu.
Wszystkie aplikacje JavaFX automatycznie mają dostęp do
jednego obiektu Stage, nazywanego głównym obszarem
roboczym (ang. Primary stage).

 Obiekt Scene jest pojemnikiem dla wszystkich
elementów, które składają się na scenę (są nimi kontrolki,
takie jak przyciski, pola wyboru, pola tekstowe oraz inne
elementy graficzne). W celu utworzenia sceny dodać
należy wszystkie te elementy do obiektu klasy Scene.

Węzły i graf sceny
 Pojedyncze elementy sceny są nazywane węzłami

(ang. node). Na przykład takim węzłem będzie
kontrolka przycisku.

 Węzły mogą także zawierać grupy innych węzłów.
Węzeł może także zawierać inny węzeł potomny. W
takim przypadku węzeł zawierający jakieś dziecko jest
nazywany węzłem rodzica (ang. parent node) lub
węzłem gałęzi (ang. branch mode).

 Z kolei węzły, które nie zawierają węzłów potomnych,
są nazywane węzłami końcowymi (ang. terminal node)
lub liśćmi.

Węzły i graf sceny
 Kolekcja wszystkich węzłów tworzących scenę jest

określana jako graf sceny (ang. scene graph) i stanowi
drzewo.

 W grafie sceny występuje jeden, specjalny typ węzła —
korzeń (ang. root node). Jest to najwyższy węzeł w grafie
sceny i jednocześnie jedyny, który nie ma żadnego rodzica.
A zatem wszystkie inne węzły należące do grafu sceny mają
rodzica i wszystkie bezpośrednio lub pośrednio są
potomkami korzenia.

 Klasą bazową dla wszystkich węzłów jest Node.

 Istnieje kilka różnych klas, które bezpośrednio lub
pośrednio są jej klasami pochodnymi; między innymi
należą do nich: Parent, Group, Region oraz
Control.

Układy
 JavaFX udostępnia kilka paneli układu obsługujących

proces rozmieszczania innych elementów na scenie.

 Na przykład klasa FlowPane tworzy układ
rozmieszczający elementy jeden za drugim, a klasa
GridPane — układ pozwalający na umieszczanie
elementów w wierszach i kolumnach. Dostępnych jest
także kilka innych układów, takich jak BorderPane.
Każdy z nich dziedziczy po klasie Node.

 Wszystkie klasy układów zostały umieszczone w
pakiecie javafx.scene.layout.

Klasa Application
oraz metody cyklu życia
 Aplikacja JavaFX musi być klasą pochodną klasy
Application zdefiniowanej w pakiecie
javafx.application.

 Klasa ta definiuje trzy metody cyklu życia, które aplikacja
może przesłaniać: init(), start() oraz stop().

 Metoda init() jest wywoływana na samym początku
działania aplikacji. Służy ona do wykonywania różnych
czynności inicjalizacyjnych. Niemniej jednak nie można jej
używać do tworzenia obiektu sceny ani do jej
konstruowania.

 Jeśli aplikacja nie potrzebuje żadnych czynności
inicjalizacyjnych, to metody init() nie trzeba
przesłaniać, gdyż istnieje jej wersja domyślna.

Klasa Application
oraz metody cyklu życia

 Po metodzie init() wywoływana jest metoda
start() – stanowi ona początek działania aplikacji i
może posłużyć do skonstruowania i przygotowania
sceny.

 Parametrem tej metody jest obiekt klasy Scene
dostarczony przez środowisko uruchomieniowe i
stanowi scenę główną aplikacji.

 Jest to metoda abstrakcyjna i aplikacja musi ją
nadpisać.

Klasa Application
oraz metody cyklu życia

 Kiedy aplikacja kończy działanie, wywoływana jest z
kolei metoda stop(), która pozwala na wykonanie
wszelkich czynności porządkowych związanych z
zamykaniem aplikacji.

 W przypadkach, gdy wykonywanie takich czynności nie
jest potrzebne, można skorzystać z pustej, domyślnej
wersji tej metody.

Uruchamianie aplikacji JavaFX
 Aby uruchomić niezależną aplikację JavaFX, należy wywołać

metodę launch() klasy Application:
public static void launch(String ... args)

 Parametr args reprezentuje listę (być może pustą) łańcuchów
znakowych, które zazwyczaj będą określały argumenty wiersza
poleceń.

 Wywołanie metody launch() powoduje utworzenie aplikacji,
a następnie wywołanie jej metod init() i start().

 Wywołanie metody launch() zakończy się dopiero po
zakończeniu aplikacji.

Szkielet aplikacji JavaFX
import javafx.application.*;

import javafx.scene.*;

import javafx.stage.*;

import javafx.scene.layout.*;

public class JavaFXSkel extends Application {

public static void main(String[] args) {

System.out.println("Uruchamiamy aplikację JavaFX.");

// Uruchamia aplikację JavaFX,

// wywołując metodę launch().

launch(args);

}

Szkielet aplikacji JavaFX
// Przesłonięcie metody init().

public void init() {

System.out.println("Wewnątrz metody init().");

}

// Przesłania metodę stop().

public void stop() {

System.out.println("Wewnątrz metody stop().");

}

Szkielet aplikacji JavaFX
// Przesłonięcie metody start().

public void start(Stage myStage) {

System.out.println("Wewnątrz metody start().");

// Określa tytuł sceny.

myStage.setTitle("Szkielet aplikacji JavaFX.");

// Tworzy korzeń. W tym przypadku będzie to układ

// FlowPane, choć istnieje także kilka innych.

FlowPane rootNode = new FlowPane();

// Tworzy scenę.

Scene myScene = new Scene(rootNode, 300, 200);

// Określa scenę używaną przez obszar roboczy.

myStage.setScene(myScene);

// Wyświetla obszar roboczy oraz scenę.

myStage.show();

}

}

Kompilacja i uruchamianie
programów JavaFX
 Programy JavaFX są kompilowane tak samo jak wszystkie

inne programy pisane w Javie – można użyć programu
javac.

 Niemniej jednak w zależności od docelowego środowiska
wykonawczego może się pojawić konieczność wykonania
określonych czynności dodatkowych – z tego względu
wykorzystanie IDE, które potrafi w pełni obsługiwać
platformę JavaFX jest najprostszym rozwiązaniem.

 Istnieje możliwość uruchamiania tego samego programu w
wielu różnych środowiskach wykonawczych – można użyć
programu java.

 Niemniej jednak w niektórych przypadkach mogą być
potrzebne różne pliki pomocnicze, na przykład plik HTML
lub plik JNLP (Java Network Launch Protocol).

Wątek aplikacji
 Nie można używać metody init() do tworzenia

obszaru roboczego ani sceny. Obiektów tych nie
można także tworzyć w konstruktorze aplikacji.

 Powodem tych ograniczeń jest konieczność tworzenia
obu tych obiektów w wątku aplikacji.

 A jak się okazuje, zarówno metoda init(), jak i
konstruktor aplikacji są wywoływane w wątku
głównym, nazywanym także wątkiem
uruchomieniowym. I właśnie z tego powodu ani
konstruktora aplikacji, ani metody init() nie można
używać do tworzenia obiektów Stage i Scene.

Wątek aplikacji
 Wszelkie zmiany w aktualnie wyświetlanym interfejsie

użytkownika muszą być wykonywane w wątku
aplikacji.

 Dodatkowo także wszystkie zdarzenia w aplikacjach
JavaFX są generowane w wątku aplikacji. Dzięki temu
procedur obsługi zdarzeń można używać do interakcji
z graficznym interfejsem użytkownika aplikacji.

 Także metoda stop() jest wywoływana w wątku
aplikacji.

Prosta kontrolka JavaFX: Label
 JavaFX udostępnia bogaty zestaw kontrolek. Najprostszą z

nich jest etykieta, która pozwala wyświetlić komunikat lub
obrazek.

 W JavaFX etykiety są instancjami klasy Label należącej do
pakietu javafx.scene.control.

 Przykład:
// Tworzymy etykietę.

Label myLabel =

new Label("JavaFX ma duże możliwości");

// Dodajemy etykietę do grafu sceny.

rootNode.getChildren().add(myLabel);

Stosowanie przycisków i zdarzeń
 Podstawową klasą związaną ze zdarzeniami JavaFX jest

klasa Event zdefiniowana w pakiecie javafx.event.

 Klasa Event dziedziczy po java.util.EventObject,
a to oznacza, że zdarzenia JavaFX mają te same
podstawowe możliwości funkcjonalne co inne zdarzenia w
języku Java.

 Aby obsłużyć zdarzenie, w pierwszej kolejności należy
zarejestrować jego obiekt nasłuchujący, który będzie
oczekiwać na zdarzenia. W momencie zgłoszenia zdarzenia
zostaje wywołany odpowiedni obiekt nasłuchujący, który
musi odpowiedzieć na nie i zakończyć działanie.

Stosowanie przycisków i zdarzeń
 Zdarzenia są obsługiwane poprzez zaimplementowanie

interfejsu EventHandler, zadeklarowanego w pakiecie
javafx.event:
interface EventHanderl<T extends Event>

gdzie T jest typem obsługiwanego zdarzenia.

 Interfejs ten deklaruje tylko jedną metodę handle(),
której parametrem jest obiekt zdarzenia:
void handle(T eventObj)

 W tym przypadku parametr eventObj jest zgłoszonym
zdarzeniem.

 Zazwyczaj obiekty nasłuchujące zdarzeń są
implementowane przy wykorzystaniu anonimowych klas
wewnętrznych lub wyrażeń lambda.

Stosowanie przycisków i zdarzeń
 Przyciski są tworzone przy użyciu klasy Button,

zdefiniowanej w pakiecie javafx.scene.control.

 Naciśnięcie przycisku spowoduje wygenerowanie zdarzenia
ActionEvent. Klasa ActionEvent została
zdefiniowana w pakiecie javafx.event. Obiekt
nasłuchujący tego zdarzenia można zarejestrować,
wywołując metodę setOnAction() obiektu Button.

 Metoda setOnAction() ustawia wartość właściwości
onAction przechowującej referencję obiektu
nasłuchującego.

Stosowanie przycisków i zdarzeń
// Tworzymy etykietę.

Label response = new Label("Przycisk");

// Tworzymy dwa przyciski.

Button btnUp = new Button("Góra");

Button btnDown = new Button("Dół");

// Obsługa zdarzenia ActionEvent przycisku Góra.

btnUp.setOnAction(new EventHandler<ActionEvent>() {

public void handle(ActionEvent ae) {

response.setText("Nacisnąłeś przycisk Góra.");

}

});

// Obsługa zdarzenia ActionEvent przycisku Dół.

btnDown.setOnAction(new EventHandler<ActionEvent>() {

public void handle(ActionEvent ae) {

response.setText("Nacisnąłeś przycisk Dół.");

}

});

// Dodajemy etykietę i przyciski do grafu sceny.

rootNode.getChildren().addAll(btnUp, btnDown, response);

Pola wyboru
 Pola wyboru są reprezentowane przez klasę
CheckBox. Jej bezpośrednią klasą bazową jest
ButtonBase.

 Pola wyboru reprezentowane przez klasę CheckBox
mogą mieć trzy stany: pole zaznaczone, niezaznaczone
i nieznany (nazywany także stanem
niezdefiniowanym).

 Metoda isSelected() zwraca wartość true, jeśli
pole wyboru jest zaznaczone, bądź wartość false,
jeśli zaznaczenia nie ma.

Pola wyboru
Label response = new Label("");

CheckBox cbTablet = new CheckBox("Tablet");

// Obsługa zdarzeń ActionEvent pól wyboru.

cbTablet.setOnAction(new EventHandler<ActionEvent>() {

public void handle(ActionEvent ae) {

if(cbSmartphone.isSelected())

response.setText("Zaznaczono pole 'smartfon'.");

else

response.setText("Usunięto 'smartfon'.");

showAll();

}

});

Pola wyboru
 Stan nieznany, którego można użyć, by zasygnalizować,

że stan pola nie został jeszcze określony bądź też nie
nadaje się on do użycia w bieżącej sytuacji, nie jest
domyślnie stosowany. Aby włączyć możliwość
stosowania stanu nieznanego w polu wyboru, należy
wywołać metodę setAllowIndeterminate().

 Aby określić, czy pole wyboru znajduje się w stanie
nieznanym, należy wywołać metodę
isIndeterminate().

Listy
 Listy są reprezentowane przez obiekty klasy ListView.

 Kontrolki te wyświetlają listę elementów i pozwalają na
zaznaczenie jednego bądź kilku z nich.

 Jedną z bardzo przydatnych cech kontrolek ListView jest
automatyczne wyświetlanie pasków przewijania.

 ListView jest klasą sparametryzowaną ListView<T>,
przy czym T określa typ elementów przechowywanych na
liście.

 Domyślnie kontrolki ListView pozwalają na zaznaczanie
tylko jednego elementu listy w danej chwili. Możliwość
zaznaczania wielu elementów można włączyć.

Listy
 Kontrolki ListView można używać na dwa podstawowe

sposoby:

 Pierwszy z nich polega na zignorowaniu zdarzeń
generowanych przez listę i pobieraniu jej zaznaczonych
elementów wtedy, gdy program będzie ich potrzebować.

 Drugi sposób bazuje na monitorowaniu zmian w zaznaczonych
elementach listy poprzez zarejestrowanie odpowiednich
obiektów nasłuchujących.

 Obiekt nasłuchujący zdarzeń generowanych przez listy
korzysta z interfejsu ChangeListener zdefiniowanego
w pakiecie javafx.beans.value. Interfejs ten
definiuje tylko jedną metodę change().

Listy
ObservableList<String> computerTypes =

FXCollections.observableArrayList("Smartfon", "Tablet",

"Notebook", "Stacjonarny");

// Tworzymy kontrolkę ListView.

ListView<String> lvComputers = new ListView<String>(computerTypes);

// Określamy preferowaną wysokość i szerokość.

lvComputers.setPrefSize(100, 70);

// Pobieramy model zaznaczania elementów listy.

MultipleSelectionModel<String> lvSelModel =

lvComputers.getSelectionModel();

// Tworzy obiekt nasłuchujący zdarzeń, który będzie odpowiadał na

// zmiany zaznaczenia elementów listy.

lvSelModel.selectedItemProperty().addListener(

new ChangeListener<String>() {

public void changed(ObservableValue<? extends String> changed,

String oldVal, String newVal) {

// Wyświetla nazwę wybranego elementu listy.

response.setText("Wybranym typem komputera jest: " + newVal);

}

});

Literatura (JavaBeans)
 H.Schildt: Java. Przewodnik dla początkujących.

Wydanie 7. Rozdział 18: Wprowadzenie do JavaFX.
Wydawnictwo HELION, Gliwice 2018.

 Java Platform, Client Technlogies:
https://docs.oracle.com/javase/8/javase-
clienttechnologies.htm

https://docs.oracle.com/javase/8/javase-clienttechnologies.htm

