JavaFX

Zaawansowane technologie Javy 2019

Historia postania JavaFX

Poczatkowym pakietem do tworzenia aplikacji GUI w
Javie byt pakiet AWT.

Niedtugo po wprowadzeniu zostat on zastgpiony
pakietem Swing, ktory udostepnit znacznie lepsze
rozwigzania. Choc¢ pakiet Swing odnidst ogromny
sukces, to jednak dosy¢ trudno w nim tworzyc
,wizualne cuda”.

W koncowyn efekcie powstat system JavaFX —
platforma do tworzenia graficznych interfejsow
uzytkownika nowej generacji. JavaFX dostarczona
zostata wraz z JDK 7.

Pakiety JavaFX

Cata zawartosc platformy JavaFX zostata umieszczona
w pakietach, ktérych nazwy zaczynajg sie od javafx.
Zaczynajac od JDK 9, pakiety JavaFX zostaty

zorganizowane w formie modutéw javafx.base,
javafx.graphicsoraz javafx.controls.

Klasy Stage oraz Scene

Gtowng metaforg zaimplementowang w JavaFX jest obszar
roboczy (ang. stage). W przypadku prawdziwych sztuk
scenicznych obszar roboczy zawiera scene (ang. scene).

A zatem potocznie mowigc: obszar roboczy definiuje
przestrzen, a scena okresla, co sie w tej przestrzeni pojawi.

Obiekt Stage jest pojemnikiem najwyzszego poziomu.
Wszystkie aplikacje JavaFX automatycznie majg dostep do
jednego obiektu Stage, nazywanego gtownym obszarem
roboczym (ang. Primary stage).

Obiekt Scene jest pojemnikiem dla wszystkich
elementdw, ktdre sktadajg sie na scene (sg nimi kontrolki,
takie jak przyciski, pola wyboru, pola tekstowe oraz inne
elementy graficzne). W celu utworzenia sceny dodac
nalezy wszystkie te elementy do obiektu klasy Scene.

Wezty i graf sceny

Pojedyncze elementy sceny sg nazywane weztami
(ang. node). Na przyktad takim weztem bedzie
kontrolka przycisku.

Wezty mogg takze zawierac grupy innych weztow.
Wezet moze takze zawierac inny wezet potomny. W
takim przypadku wezet zawierajgcy jakies dziecko jest
nazywany weztem rodzica (ang. parent node) lub
weztem gatezi (ang. branch mode).

Z kolei wezty, ktére nie zawierajg weztow potomnych,
sg nazywane weztami koncowymi (ang. terminal node)
lub lisS¢mi.

Wezty i graf sceny

Kolekcja wszystkich weztéw tworzgcych scene jest
okreslana jako graf sceny (ang. scene graph) i stanowi
drzewo.

W grafie sceny wystepuje jeden, specjalny typ wezta —
korzen (ang. root node). Jest to najwyzszy wezet w grafie
sceny i jednoczesnie jedyny, ktory nie ma zadnego rodzica.
A zatem wszystkie inne wezty nalezgce do grafu sceny maja
rodzica i wszystkie bezposrednio lub posrednio s3
potomkami korzenia.

Klasg bazowg dla wszystkich weztow jest Node.
Istnieje kilka roznych klas, ktore bezposrednio lub
posrednio sg jej klasami pochodnymi; miedzy innymi
nalezg do nich: Parent, Group, Region oraz
Control.

Ukfady

JavaFX udostepnia kilka paneli uktadu obstugujgcych
proces rozmieszczania innych elementow na scenie.

Na przyktad klasa F1owPane tworzy uktfad
rozmieszczajacy elementy jeden za drugim, a klasa
GridPane — uktad pozwalajgcy na umieszczanie
elementow w wierszach i kolumnach. Dostepnych jest
takze kilka innych uktadéw, takich jak BorderPane.
Kazdy z nich dziedziczy po klasie Node.

Wszystkie klasy uktadow zostaty umieszczone w
pakiecie javafx.scene.layout.

s

Klasa Application
oraz metody cyklu zycia

Aplikacja JavaFX musi byc¢ klasg pochodng klasy
Application zdefiniowanej w pakiecie
jJavafx.application.

Klasa ta definiuje trzy metody cyklu zycia, ktore aplikacja
moze przestania¢: init (), start () oraz stop ().

Metoda init () jest wywotywana na samym poczgtku
dziatania aplikacji. Stuzy ona do wykonywania réznych
czynnosci inicjalizacyjnych. Niemniej jednak nie mozna jej
uzywac do tworzenia obiektu sceny ani do jej
konstruowania.

Jesli aplikacja nie potrzebuje zadnych czynnosci
inicjalizacyjnych, to metody init () nie trzeba
przestaniac, gdyz istnieje jej wersja domysina.

4 -
Klasa Application

oraz metody cyklu zycia

Po metodzie init () wywotywana jest metoda
start () —stanowi ona poczatek dziatania aplikacji i
moze postuzyC¢ do skonstruowania i przygotowania
sceny.

Parametrem tej metody jest obiekt klasy Scene
dostarczony przez srodowisko uruchomieniowe i
stanowi scene gtownag aplikacji.

Jest to metoda abstrakcyjna i aplikacja musi jg
nadpisac.

e

Klasa Application
oraz metody cyklu zycia

Kiedy aplikacja konczy dziatanie, wywotywana jest z
kolei metoda stop (), ktora pozwala na wykonanie
wszelkich czynnosci porzagdkowych zwigzanych z
zamykaniem aplikacji.

W przypadkach, gdy wykonywanie takich czynnosci nie
jest potrzebne, mozna skorzystac z pustej, domysinej
wersji tej metody.

Uruchamianie aplikacji JavaFX

Aby uruchomic niezalezng aplikacje JavaFX, nalezy wywotac
metode 1launch () klasy Application:
public static void launch(String ... args)

Parametr args reprezentuje liste (byé moze pustg) fancuchow
znakowych, ktore zazwyczaj bedg okreslaty argumenty wiersza
polecen.

Wywotanie metody 1aunch () powoduje utworzenie aplikacji,
a nastepnie wywotanie jej metod init () istart ().

Wywotanie metody 1aunch () zakonczy sie dopiero po
zakonczeniu aplikacji.

Szkielet aplikacji JavaFX

import javafx.application.?*;
import jJavafx.scene.*;
import javafx.stage.*;
import javafx.scene.layout.*;

public class JavaFXSkel extends Application {
public static void main(String[] args) {
System.out.println ("Uruchamiamy aplikacje JavaFX.");
// Uruchamia aplikacje JavaFX,
// wywotujac metode launch().
launch (args) ;

Szkielet aplikacji JavaFX

// Przestoniecie metody init ().
public void init () |
System.out.println ("Wewnatrz metody init().");
}
// Przestania metode stop ().
public void stop () {
System.out.println ("Wewngatrz metody stop()."):

}

Szkielet aplikacji JavaFX

// Przestoniecie metody start ().

public void start (Stage myStage) {
System.out.println ("Wewnatrz metody start().");
// Okresla tytul sceny.
myStage.setTitle ("Szkielet aplikacji JavafFX.");
// Tworzy korzen. W tym przypadku bedzie to ukzad
// FlowPane, cho¢ istnieje takze kilka innych.
FlowPane rootNode = new FlowPane () ;
// Tworzy scene.
Scene myScene = new Scene (rootNode, 300, 200);
// Okresla scene uzywang przez obszar roboczy.
myStage.setScene (myScene) ;
// Wyswietla obszar roboczy oraz scene.
myStage.show () ;

Kompilacja i uruchamianie
orogramow JavaFX

Programy JavaFX sg kompilowane tak samo jak wszystkie
inne programy pisane w Javie — mozna uzy¢ programu
javac.

Niemniej jednak w zaleznosci od docelowego srodowiska
wykonawczego moze sie pojawic koniecznos¢ wykonania
okreslonych czynnosci dodatkowych — z tego wzgledu
wykorzystanie IDE, ktore potrafi w petni obstugiwac
platforme JavaFX jest najprostszym rozwigzaniem.

Istnieje mozliwos¢ uruchamiania tego samego programu w
wielu roznych srodowiskach wykonawczych — mozna uzy¢
programu java.

Niemniej jednak w niektorych przypadkach mogg by¢
potrzebne rézne pliki pomocnicze, na przyktad plik HTML
lub plik JNLP (Java Network Launch Protocol).

Watek aplikacji

Nie mozna uzywac¢ metody init () do tworzenia
obszaru roboczego ani sceny. Obiektow tych nie
mozna takze tworzy¢ w konstruktorze aplikacji.

Powodem tych ograniczen jest koniecznosc tworzenia
obu tych obiektow w watku aplikacji.

A jak sie okazuje, zarowno metoda init (), jaki
konstruktor aplikacji s wywotywane w watku
gtownym, nazywanym takze watkiem
uruchomieniowym. | wtasnie z tego powodu ani
konstruktora aplikacji, ani metody init () nie mozna
uzywac do tworzenia obiektow Stage i Scene.

Watek aplikacji

Wszelkie zmiany w aktualnie wyswietlanym interfejsie
uzytkownika muszg by¢ wykonywane w watku
aplikaciji.

Dodatkowo takze wszystkie zdarzenia w aplikacjach
JavaFX sg generowane w watku aplikacji. Dzieki temu
procedur obstugi zdarzen mozna uzywac do interakgc;ji
z graficznym interfejsem uzytkownika aplikacji.

Takze metoda stop () jest wywotywana w watku
aplikaciji.

Prosta kontrolka JavaFX: Label

JavaFX udostepnia bogaty zestaw kontrolek. Najprostsza z

nich jest etykieta, ktora pozwala wyswietli¢c komunikat lub
obrazek.

W JavaFX etykiety sg instancjami klasy Label nalezgcej do
pakietu javafx.scene.control.

Przyktad:
// Tworzymy etykiete.
Label myLabel =

new Label ("JavaFX ma duze mozliwos$ci"m);
// Dodajemy etvykiete do grafu sceny.
rootNode.getChildren () .add (myLabel) ;

Stosowanie przyciskow i zdarzen

Podstawowg klasg zwigzang ze zdarzeniami JavaFX jest
klasa Event zdefiniowana w pakiecie javafx.event.

Klasa Event dziedziczy po java.util.EventObject,
a to oznacza, ze zdarzenia JavaFX majg te same
podstawowe mozliwosci funkcjonalne co inne zdarzenia w
jezyku Java.

Aby obstuzy¢ zdarzenie, w pierwszej kolejnosci nalezy
zarejestrowac jego obiekt nastuchujacy, ktory bedzie
oczekiwac na zdarzenia. W momencie zgtoszenia zdarzenia
zostaje wywotany odpowiedni obiekt nastuchujacy, ktory
musi odpowiedzie¢ na nie i zakonczy¢ dziatanie.

Stosowanie przyciskow i zdarzen

Zdarzenia sg obstugiwane poprzez zaimplementowanie
interfejsu EventHandler, zadeklarowanego w pakiecie

jJavafx.event:
interface EventHanderl<T extends Event>

gdzie T jest typem obstugiwanego zdarzenia.

Interfejs ten deklaruje tylko jedng metode handle (),
ktorej parametrem jest obiekt zdarzenia:
volid handle (T eventObj)

W tym przypadku parametr eventOb7 jest zgtoszonym
zdarzeniem.

Zazwyczaj obiekty nastuchujgce zdarzen s3
implementowane przy wykorzystaniu anonimowych klas
wewnetrznych lub wyrazen lambda.

Stosowanie przyciskow i zdarzen

Przyciski sg tworzone przy uzyciu klasy Button,
zdefiniowanej w pakiecie javafx.scene.control.

Nacisniecie przycisku spowoduje wygenerowanie zdarzenia
ActionEvent. Klasa ActionEvent zostata
zdefiniowana w pakiecie javafx.event. Obiekt
nastuchujacy tego zdarzenia mozna zarejestrowac,
wywotujgc metode setOnAction () obiektu Button.

Metoda setOnAction () ustawia wartos¢ wtasciwosci
onAction przechowujgcej referencje obiektu
nastuchujgcego.

Stosowanie przyciskow i zdarzen

// Tworzymy etykiete.

Label response = new Label ("Przycisk");

// Tworzymy dwa przyciski.

Button btnUp = new Button ("Gdéra");

Button btnDown = new Button("D61");

// Obstuga zdarzenia ActionEvent przycisku Goéra.

btnUp.setOnAction (new EventHandler<ActionEvent> () {
public void handle (ActionEvent ae) {

response.setText ("Nacisnates$ przycisk Géra.");

}
1) ;

// Obstuga zdarzenia ActionEvent przycisku DG&#.
btnDown.setOnAction (new EventHandler<ActionEvent> () {
public void handle (ActionEvent ae) {
response.setText ("Nacisnates przycisk Do6r.");

}
Y) g
// Dodajemy etvykiete i przyciski do grafu sceny.
rootNode.getChildren () .addAll (btnUp, btnDown, response); <//

Pola wyboru

Pola wyboru s3 reprezentowane przez klase
CheckBox. Jej bezposrednig klasg bazowg jest

ButtonBase.

Pola wyboru reprezentowane przez klase CheckBox
mogg miec trzy stany: pole zaznaczone, niezaznaczone
i nieznany (nazywany takze stanem
niezdefiniowanym).

Metoda isSelected () zwraca wartosc¢ true, jesli
pole wyboru jest zaznaczone, badz wartos¢ false,
jesli zaznaczenia nie ma.

Pola wyboru

Label response = new Label ("");
CheckBox cbTablet = new CheckBox ("Tablet");

// Obstuga zdarzen ActionEvent pdl wyboru.
cbTablet.setOnAction (new EventHandler<ActionEvent> () {

public void handle (ActionEvent ae) {
1f (cbSmartphone.isSelected())
response.setText ("Zaznaczono pole 'smartfon'.");

else
response.setText ("Usunieto 'smartfon'.");

showAll () ;

Pola wyboru

Stan nieznany, ktérego mozna uzyc, by zasygnalizowac,
ze stan pola nie zostat jeszcze okreslony badz tez nie
nadaje sie on do uzycia w biezgcej sytuacji, nie jest
domyslnie stosowany. Aby wtgczy¢ mozliwosc
stosowania stanu nieznanego w polu wyboru, nalezy
wywotaC metode setAllowIndeterminate ().

Aby okresli¢, czy pole wyboru znajduje sie w stanie

nieznanym, nalezy wywota¢ metode
isIndeterminate ().

Listy

Listy sg reprezentowane przez obiekty klasy ListView.

Kontrolki te wyswietlajg liste elementow i pozwalajg na
zaznaczenie jednego badz kilku z nich.

Jedng z bardzo przydatnych cech kontrolek ListView jest
automatyczne wyswietlanie paskow przewijania.

ListView jest klasg sparametryzowang ListView<T>,
przy czym T okresla typ elementow przechowywanych na
liscie.

Domyslnie kontrolki Li stView pozwalajg na zaznaczanie

tylko jednego elementu listy w danej chwili. Mozliwos¢
zaznaczania wielu elementow mozna wigczyc.

Listy

Kontrolki ListView mozna uzywac na dwa podstawowe
sposoby:
Pierwszy z nich polega na zignorowaniu zdarzen

generowanych przez liste i pobieraniu jej zaznaczonych
elementow wtedy, gdy program bedzie ich potrzebowac.

Drugi sposob bazuje na monitorowaniu zmian w zaznaczonych
elementach listy poprzez zarejestrowanie odpowiednich
obiektow nastuchujgcych.

Obiekt nastuchujgcy zdarzen generowanych przez listy
korzysta z interfejsu ChangelListener zdefiniowanego
w pakiecie javafx.beans.value. Interfejs ten
definiuje tylko jedng metode change ().

Listy

Observablelist<String> computerTypes =
FXCollections.observableArrayList ("Smartfon", "Tablet",
"Notebook", "Stacjonarny");

// Tworzymy kontrolke ListView.

ListView<String> lvComputers = new ListView<String> (computerTypes) ;

// Okreslamy preferowang wysokosSc¢ 1 szerokosc.

lvComputers.setPrefSize (100, 70);

// Pobieramy model zaznaczania elementdéw listy.

MultipleSelectionModel<String> lvSelModel =
lvComputers.getSelectionModel () ;

// Tworzy obiekt nastuchujacy zdarzen, ktory bedzie odpowiada? na

// zmiany zaznaczenia elementdow 1isty.

lvSelModel .selectedItemProperty () .addListener (
new Changelistener<String> () {

public void changed (ObservableValue<? extends String> changed,
String oldval, String newVal) {
// Wyswietla nazwe wybranego elementu listy.

response.setText ("Wybranym typem komputera jest: " + newVal);

Literatura (JavaBeans)

» H.Schildt: Java. Przewodnik dla poczgtkujgcych.
Wydanie 7. Rozdziat 18: Wprowadzenie do JavaFX.
Wydawnictwo HELION, Gliwice 2018.

* Java Platform, Client Technlogies:
https://docs.oracle.com/javase/8/javase-
clienttechnologies.htm

https://docs.oracle.com/javase/8/javase-clienttechnologies.htm

