KURS JEZYKA C++
— WYKELAD 11 (23.05.2018)
@

‘ Strumienie

SPIS TRESC]

O Pojecie strumienia

o Strumienie w bibliotece standardowej
o0 Operatory strumieniowe >> | <<

o Hierarchia klas strumieni

o Sterowanie formatem

© Manipulatory

o Nieformatowane operacje we/wy

o Btedy w strumieniach

o Strumienie zwigzane z plikami

o Strumienie zwigzane z tancuchami

o Synchronizacja strumieni

STRUMIENIE

o Strumien to obiekt
kontrolujacy przeptyw
danych.

o Strumien wejsciowy
transportuje dane do
programu.

o Strumien wyjsciowy
transportuje dane poza
program.

o Strumienie dzielimy na:

O wejsciowe i wyjsciowe,
o binarne i tekstowe.

strumien wejsciowy

strumien wyjsciowy

OBIEKTY STRUMIENI
W BIBLIOTECE STANDARDOWE]J

o Klasy zdefiniowane w bibliotece <iostream> s3
wzorcami.

o Klasa istream to strumien wejsciowy bedacy instancja
szablonu klasy basic istream<char>.

o Klasa ostream to strumien wyjsciowy bedgcy instancjg
szablonu klasy basic ostream<char>.

STRUMIENIE
W BIBLIOTECE STANDARDOWE]J

o Biblioteka ze strumieniami we/wy ogdlnego przeznaczenia to
<iostream>.

o Biblioteka ze strumieniami we/wy przeznaczona do operacji na plikach
to <fstream>.

o Biblioteka ze strumieniami we/wy przeznaczona do operacji na
obiektach klasy string to <sstream>.

o Strumienie tekstowe zdefiniowane w <iostream> (pracujgce na
danych typu char) zwigzane ze standardowym we/wy to:

e cin —standardowe wejscie (zwykle klawiatura),

* cout —standardowe wyjscie (zwykle ekran),

* clog - standardowe wyjscie dla btedéw (zwykle ekran),
 cerr —niebuforowane wyjscie dla btedow,

0 wcin, wcout, wclog, wcerr —strumienie analogiczne do ‘
powyzszych, ale pracujgce na danych typu wchar t.

OPERATORY >> | << (WYJIMOWANIA ZE |
WSTAWIANIA DO STRUMIENIA)

o Dla strumieni wejsciowych pracujgcych w trybie tekstowym
zostat zdefiniowany operator >> wyjmowania danych ze
strumienia.

o Dla strumieni wyjsciowych pracujgcych w trybie tekstowym
zostat zdefiniowany operator << wstawiania danych do
strumienia.

o Operatory >> i << zawsze zwracajg referencje do strumieni
na ktorych pracujg, dlatego operatory te mozna tgczyc
kaskadowo przy czytaniu lub pisaniu.

o Operatory >> i << automatycznie dokonujg konwersiji z
danych tekstowych na binarne i na odwrot.

o Nalezy pamietac o priorytecie operatora >> i << gdy uzyaa
sie wyrazen. Przyktad: “
cerr << (a*x+b) << endl;

OPERATOR STRUMIENIOWY <<
DO PISANIA

oilint 1 = 7;
std::cout << 1 << endl;
// wyjdcie: 7
Ostd::string s = "Abecadio”;
std::cout << s << endl;
// wyjscie: Abecadlo

Ostd::bitset<10> flags(7);
std::cout << flags << endl;
// wyjscie: 0000000111

Ostd::complex<float> c(3.1,2.7);
std: :cout << ¢ << endl;

/) wyiécie: (3.1,2.7) ‘

OPERATOR STRUMIENIOWY >>
DO CZYTANIA

oilint 1 = 0;
std::cin >> 1i;
// wejscie: odczytanie wartosci int
Ostd::string s;
std::cin >> s;
// wejdcie: odczytanie napisu
string
O0Odouble d = 0.0;
std: :complex<double> c;
std::cin >> d >> c;
// wejsdcie: sekwencyjne odczytanie
// liczby rzeczywiste] i zespolone]

OPERATORY STRUMIENIOWE >> 1 <<
ZDEFINIOWANE PRZEZ UZYTKOWNIKA

o Dla typow zdefiniowanych przez uzytkownika mozna zdefiniowac wtasne
operatory wstawiania do i wyjmowania ze strumienia:
class Typ {..};
// operator wyjmowania ze strumienia
istream & operator >> (istream &os, Typ &x);
// operator wstawiania do strumienia
ostream & operator << (ostream &os, const Typ &Xx);

o Nalezy pamietac¢ o zwrdceniu referencji do strumienia, na ktorym sie
pracuje.

o Operatorow wstawiania do i wyjmowania ze strumienia nie dziedziczy sie.

o Operatory wstawiania do i wyjmowania ze strumienia nie mogg byc
wirtualne.

HIERARCHIA KLAS STRUMIENIOWYCH
REALIZUJACYCH OPERACIJE WE/WY

STEROWANIE FORMATEM

o Podczas operacji na strumieniu uzywane sg pewne
domniemania dotyczgce formatu danych —
domniemania te zapisane sg w strumieniu we fladze
stanu formatowania.

o Klasa w ktorej umieszczono flage stanu formatowania to
ios base —typ takiej flagito fmtflags.

STEROWANIE FORMATEM

o Flagi odpowiadajgce za sposob formatowania:
* ignorowanie biatych znakow skipws;
e justowanie left, right, internal (maska adjustfield);
* petne nazwy boolowskie boolalpha;

* reprezentacja liczb catkowitych dec, oct, hex (maska
basefield);

* uwidocznienie podstawy reprezentacji showbase;
» kropka dziesietna showpoint;

e duze litery w liczbach uppercase;

* znak + w liczbach dodatnich showpos;

* reprezentacja liczb rzeczywistych scientific, fixed (maska
floatfield);

o buforowanie unibuf. ‘

STEROWANIE FORMATEM

o Zmiane regut formatowania dokonuje sie nastepujacymi metodami:
fmtflags flags () const;
fmtflags flags (fmtflags fls);
fmtflags setf (fmtflags f1l);
fmtflags setf (fmtflags fl1l, fmtflags mask);
fmtflags unsetf (fmtflags f1l);

streamsize width () const;
streamsize width (streamsize w);
streamsize precision () const;

streamsize precision (streamsize p);
o Uwaga —metoda width (w) ma dziatanie jednorazowe.

o Przyktady:
fmtflags £ = cout.flags()
cout.unsetf (10s::boolalpha);
cout.setf (10s::showpos|i10s::showpoint) ;
cout.setf (10s::hex,10s::basefield); ‘

cout.flags (f);

MANIPULATORY

o Manipulatory, zdefiniowane w pliku zagtéwkowym <iomanip> to
specjalne obiekty, ktore mozna umiesci¢ w strumieniu za pomoca
operatorow >> albo <<, ktére powodujg zmiane regut formatowania
lub inne efekty uboczne na strumieniu.

o Standardowe manipulatory bezargumentowe:
endl, ends,
hex, dec, oct,
fixed, scientific,
left, right, internal,
skipws, noskipws, ws,
boolalpha, noboolalpha,
showpoint, noshowpoilnt,
showpos, nowhowpos,
showbase, noshowbase,
uppercase, nouppercase,
unitbuf, nounitbuf,
flush.

MANIPULATORY

o Standardowe manipulatory sparametryzowane:
setw(int),
setprecision(int),
setfill (char),setfill (wchar t),
setiosflags (fmtflags),
resetiosflags (fmtflags).

O Przyktady:
cout << setiosflags(ios base::boolalpha);

MANIPULATORY

o Wtasne manipulatory bezparametrowe definiuje sie w postaci
funkcji.

O Przyktad:
inline ostream& tab (ostream &os)

{

return os << ”\t”;

}

cout << ”"x:” << tab << tab << x <L endl;

MANIPULATORY

o Wtasne manipulatory sparametryzowane definiuje sie w postaci klas:
» klasa ta musi posiadac konstruktor tworzgcy chwilowy obiekt manipulatora

e oraz zaprzyjazniony operator strumieniowy >> albo << uzywajacy obiektu
naszej klasy.

o Przyktad:
class liczba {
int wart, podst;
friend ostreamé& operator <<
(ostream &os, const liczba &licz)
{ /*wypisz wart w systemie liczbowym podst*/ }
public:
liczba (int wart, int podst)
: wart(w), podst(p)
{}

}i
cout << "y = " << liczba(y,7) << endl; ‘

NIEFORMATOWANE
OPERACJE WE/WY

o Formatowane operacje we/wy przeprowadzane s3
za posrednictwem operatorow >> i <<, ktore

przeksztatcajg dane z postaci tekstowej na binarnga
(czytanie) albo z postaci binarnej na tekstowa
(pisanie).

0 S3 jednak sytuacje, gdy formatowanie nie jest nam
potrzebne...

o Nieformatowane operacje we/wy sg umieszczone w
klasach istreamiostream (oraz uzupetnione

kilkoma funkcjami sktadowymi w klasie

iostream). ‘

NIEFORMATOWANE CZYTANIE (WYJMOWANIE
ZE STRUMIENIA)

o Funkcje sktadowe wyjmujace po jednym znaku:
istream& get (charé&); —w przypadku konca
strumienia strumien przechodzi w stan btedu
int get (); —w przypadku konca strumienia funkcja
zwraca wartos¢ EOF (o wartosci -1).

o Przyktady uzycia:
char a, b, c¢;
cin.get(a) .get (b) .get (c);

Ehar 7}
while (cin.get(z)) {..}

ghar 7}
while ((z=cin.get()) !=EOF) {..} ‘

NIEFORMATOWANE CZYTANIE (WYJMOWANIE
ZE STRUMIENIA)

o Funkcje sktadowe wyjmujgce wiele znakow:
i1stream& get (char *gdzie, streamsize
ile, char ogr='\n'); -—gdyw trakcie czytania
znakow zostanie napotkany ogranicznik, to czytanie
bedzie przerwane (znak ogranicznika pozostanie w
strumieniu)
1stream& getline (char *gdze,
streamsize ile, char ogr='\n'); —gdyw
trakcie czytania znakow zostanie napotkany ogranicznik,
to czytanie bedzie przerwane (znak ogranicznika zostanie
usuniety ze strumienia)

o Po zakonczeniu czytania powyzsze funkcje dopisza na

koncu danych bajt zerowy poprawnie konczacy C-strin
(wczytanych zostanie wiec maksymalnie ile-1 znaké%'

NIEFORMATOWANE CZYTANIE (WYJMOWANIE
ZE STRUMIENIA)

o Funkcje zewnetrzna wyjmujaca wiele znakow to:
i1streamé& std::getline (isteram &we,

string &wynik, char ogr='\n'); -
funkcja ta nie ma limitu na liczbe wczytywanych
znakow (znak ogranicznika zostanie usuniety ze
strumienia).

o Przyktfad uzycia:
string s;
while (getline(cin,s)) {..}

NIEFORMATOWANE CZYTANIE (WYJMOWANIE
ZE STRUMIENIA)

o Do binarnego czytania danych stuzg funkcje sktadowe:
istream & read (char *gdzie, streamsize 1le) -
funkcja wczytuje blok znakdéw (gdy brakuje danych strumien przechodzi
w stan btedu)
streamsize readsome (char *gdzie, streamsize
ile) -—funkcja wczytuje blok znakow (gdy brakuje danych strumien
nie zmienia stanu)
istream & ignore (streamsize ile=1, int ogr=EOF)
— funkcja pomija blok znakow
streamsize gcount () -funkcja mowi, ile znakdw zostato
wyciggnietych za pomoca ostatniej operacji czytania nieformatowanego
int peek () —funkcja pozwala podgladnac nastepny znak w
strumieniu
istream & putback (char) —funkcjazwraca do strumienia
jeden znak
istream & unget () —funkcjazwraca do strumienia ostatnio
przeczytany znak ‘

NIEFORMATOWANE PISANIE (WSTAWIANIE DO
STRUMIENIA)

o Wstawianie do strumienia realizuje sie za pomocg dwdch funkcji
sktadowych:
ostream & put (char) —funkcjata wstawia do strumienia jeden
znak
ostream & write (const char *skad, streambuf 1le) —
funkcja ta wstawia do strumienia wiele znakow

o Przykfady uzycia:

char napis[] = "jakis$ napis";
for (int 1=0; napls[i],; ++1)

cout.put (1?'" ':'=-").put (napis[i]);
ofstream plik = ..;

double e = 2.718281828459;
plik.write (reinterpret cast<char*>(&e),sizeof (‘;

BtEDY W STRUMIENIACH

o W klasie 1o0s mamy zdefiniowane narzedzia do kontrolowania
poprawnosci operacji na strumieniach i sprawdzania stanu strumienia.

o W kazdym strumieniu znajduje sie flaga stanu strumienia (zdefiniowana
w klasie ios base).

o Flaga stanu strumienia sktada sie z trzech bitow:
eofbit —flaga ta jest ustawiana, gdy osiggnieto koniec strumienia
failbit —flaga ta jest ustawiana, gdy nie powiodta sie operacja
we/wy
badbit —flaga ta jest ustawiana, gdy nastgpito powazne uszkodzenie
strumienia

l0_state 4 2 1

BtEDY W STRUMIENIACH

o Funkcje do pracy z flagami btedéw w strumieniach:
bool good () —zwraca true, gdy zadna flaga
btedu nie jest ustawiona
bool eof () —zwraca true, gdy zostat
osiggniety koniec strumienia i jest ustawiona flaga
10s::eo0fbit
bool fail () —zwraca true, gdy strumien jest
w stanie btedu, czyli jest ustawiona flaga
ios::failbit lubios::badbit
bool bad () —zwraca true, gdy strumien jest
powaznie uszkodzony i jest ustawiona flaga

10S: :badbit ‘

BtEDY W STRUMIENIACH

o W obstudze btedow w strumieniach przydatne sg tez
operatory zdefiniowane w klasie 1os:

operator void* () const -—operatorten
Zwraca wartosc niezerowq, gdy ! fail ()
bool operator ! () const —operatorten

zachowuje sie tak jak funkcja fail ()

o Przyktady uzycia:
1if ('cin) cout << "biagd" << endl;

1f (cin) cout << "ok" << endl;

BtEDY W STRUMIENIACH

o lIstnieje kilka funkcji sktadowych do ustawiania i kasowania flag btedu:
io state rdstate () —funkcjazwraca flage btedu strumienia
void clear (io state = ios::goodbit) —funkcja
zastepuje flage btedu strumienia inng wartoscia
void setstate (io state) —funkcja dopisuje flage btedu do
flagi strumienia

o Przyktady uzycia:
1f (plik.rdstate() &i1os::failbit)

cout << "failbit jest ustawiona" << endl;

cin.clear (ios::eofbit);

cin.setstate(ios::failbit) ;

BtEDY W STRUMIENIACH

o Strumien mozna zmusi¢ do zgtaszania wyjgtkow w pewnych sytuacjach
za pomocg funkcji exceptions ():
vold exceptions (1o state)

o Argument funkcji exceptions () okresla, flagi dla ktorych ma by¢
zgtoszony wyjatek ios base::failure.

o Gdy chcemy sprawdzi¢ na jakie flagi strumien bedzie reagowat
wyjatkiem, nalezy uzy¢ innej funkcji exceptions ():
1o state exceptions (void) const

o Przyktad uzycia:
plik.exceptions (ios::failbit | 1os::badbit);

STRUMIENIE ZWIAZANE
Z PLIKAMI

o Typy strumieni plikowych: i fstream, of stream,
fstream.

o Strumienie te sg zadeklarowane w pliku
nagtowkowym <fstream>.

o Strumien plikowy nalezy na poczatku otworzyc
metodg open () a na koncu zamkng¢ metoda
close ().

o Strumien plikowy mozna otworzy¢ w konstruktorze.
Przyktad:
1fstream plik("dane.txt");

STRUMIENIE ZWIAZANE
Z PLIKAMI

o Przy otwieraniu strumienia nalezy podac tryb otwarcia.

o Mozliwe tryby otwarcia strumienia to:
in —do czytania
out —do pisania
ate — ustawienie gtowicy na koncu pliku
app — do dopisywania
trunc — skasowanie starej tresci
binary —tryb binarny (domysinie jest tryb tekstowy)

o Przykfad:
string nazwa = "dane.txt";

ofstream plik(nazwa.c str(), 1os::applios::bin);

STRUMIENIE ZWIAZANE
Z tANCUCHAMI

o Typy strumieni tannicuchowych: istringstream,
ostringstream, stringstream.

o Strumienie te sg zadeklarowane w pliku nagtéwkowym
<sstream>.

o Strumienie tancuchowe przechowujg jako sktadowa
obiekt klasy string.

STRUMIENIE ZWIAZANE
Z tANCUCHAMI

o Strumien fancuchowy do pisania ostringstream
gromadzi dane w fancuchu znakowym.

o Mozna go zainicjalizowac jakas wartoscig poczgtkowsy i
trybem. Przyktady:
ostringstream wyl;
ostringstream wy2 ("jakis tekst",
10s::app) ;s

o Ze strumienia tancuchowego do pisania
ostringstream mozna wyciggngac biezgcg zawartosc
tancucha za pomocg funkcji str () :
string str () const

STRUMIENIE ZWIAZANE
Z tANCUCHAMI

o Strumien tancuchowy do czytania
istringstream udostepnia dane z fancucha
znakowego.

o Mozna go zainicjalizowac jakas wartoscig
poczatkowq. Przyktady:
istringstream wel;
istringstream we2 ("jakis tekst");

o Strumien tancuchowy do czytania
istringstream mozna reinicjalizowac nowym
tancuchem za pomocg funkcji str () :
volid str (const string &)

SYNCHRONIZACJA STRUMIENI

o Synchroniczng prace strumieni uzyskuje sie dzieki
wigzaniu strumieni za pomocg funkcji sktadowej tie ()
zdefiniowanejw ios base:
ostream* 10s base::tie (ostream*)
ostream* ios base::tie ()

o Mozna wigzac¢ dowolny strumien z jakims jednym
strumieniem wyjsciowym.

o Efektem wigzania jest oproznienie bufora zwigzanego
strumienia wyjsciowego przed operacjg na danym
strumieniu.

o Aby zerwac dotychczasowe powigzanie nalezy na
strumieniu wywota¢ metode tie (nullptr).

o Strumienie standardowe cin i cerr sg powigzane ze ‘
strumieniem cout.

PROBLEMY Z BIBLIOTEKA <CSTDIO>

o Wady funkcjiprintf () i scanf () z biblioteki <cstdio>:
e zmienna liczba argumentdow (kompilator tego nie skontroluje),
» mato czytelna semantyka tych funkcji (przynajmniej na poczatku),

» brak eleganckiego sposobu na wczytywanie i wypisywanie obiektow
typow zdefiniowanych przez uzytkownika,

* analiza wzorca i zawartych w nim znacznikdw (rozpoczynajgcych sie od
znaku procenta) jest wykonywana dopiero w trakcie dziatania
programu.

o Strumienie cin, cout, clogi cerr nie majg zadnych powigzan ze
strumieniami stdin, stdout i stderr (za wyjatkiem tych samych
deskryptorow plikéw).

o Aby strumienie standardowe z biblioteki <iosteam> dobrze
wspotdziataty ze strumieniami standardowymi z biblioteki <cstdio>
nalezy wywotac funkcje sync with stdio(): ‘
bool 1os base::sync with stdio(bool sync=true)

BUFORY

o Bufor to magazyn na dane, do ktérego mozna pisac i z ktorego
mozna czytaC okreslone wartosci sekwencyijnie.

o Bufory sg wykorzystywane przez obiekty strumieniowe do
transferu danych do przedmiotowych magazynow.

o Bufor znakowy streambuf jest zdefiniowany w bibliotece
<streambuf>.

O Funkcja basic streambuf<>* rdbuf () pozwalana
pobranie adresu obiektu bufora zwigzanego ze strumieniem a
ustanowienie nowego bufora w strumieniu jest mozliwe za
pomoca funkcji basic streambuf<>* rdbuf
(basic streambuf<>*),

o Wskaznik na bufor w strumieniu nie moze byc¢ pusty. ‘

