
KURS JĘZYKA C++
– WYKŁAD 11 (23.05.2018)

Strumienie

SPIS TREŚCI

 Pojęcie strumienia

 Strumienie w bibliotece standardowej

 Operatory strumieniowe >> i <<

 Hierarchia klas strumieni

 Sterowanie formatem

 Manipulatory

 Nieformatowane operacje we/wy

 Błędy w strumieniach

 Strumienie związane z plikami

 Strumienie związane z łańcuchami

 Synchronizacja strumieni

STRUMIENIE

 Strumień to obiekt
kontrolujący przepływ
danych.

 Strumień wejściowy
transportuje dane do
programu.

 Strumień wyjściowy
transportuje dane poza
program.

 Strumienie dzielimy na:

 wejściowe i wyjściowe,

 binarne i tekstowe.

źródło

danych

program

ujście

danych

strumień wejściowy

strumień wyjściowy

OBIEKTY STRUMIENI
W BIBLIOTECE STANDARDOWEJ

 Klasy zdefiniowane w bibliotece <iostream> są
wzorcami.

 Klasa istream to strumień wejściowy będący instancją
szablonu klasy basic_istream<char>.

 Klasa ostream to strumień wyjściowy będący instancją
szablonu klasy basic_ostream<char>.

STRUMIENIE
W BIBLIOTECE STANDARDOWEJ

 Biblioteka ze strumieniami we/wy ogólnego przeznaczenia to
<iostream>.

 Biblioteka ze strumieniami we/wy przeznaczona do operacji na plikach
to <fstream>.

 Biblioteka ze strumieniami we/wy przeznaczona do operacji na
obiektach klasy string to <sstream>.

 Strumienie tekstowe zdefiniowane w <iostream> (pracujące na
danych typu char) związane ze standardowym we/wy to:

 cin – standardowe wejście (zwykle klawiatura),

 cout – standardowe wyjście (zwykle ekran),

 clog – standardowe wyjście dla błędów (zwykle ekran),

 cerr – niebuforowane wyjście dla błędów,

 wcin, wcout, wclog, wcerr – strumienie analogiczne do
powyższych, ale pracujące na danych typu wchar_t.

OPERATORY >> I << (WYJMOWANIA ZE I
WSTAWIANIA DO STRUMIENIA)

 Dla strumieni wejściowych pracujących w trybie tekstowym
został zdefiniowany operator >> wyjmowania danych ze
strumienia.

 Dla strumieni wyjściowych pracujących w trybie tekstowym
został zdefiniowany operator << wstawiania danych do
strumienia.

 Operatory >> i << zawsze zwracają referencję do strumieni
na których pracują, dlatego operatory te można łączyć
kaskadowo przy czytaniu lub pisaniu.

 Operatory >> i << automatycznie dokonują konwersji z
danych tekstowych na binarne i na odwrót.

 Należy pamiętać o priorytecie operatora >> i << gdy używa
się wyrażeń. Przykład:
cerr << (a*x+b) << endl;

OPERATOR STRUMIENIOWY <<
DO PISANIA

 int i = 7;

std::cout << i << endl;

// wyjście: 7

 std::string s = ”Abecadło”;

std::cout << s << endl;

// wyjście: Abecadło

 std::bitset<10> flags(7);

std::cout << flags << endl;

// wyjście: 0000000111

 std::complex<float> c(3.1,2.7);

std::cout << c << endl;

// wyjście: (3.1,2.7)

OPERATOR STRUMIENIOWY >>
DO CZYTANIA

 int i = 0;

std::cin >> i;

// wejście: odczytanie wartości int

 std::string s;

std::cin >> s;

// wejście: odczytanie napisu

string

 double d = 0.0;

std::complex<double> c;

std::cin >> d >> c;

// wejście: sekwencyjne odczytanie

// liczby rzeczywistej i zespolonej

OPERATORY STRUMIENIOWE >> I <<
ZDEFINIOWANE PRZEZ UŻYTKOWNIKA

 Dla typów zdefiniowanych przez użytkownika można zdefiniować własne
operatory wstawiania do i wyjmowania ze strumienia:
class Typ {…};

// operator wyjmowania ze strumienia

istream & operator >> (istream &os, Typ &x);

// operator wstawiania do strumienia

ostream & operator << (ostream &os, const Typ &x);

 Należy pamiętać o zwróceniu referencji do strumienia, na którym się
pracuje.

 Operatorów wstawiania do i wyjmowania ze strumienia nie dziedziczy się.

 Operatory wstawiania do i wyjmowania ze strumienia nie mogą być
wirtualne.

HIERARCHIA KLAS STRUMIENIOWYCH
REALIZUJĄCYCH OPERACJE WE/WY

ios_base

basic_ostream<>

ostream

basic_ios<>

ios

basic_istream<>

istream

basic_iostream<>

iostream

istringstream

ifstream

fstream stringstream

ofstream

ostringstream

virtual virtual

basic_streambuf<>

streambuf

STEROWANIE FORMATEM

 Podczas operacji na strumieniu używane są pewne
domniemania dotyczące formatu danych –
domniemania te zapisane są w strumieniu we fladze
stanu formatowania.

 Klasa w której umieszczono flagę stanu formatowania to
ios_base – typ takiej flagi to fmtflags.

STEROWANIE FORMATEM

 Flagi odpowiadające za sposób formatowania:
 ignorowanie białych znaków skipws;
 justowanie left, right, internal (maska adjustfield);
 pełne nazwy boolowskie boolalpha;
 reprezentacja liczb całkowitych dec, oct, hex (maska
basefield);

 uwidocznienie podstawy reprezentacji showbase;
 kropka dziesiętna showpoint;
 duże litery w liczbach uppercase;
 znak + w liczbach dodatnich showpos;
 reprezentacja liczb rzeczywistych scientific, fixed (maska
floatfield);

 buforowanie unibuf.

STEROWANIE FORMATEM

 Zmianę reguł formatowania dokonuje się następującymi metodami:
fmtflags flags () const;
fmtflags flags (fmtflags fls);
fmtflags setf (fmtflags fl);
fmtflags setf (fmtflags fl, fmtflags mask);
fmtflags unsetf (fmtflags fl);
streamsize width () const;
streamsize width (streamsize w);
streamsize precision () const;
streamsize precision (streamsize p);

 Uwaga – metoda width(w) ma działanie jednorazowe.

 Przykłady:
fmtflags f = cout.flags();
cout.unsetf(ios::boolalpha);
cout.setf(ios::showpos|ios::showpoint);
cout.setf(ios::hex,ios::basefield);
…
cout.flags(f);

MANIPULATORY

 Manipulatory, zdefiniowane w pliku zagłówkowym <iomanip> to
specjalne obiekty, które można umieścić w strumieniu za pomocą
operatorów >> albo <<, które powodują zmianę reguł formatowania
lub inne efekty uboczne na strumieniu.

 Standardowe manipulatory bezargumentowe:
endl, ends,
hex, dec, oct,
fixed, scientific,
left, right, internal,
skipws, noskipws, ws,
boolalpha, noboolalpha,
showpoint, noshowpoint,
showpos, nowhowpos,
showbase, noshowbase,
uppercase, nouppercase,
unitbuf, nounitbuf,
flush.

MANIPULATORY

 Standardowe manipulatory sparametryzowane:
setw(int),
setprecision(int),
setfill(char), setfill(wchar_t),
setiosflags(fmtflags),
resetiosflags(fmtflags).

 Przykłady:
cout << setiosflags(ios_base::boolalpha);

MANIPULATORY

 Własne manipulatory bezparametrowe definiuje się w postaci
funkcji.

 Przykład:
inline ostream& tab (ostream &os)

{

return os << ”\t”;

}

…

cout << ”x:” << tab << tab << x << endl;

MANIPULATORY

 Własne manipulatory sparametryzowane definiuje się w postaci klas:
 klasa ta musi posiadać konstruktor tworzący chwilowy obiekt manipulatora,
 oraz zaprzyjaźniony operator strumieniowy >> albo << używający obiektu

naszej klasy.

 Przykład:
class liczba {

int wart, podst;
friend ostream& operator <<
(ostream &os, const liczba &licz)

{ /*wypisz wart w systemie liczbowym podst*/ }
public:

liczba (int wart, int podst)
: wart(w), podst(p)

{}
};
…
cout << ”y = ” << liczba(y,7) << endl;

NIEFORMATOWANE
OPERACJE WE/WY

 Formatowane operacje we/wy przeprowadzane są
za pośrednictwem operatorów >> i <<, które
przekształcają dane z postaci tekstowej na binarną
(czytanie) albo z postaci binarnej na tekstową
(pisanie).

 Są jednak sytuacje, gdy formatowanie nie jest nam
potrzebne…

 Nieformatowane operacje we/wy są umieszczone w
klasach istream i ostream (oraz uzupełnione
kilkoma funkcjami składowymi w klasie
iostream).

NIEFORMATOWANE CZYTANIE (WYJMOWANIE
ZE STRUMIENIA)

 Funkcje składowe wyjmujące po jednym znaku:
istream& get (char&); – w przypadku końca
strumienia strumień przechodzi w stan błędu
int get (); – w przypadku końca strumienia funkcja
zwraca wartość EOF (o wartości -1).

 Przykłady użycia:
char a, b, c;
cin.get(a).get(b).get(c);
…
char z;
while (cin.get(z)) {…}
…
char z;
while ((z=cin.get())!=EOF) {…}

NIEFORMATOWANE CZYTANIE (WYJMOWANIE
ZE STRUMIENIA)

 Funkcje składowe wyjmujące wiele znaków:
istream& get (char *gdzie, streamsize
ile, char ogr='\n'); – gdy w trakcie czytania
znaków zostanie napotkany ogranicznik, to czytanie
będzie przerwane (znak ogranicznika pozostanie w
strumieniu)
istream& getline (char *gdze,
streamsize ile, char ogr='\n'); – gdy w
trakcie czytania znaków zostanie napotkany ogranicznik,
to czytanie będzie przerwane (znak ogranicznika zostanie
usunięty ze strumienia)

 Po zakończeniu czytania powyższe funkcje dopiszą na
końcu danych bajt zerowy poprawnie kończący C-string
(wczytanych zostanie więc maksymalnie ile-1 znaków).

NIEFORMATOWANE CZYTANIE (WYJMOWANIE
ZE STRUMIENIA)

 Funkcje zewnętrzna wyjmująca wiele znaków to:
istream& std::getline (isteram &we,

string &wynik, char ogr='\n'); –
funkcja ta nie ma limitu na liczbę wczytywanych
znaków (znak ogranicznika zostanie usunięty ze
strumienia).

 Przykład użycia:
string s;

while (getline(cin,s)) {…}

NIEFORMATOWANE CZYTANIE (WYJMOWANIE
ZE STRUMIENIA)

 Do binarnego czytania danych służą funkcje składowe:
istream & read (char *gdzie, streamsize ile) –
funkcja wczytuje blok znaków (gdy brakuje danych strumień przechodzi
w stan błędu)
streamsize readsome (char *gdzie, streamsize
ile) – funkcja wczytuje blok znaków (gdy brakuje danych strumień
nie zmienia stanu)
istream & ignore (streamsize ile=1, int ogr=EOF)
– funkcja pomija blok znaków
streamsize gcount () – funkcja mówi, ile znaków zostało
wyciągniętych za pomocą ostatniej operacji czytania nieformatowanego
int peek () – funkcja pozwala podglądnąć następny znak w
strumieniu
istream & putback (char) – funkcja zwraca do strumienia
jeden znak
istream & unget () – funkcja zwraca do strumienia ostatnio
przeczytany znak

NIEFORMATOWANE PISANIE (WSTAWIANIE DO
STRUMIENIA)

 Wstawianie do strumienia realizuje się za pomocą dwóch funkcji
składowych:
ostream & put (char) – funkcja ta wstawia do strumienia jeden
znak
ostream & write (const char *skąd, streambuf ile) –
funkcja ta wstawia do strumienia wiele znaków

 Przykłady użycia:
char napis[] = "jakiś napis";

for (int i=0; napis[i]; ++i)

cout.put(i?' ':'-').put(napis[i]);

…

ofstream plik = …;

double e = 2.718281828459;

plik.write(reinterpret_cast<char*>(&e),sizeof(e));

BŁĘDY W STRUMIENIACH

 W klasie ios mamy zdefiniowane narzędzia do kontrolowania
poprawności operacji na strumieniach i sprawdzania stanu strumienia.

 W każdym strumieniu znajduje się flaga stanu strumienia (zdefiniowana
w klasie ios_base).

 Flaga stanu strumienia składa się z trzech bitów:
eofbit – flaga ta jest ustawiana, gdy osiągnięto koniec strumienia
failbit – flaga ta jest ustawiana, gdy nie powiodła się operacja
we/wy
badbit – flaga ta jest ustawiana, gdy nastąpiło poważne uszkodzenie
strumienia

failbit eofbit…

4 2 1io_state

badbit

BŁĘDY W STRUMIENIACH

 Funkcje do pracy z flagami błędów w strumieniach:
bool good () – zwraca true, gdy żadna flaga
błędu nie jest ustawiona
bool eof () – zwraca true, gdy został
osiągnięty koniec strumienia i jest ustawiona flaga
ios::eofbit

bool fail () – zwraca true, gdy strumień jest
w stanie błędu, czyli jest ustawiona flaga
ios::failbit lub ios::badbit
bool bad () – zwraca true, gdy strumień jest
poważnie uszkodzony i jest ustawiona flaga
ios::badbit

BŁĘDY W STRUMIENIACH

 W obsłudze błędów w strumieniach przydatne są też
operatory zdefiniowane w klasie ios:
operator void* () const – operator ten
zwraca wartość niezerową, gdy !fail()
bool operator ! () const – operator ten
zachowuje się tak jak funkcja fail()

 Przykłady użycia:
if (!cin) cout << "błąd" << endl;

…

if (cin) cout << "ok" << endl;

BŁĘDY W STRUMIENIACH

 Istnieje kilka funkcji składowych do ustawiania i kasowania flag błędu:
io_state rdstate () – funkcja zwraca flagę błędu strumienia
void clear (io_state = ios::goodbit) – funkcja
zastępuje flagę błędu strumienia inną wartością
void setstate (io_state) – funkcja dopisuje flagę błędu do
flagi strumienia

 Przykłady użycia:
if (plik.rdstate()&ios::failbit)

cout << "failbit jest ustawiona" << endl;
…
cin.clear(ios::eofbit);
…
cin.setstate(ios::failbit);

BŁĘDY W STRUMIENIACH

 Strumień można zmusić do zgłaszania wyjątków w pewnych sytuacjach
za pomocą funkcji exceptions():
void exceptions (io_state)

 Argument funkcji exceptions() określa, flagi dla których ma być
zgłoszony wyjątek ios_base::failure.

 Gdy chcemy sprawdzić na jakie flagi strumień będzie reagował
wyjątkiem, należy użyć innej funkcji exceptions():
io_state exceptions (void) const

 Przykład użycia:
plik.exceptions(ios::failbit | ios::badbit);

STRUMIENIE ZWIĄZANE
Z PLIKAMI

 Typy strumieni plikowych: ifstream, ofstream,
fstream.

 Strumienie te są zadeklarowane w pliku
nagłówkowym <fstream>.

 Strumień plikowy należy na początku otworzyć
metodą open() a na końcu zamknąć metodą
close().

 Strumień plikowy można otworzyć w konstruktorze.
Przykład:
ifstream plik("dane.txt");

STRUMIENIE ZWIĄZANE
Z PLIKAMI

 Przy otwieraniu strumienia należy podać tryb otwarcia.

 Możliwe tryby otwarcia strumienia to:
in – do czytania
out – do pisania
ate – ustawienie głowicy na końcu pliku
app – do dopisywania
trunc – skasowanie starej treści
binary – tryb binarny (domyślnie jest tryb tekstowy)

 Przykład:
string nazwa = "dane.txt";

ofstream plik(nazwa.c_str(), ios::app|ios::bin);

STRUMIENIE ZWIĄZANE
Z ŁAŃCUCHAMI

 Typy strumieni łańcuchowych: istringstream,
ostringstream, stringstream.

 Strumienie te są zadeklarowane w pliku nagłówkowym
<sstream>.

 Strumienie łańcuchowe przechowują jako składową
obiekt klasy string.

STRUMIENIE ZWIĄZANE
Z ŁAŃCUCHAMI

 Strumień łańcuchowy do pisania ostringstream
gromadzi dane w łańcuchu znakowym.

 Można go zainicjalizować jakąś wartością początkową i
trybem. Przykłady:
ostringstream wy1;

ostringstream wy2("jakiś tekst",

ios::app);

 Ze strumienia łańcuchowego do pisania
ostringstream można wyciągnąć bieżącą zawartość
łańcucha za pomocą funkcji str():
string str () const

STRUMIENIE ZWIĄZANE
Z ŁAŃCUCHAMI

 Strumień łańcuchowy do czytania
istringstream udostępnia dane z łańcucha
znakowego.

 Można go zainicjalizować jakąś wartością
początkową. Przykłady:
istringstream we1;

istringstream we2("jakiś tekst");

 Strumień łańcuchowy do czytania
istringstream można reinicjalizować nowym
łańcuchem za pomocą funkcji str():
void str (const string &)

SYNCHRONIZACJA STRUMIENI

 Synchroniczną pracę strumieni uzyskuje się dzięki
wiązaniu strumieni za pomocą funkcji składowej tie()
zdefiniowanej w ios_base:
ostream* ios_base::tie (ostream*)
ostream* ios_base::tie ()

 Można wiązać dowolny strumień z jakimś jednym
strumieniem wyjściowym.

 Efektem wiązania jest opróżnienie bufora związanego
strumienia wyjściowego przed operacją na danym
strumieniu.

 Aby zerwać dotychczasowe powiązanie należy na
strumieniu wywołać metodę tie(nullptr).

 Strumienie standardowe cin i cerr są powiązane ze
strumieniem cout.

PROBLEMY Z BIBLIOTEKĄ <CSTDIO>

 Wady funkcji printf() i scanf() z biblioteki <cstdio>:

 zmienna liczba argumentów (kompilator tego nie skontroluje),

 mało czytelna semantyka tych funkcji (przynajmniej na początku),

 brak eleganckiego sposobu na wczytywanie i wypisywanie obiektów
typów zdefiniowanych przez użytkownika,

 analiza wzorca i zawartych w nim znaczników (rozpoczynających się od
znaku procenta) jest wykonywana dopiero w trakcie działania
programu.

 Strumienie cin, cout, clog i cerr nie mają żadnych powiązań ze
strumieniami stdin, stdout i stderr (za wyjątkiem tych samych
deskryptorów plików).

 Aby strumienie standardowe z biblioteki <iosteam> dobrze
współdziałały ze strumieniami standardowymi z biblioteki <cstdio>
należy wywołać funkcję sync_with_stdio():
bool ios_base::sync_with_stdio(bool sync=true)

BUFORY

 Bufor to magazyn na dane, do którego można pisać i z którego
można czytać określone wartości sekwencyjnie.

 Bufory są wykorzystywane przez obiekty strumieniowe do
transferu danych do przedmiotowych magazynów.

 Bufor znakowy streambuf jest zdefiniowany w bibliotece
<streambuf>.

 Funkcja basic_streambuf<>* rdbuf () pozwala na
pobranie adresu obiektu bufora związanego ze strumieniem a
ustanowienie nowego bufora w strumieniu jest możliwe za
pomocą funkcji basic_streambuf<>* rdbuf

(basic_streambuf<>*).

 Wskaźnik na bufor w strumieniu nie może być pusty.

