
KURS JĘZYKA C++
– WYKŁAD 6 (28.03.2018)

Przestrzenie nazw

SPIS TREŚCI

 Czym jest przestrzeń nazw

 Definicja przestrzeni nazw

 Deklaracja użycia

 Dyrektywa użycia

 Anonimowe przestrzenie nazw

 Poszukiwanie nazw w przestrzeniach

 Aliasy przestrzeni nazw

 Komponowanie i wybór w kontekście tworzenia nowej
przestrzeni nazw

 Przestrzenie nazw są otwarte

 Przestrzeń nazw std

CZYM JEST PRZESTRZEŃ NAZW

 Przestrzeń nazw to obszar, w którym umieszcza się różne
deklaracje i definicje.

 Przestrzeń nazw definiuje zasięg, w którym dane nazwy
będą obowiązywać i będą dostępne.

 Przestrzenie nazw rozwiązują problem kolizji nazw.

 Przestrzenie nazw wspierają modularność kodu.

DEFINICJA PRZESTRZENI NAZW

 Przestrzeń nazw tworzymy za pomocą słowa kluczowego namespace,
ograniczając zawartość klamrami:
namespace przestrzeń
{

// deklaracje i definicje
}

 Aby odnieść się do typu, funkcji albo obiektu umieszczonego w
przestrzeni nazw musimy stosować kwalifikator zakresu
przestrzeń:: poza tą przestrzenią.

 Funkcja main() musi być globalna, aby środowisko uruchomieniowe
rozpoznało ją jako funkcję specjalną.

 Do nazw globalnych odnosimy się za pomocą pustego kwalifikatora
zakresu ::, na przykład ::wspolczynnik.

 Jeśli w przestrzeni nazw zdefiniujemy klasę to do składowej statycznej w
takiej klasie odnosimy się kwalifikując najpierw nazwą przestrzeni a
potem nazwą klasy przestrzeń::klasa::składowa.

DEFINICJA PRZESTRZENI NAZW

 Przykład przestrzeni nazw:

namespace wybory
{

int min2 (int, int);
int min3 (int, int, int);

}

int wybory::min2 (int a, int b)
{ return a<b ? a : b; }

int wybory::min3 (int a , int b , int c)
{ return min2(min2(a,b),c); }

int min4 (int a, int, b, int c, int d)
{

return wybory::min2(
wybory::min2(a,b),
wybory::min2(c,d));

}

DEKLARACJA UŻYCIA

 Deklaracja użycia wprowadza lokalny synonim nazwy z innej przestrzeni
nazw (wskazanej nazwy można wówczas używać bez kwalifikowania jej
nazwą przestrzeni).

 Deklaracja użycia using ma postać:
using przestrzeń::symbol;

 Deklaracja użycia obowiązuje do końca bloku, w którym wystąpiła.

 Deklaracje użycia stosujemy w celu poprawienia czytelności kodu.

 Deklaracje użycia należy stosować tak lokalnie, jak to jest możliwe.

 Jeśli większość funkcji w danej przestrzeni nazw korzysta z jakiejś nazwy
z innej przestrzeni, to deklaracje użycia można włączyć do przestrzeni
nazw.

DYREKTYWA UŻYCIA

 Dyrektywa użycia udostępnia wszystkie nazwy z określonej
przestrzeni nazw.

 Dyrektywa użycia using namespace ma postać:
using namespace przestrzeń;

 Dyrektywy użycia stosuje się najczęściej w funkcjach, w których
korzysta się z wielu symboli z innej przestrzeni nazw przestrzeń
gdzie ta funkcja jest zdefiniowana.

 Globalne dyrektywy użycia są stosowane do transformacji kodu i
nie powinno się ich stosować do innych celów.

 Globalne dyrektywy użycia w pojedynczych jednostkach
translacji (w plikach .cpp) są dopuszczalne w programach
testowych czy w przykładach, ale w produkcyjnym kodzie jest to
niestosowne i jest uważane za błąd.

 Globalnych dyrektyw użycia nie wolno stosować w plikach
nagłówkowych!

ANONIMOWE PRZESTRZENIE NAZW

 Anonimową przestrzeń nazw tworzymy za pomocą słowa kluczowego
namespace bez nazwy, ograniczając zawartość klamrami:
namespace
{

// deklaracje i definicje
}

 Anonimowa przestrzeń nazw zastępuje użycie deklaratora static przy nazwie
globalnej – dostęp do nazw zdefiniowanych w przestrzeni anonimowej jest
ograniczony do bieżącego pliku.

 Dostęp do anonimowej przestrzeni nazw jest możliwy dzięki niejawnej
dyrektywie użycia.
namespace $$$
{

// deklaracje i definicje
}
using namespace $$$;
W anonimowej przestrzeni nazw $$$ jest unikatową nazwą w zasięgu, w
którym jest zdefiniowana ta przestrzeń.

POSZUKIWANIE NAZW W PRZESTRZENIACH

 Gdy definiujemy funkcję z jakiejś przestrzeni nazw
(przed nazwą definiowanej właśnie funkcji stoi
kwalifikator przestrzeni) to w jej wnętrzu dostępne
są wszystkie nazwy z tej przestrzeni.

 Funkcja z argumentem typu T jest najczęściej
zdefiniowana w tej samej przestrzeni nazw co T.
Jeżeli więc nie można znaleźć funkcji w kontekście,
w którym się jej używa, to szuka się jej w
przestrzeniach nazw jej argumentów.

 Jeżeli funkcję wywołuje metoda klasy K, to
pierwszeństwo przed funkcjami znalezionymi przez
typy argumentów mają metody z klasy K i jej klas
bazowych.

ALIASY PRZESTRZENI NAZW

 Jeżeli użytkownicy nadają przestrzeniom nazw krótkie nazwy, to mogą one
spowodować konflikt. Długie nazwy są niewygodne w użyciu. Dylemat ten
można rozwiązać za pomocą krótkiego aliasu dla długiej nazwy przestrzeni
nazw.

 Aliasy dla przestrzeni nazw tworzymy za pomocą słowa kluczowego
namespace z dwiema nazwami
namespace krótka = długa_nazwa_przestrzeni;

 Przykład:
namespace American_Telephone_and_Telegraph
{

// tutaj zdefiniowano Napis
}
namespace ATT = American_Telephone_and_Telegraph;
American_Telephone_and_Telegraph::Napis n = "x";
ATT::Napis nn = "y";

 Nadużywanie aliasów może prowadzić do nieporozumień!

KOMPONOWANIE I WYBÓR

 Interfejsy projektuje się po to, by zminimalizować
zależności pomiędzy różnymi częściami programu.
Minimalne interfejsy prowadzą do systemów
łatwiejszych do zrozumienia, w których lepiej ukrywa się
dane i implementację, łatwiej się je modyfikuje oraz
szybciej kompiluje.

 Eleganckim narzędziem do konstruowania interfejsów są
przestrzenie nazw.

KOMPONOWANIE I WYBÓR

 Gdy chcemy utworzyć interfejs z istniejących już interfejsów to stosujemy
komponowanie przestrzeni nazw za pomocą dyrektyw użycia, na przykład:
namespace His_string {
class String { /* ... */ };
String operator+ (const String&, const String&);
String operator+ (const String&, const char*);
void fill (char) ;
// ... }

namespace Her_vector {
template<class T> class Vector { /* ... */ };
// ... }

namespace My_lib {
using namespace His_string;
using namespace Her_vector;
void my_fct(String&) ; }

 Dyrektywa użycia wprowadza do zasięgu wszystkie deklarację z podanej
przestrzeni nazw.

KOMPONOWANIE I WYBÓR

 Teraz przy pisaniu programu można posługiwać się My_lib:
void f () {

My_lib::String s = "Byron";

// znajduje My_lib::His_string::String

// ...

}

using namespace My_lib;

void g (Vector<String> &vs) {

// ...

my_fct(vs[5]);

// ...

}

KOMPONOWANIE I WYBÓR

 Gdy chcemy utworzyć interfejs i dołożyć do niego kilka nazw z innych
interfejsów to stosujemy wybór za pomocą deklaracji użycia, na
przykład:
namespace My_string {

using His_string::String;

using His_string::operator+;

// …

}

 Deklaracja użycia wprowadza do zasięgu każdą deklarację o podanej
nazwie. Pojedyncza deklaracja użycia może wprowadzić każdy wariant
funkcji przeciążonej.

KOMPONOWANIE I WYBÓR

 Łączenie komponowania (za pomocą dyrektyw użycia) z
wyborem (za pomocą deklaracji użycia) zapewnia
elastyczność potrzebną w praktyce. Z użyciem tych
mechanizmów możemy zapewnić dostęp do wielu
udogodnień, a zarazem rozwiązać problem konfliktu nazw
i niejednoznaczności wynikających z komponowania.

 Nazwy zadeklarowane jawnie w przestrzeni nazw (łącznie
z nazwami wprowadzonymi za pomocą deklaracji użycia)
mają pierwszeństwo przed nazwami wprowadzonymi za
pomocą dyrektyw użycia.

 Nazwę w nowej przestrzeni nazw można zmienić za
pomocą instrukcji typedef lub poprzez dziedziczenie.

PRZESTRZENIE NAZW SĄ OTWARTE

 Przestrzeń nazw jest otwarta, co oznacza, że można do niej dodawać nowe
pojęcia w kilku deklaracjach (być może rozmieszczonych w różnych plikach),
na przykład:
namespace NS {

int f (); // NS ma nową składową f()
}
namespace NS {

int g (); // teraz NS ma dwie składowe f() i g()
}

 Definiując wcześniej zadeklarowaną składową w przestrzeni nazw,
bezpieczniej jest użyć operatora zakresu niż ponownie otwierać przestrzeń
(kompilator nie wykryje literówek w nazwie składowej), na przykład:
namespace NS {
int h ();

}
int NS::hhh () // błąd - zamiast h napisano hhh

{ /*…*/ }

PRZESTRZEŃ NAZW STD

 W języku C++ wszystkie nazwy z biblioteki standardowej są umieszczone
w przestrzeni nazw std.

 W języku C tradycyjnie używa się plików nagłówkowych i wszystkie nazwy
w nich deklarowane są w przestrzeni globalnej (dostępne bez żadnych
kwalifikacji).

 Aby zapewnić możliwość kompilowania przez kompilatory C++
programów napisanych w C przyjęto, że jeśli użyjemy tradycyjnej
(pochodzącej z C) nazwy pliku nagłówkowego, to odpowiedni plik jest
włączany i zadeklarowane w nim nazwy są dodawane do globalnej
przestrzeni nazw. Jeśli natomiast ten sam plik nagłówkowy włączymy pod
nową nazwą, to nazwy w nim deklarowane są dodawane do przestrzeni
nazw std. Przyjęto przy tym konwencję, że pliki nagłówkowe z C nazwie
nazwa.h są w C++ nazywane cnazwa (pary plików <math.h> i
<cmath>, itp).

ZAGNIEŻDŻONE PRZESTRZENIE NAZW

I KLASY ZAGNIEŻDŻONE

 Wewnątrz przestrzeni naw można zdefiniowań inną
przestrzeń.

 Klasa tworzy lokalną przestrzeń nazw – domyślną dla
składowych w tej klasie.

 W definicji klasy można umieścić definicję innego typu:
klasy, struktury, wyliczenia czy też typu nazwanego za
pomocą instrukcji typedef.

