
KURS JĘZYKA C++
– WYKŁAD 5 (21.03.2018)

Dziedziczenie



SPIS TREŚCI

 Istota dziedziczenia

 Lista pochodzenia

 Dostęp do składników

 Konstrukcja i destrukcja obiektu w warunkach 
dziedziczenia

 Ustawianie metod jako default albo delete

 Dziedziczenie wielokrotne i wirtualne

 Konwersje standardowe przy dziedziczeniu 

 Konstruktory delegatowe

 Przenoszenie konstruktorów z klasy bazowej

 Inicjalizacja pól w definicji klasy



ISTOTA DZIEDZICZENIA

 Kompozycja

 Dziedziczenie pozwala stworzyć nową klasę przy wykorzystaniu 
już istniejącej klasy.

 Dziedziczenie to modyfikacja typu polegająca na jego 
przystosowaniu do określonych warunków – jest to więc rodzaj 
specjalizacji.

 W klasie pochodnej można:
 zdefiniować dodatkowe pola składowe,

 zdefiniować dodatkowe funkcje składowe,

 nadpisać funkcję składową (można też zasłonić pole składowe).



NAZEWNICTWO I OZNACZENIA

 Nomenklatura:

 klasa bazowa (podstawowa albo nadklasa) to klasa, z której 
dziedziczą inne klasy;

 klasa pochodna (podklasa) to nowa klasa, która dziedziczy strukturę 
informacyjną i funkcjonalność z innej klasy.

 Rysunek schematyczny:

klasa bazowa

klasa pochodna



LISTA POCHODZENIA

 Przykład:
class punkt2D
{
protected:

double x, y;
public:

string opis () const;
// …
};
class punkt3D : public punkt2D
{
protected:

double z;
public:

double odleglosc (const punkt3D &p) const;
string opis () const;

// …
};

 Lista pochodzenia jest umieszczona w nagłówku klasy po dwukropku.



DOSTĘP DO SKŁADNIKÓW

 Składniki z klasy bazowej stają się składnikami w klasie 
pochodnej (wszystko jest dziedziczone).

 Jeśli w klasie pochodnej jest składnik o takiej samej 
nazwie jak składnik w klasie bazowej, to w zakresie klasy 
pochodnej składnik z tej klasy zasłania składnik 
odziedziczony.

 Do zasłoniętych składników z klasy bazowej można się 
odwoływać kwalifikując ich nazwy nazwą klasy bazowej. 
Przykład:
punkt3D p(5.7,2.3,-0.1);

// …

cout << p.punkt2D::opis() << endl;



DOSTĘP DO SKŁADNIKÓW

 W klasie pochodnej nie ma dostępu do odziedziczonych 
składników prywatnych (czyli private).

 W klasie pochodnej jest dostęp do odziedziczonych 
składników nieprywatnych (czyli protected i 
public).

 Składniki chronione (czyli protected) są dostępne 
tylko w klasie bieżącej i w klasach pochodnych ale nie na 
zewnątrz.



DOSTĘP DO SKŁADNIKÓW

 Klasa pochodna też decyduje o zakresie widoczności 
odziedziczonych składników nieprywatnych poprzez 
sposób dziedziczenia (public, protected, 
private):

 przy dziedziczeniu publicznym odziedziczone składniki 
nieprywatne zachowują swój zakres widoczności;

 przy dziedziczeniu chronionym odziedziczone składniki 
nieprywatne stają się chronione;

 przy dziedziczeniu prywatnym odziedziczone składniki 
nieprywatne stają się prywatne.

 Domyślny sposób dziedziczenia to private.



DOSTĘP DO SKŁADNIKÓW

 Za pomocą deklaracji dostępu using można wybiórczo przywrócić 
pierwotny zakres widoczności składnika.

 Przykład:
class potomek: private przodek

{

// …

protected:

using przodek::polechr;

using przodek::funchr;

public:

using przodek::polepub;

using przodek::funpub;

};

 W deklaracji dostępu używamy tylko nazw składników z klasy bazowej 
poprzedzonej kwalifikatorem zakresu dla tej klasy.



CZEGO SIĘ NIE DZIEDZICZY?

 Dziedziczy się wszystko, ale pewne składniki nie będą 
dostępne w klasie pochodnej:
 „nie dziedziczy się” konstruktorów (konstruktor w klasie 

bazowej nie staje się konstruktorem w klasie pochodnej);

 „nie dziedziczy się” operatora przypisania kopiującego (jeśli 
nie zdefiniujemy operatora przypisania kopiującego w klasie 
pochodnej to kompilator sam go wygeneruje jeśli będzie to 
możliwe);

 „nie dziedziczy się” destruktora.



HIERARCHIA KLAS

 Dziedziczenie może mieć wiele poziomów.

 Jedna klasa może być klasą bazową dla 
wielu innych klas.

klasa A

klasa B

klasa C

klasa Dklasa F klasa Gklasa E

klasa D



KONSTRUKCJA I DESTRUKCJA OBIEKTU

W WARUNKACH DZIEDZICZENIA

 Gdy tworzymy nowy obiekt klasy pochodnej to:
 najpierw zostanie wywołany konstruktor klasy bazowej,

 potem konstruktory obiektów składowych (w kolejności ich 
deklaracji w klasie),

 a na końcu ruszy do pracy konstruktor klasy pochodnej.

 Jawne wywołanie konstruktora klasy bazowej może się 
pojawić tylko na liście inicjalizacyjnej konstruktora klasy 
pochodnej (inaczej zostanie wywołany konstruktor 
domyślny). Przykład:
potomek::potomek () : przodek()

{/*…*/}

 Destruktory będą wywoływane w odwrotnej kolejności w 
stosunku do konstruktorów.



KONSTRUKCJA I DESTRUKCJA OBIEKTU

W WARUNKACH DZIEDZICZENIA

 Konstruktor delegatowy wywołuje inny konstruktor z tej 
samej klasy (zamiast konstruktora klasy bazowej). 
Przykład:
potomek::potomek () : potomek(param)

{/*…*/}

 W konstruktorze delegatowym operujemy na 
zainicjalizowanym obiekcie.



INICJALIZACJA PRZEZ KOPIOWANIE

W WARUNKACH DZIEDZICZENIA

 Gdy klasa pochodna nie definiuje swojego konstruktora 
kopiującego, to konstruktor taki zostanie wygenerowany 
automatycznie przez kompilator (o ile klasy bazowe i 
obiekty składowe udostępniają swoje konstruktory 
kopiujące).

 Automatycznie wygenerowany konstruktor kopiujący 
działa na zasadzie konstruowania kopiującego części 
odziedziczonej i kopiowania kolejnych składników.



PRZYPISANIE KOPIUJĄCE

W WARUNKACH DZIEDZICZENIA

 Gdy klasa pochodna nie definiuje swojego operatora 
przypisania kopiującego, to przypisanie takie zostanie 
wygenerowane automatycznie przez kompilator (o ile 
klasa nie ma składowych stałych lub referencyjnych oraz 
wszystkie obiekty składowe można kopiować 
operatorem przypisania).

 Kopiowanie automatyczne działa na zasadzie kopiowania 
kolejnych składników.



INICJALIZACJA I PRZYPISANIE

WEDŁUG STAŁEGO OBIEKTU WZORCOWEGO

W WARUNKACH DZIEDZICZENIA

 Kompilator automatycznie wygeneruje dla klasy K
konstruktor kopiujący
K::K (const K &x) 

i przypisanie kopiujące
K & K::operator = (const K &x) 

gdy wszystkie klasy bazowe oraz wszystkie klasy pól 
składowych posiadają analogiczne konstruktory 
kopiujące i przypisania kopiujące.



CO GENERUJE KOMPILATOR C++

 Kompilator C++ dołącza do obiektów konstruktor domyślny, 
konstruktor kopiujący i przypisanie kopiujące, konstruktor 
przenoszący i przypisanie przenoszące, gdy użytkownik nie 
zdefiniuje swoich własnych wersji tych metod.

 Kompilator C++ definiuje także kilka globalnych operatorów 
(takich jak operator new czy operator delete), które 
pracują ze wszystkimi klasami i które użytkownik także może 
zastąpić swoimi wersjami.

 Stworzenie klasy nieinstancyjnej wymaga deklaracji tylko 
prywatnych konstruktorów lub niedefiniowania żadnego.

 Stworzenie klasy, po której nie można dziedziczyć wymaga 
dopisania w nagłówku klasy słowa final.



USTAWIANIE METOD JAKO DEFAULT

 Deklaracja deault wymusza na kompilatorze wygenerowanie 
domyślnej metody (konstruktora domyślnego).

 Aby kompilator C++ wygenerował konstruktor domyślny pomimo 
istnienia w klasie deklaracji innych konstruktorów należy użyć 
specyfikatora =deault:
Klasa () = default;

 Przykład klasy z konstruktorem domyślnym wygenerowanym przez 
kompilator:
struct SomeType {

// domyślny konstruktor

// jest jawnie określony 

SomeType () = default;

SomeType (OtherType value);

// …

};



USTAWIANIE METOD JAKO DELETE

 Deklaracja delete blokuje w kompilatorze mechanizm generowania domyślnych 
metod (konstruktora kopiującego, przypisania kopiującego, konstruktora 
domyślnego).

 Aby kompilator C++ nie wygenerował automatycznie konstruktora kopiującego czy 
przypisania kopiującego należy użyć specyfikatora =delete :
Klasa (const Klasa&) = delete;

Klasa& opeartor= (const Klasa&) = delete;

 Przykład klasy, której obiekty będą niekopiowalne:
struct NonCopyable {

// konstruktor kopiujący i przypisanie kopiujące

// nie zostaną wygenerowane

NonCopyable& operator= (const NonCopyable&) = delete;

NonCopyable (const NonCopyable&) = delete;

NonCopyable () = default;

// …

};



USTAWIANIE METOD JAKO DELETE

 Przykład klasy , której obiektów nie będzie można utworzyć za pomocą operatora new :
struct NonNewable {
void* operator new (std::size_t) = delete;
// …

};

 Specyfikator =delete może być użyty do zablokowania wywołania dowolnej metody, co 
może być użyte do zablokowania wywołania metody z określonymi parametrami.

 Przykład zakazania wywołania metody f() z argumentem typu int (domyślnie 
kompilator dokonałby niejawnej konwersji do typu double) :
struct NoDouble {
void f (double d);
void f (int) = delete;
// …

};

 Uogólnienie powyższego przykładu (zakazanie wywołania metody f() z argumentem 
dowolnego typu różnym od int):
struct OnlyInt {
void f (int i);
template<typename T> void f (T) = delete;
// …

};



DZIEDZICZENIE WIELOKROTNE (WIELODZIEDZICZENIE)

 Wielodziedziczenie ma miejsce wtedy, gdy klasa ma kilka 
klas bazowych.

 Za pomocą wielodziedziczenia można ze sobą łączyć różne 
typy danych.

 Na liście pochodzenia znajdują się różne klasy i przy 
każdej z nich jest określony indywidualny sposób 
dziedziczenia (public, protected, private).

 Wszystkie klasy na liście pochodzenia muszą być znane 
kompilatorowi (nie wystarczy sama deklaracja 
zapowiadająca).



DZIEDZICZENIE WIELOKROTNE (WIELODZIEDZICZENIE)

 Konstruktory klas bazowych będą wywoływane w 
kolejności ich występowania na liście pochodzenia.

 Destruktory klas bazowych będą wywoływane w 
kolejności odwrotnej niż konstruktory.

 Istnieje ryzyko wieloznaczności nazw przy dziedziczeniu 
wielokrotnym.

 Przy rozstrzyganiu wieloznaczności posługiwanie się 
operatorem zakresu jest możliwe ale ryzykowne w 
stosunku do funkcji wirtualnych.

 Bliższe pokrewieństwo nie usuwa wieloznaczności i 
poszlaki nie są uwzględniane.



DZIEDZICZENIE WIELOKROTNE (WIELODZIEDZICZENIE)

 Wielodziedziczenie może prowadzić do wielu 
skomplikowanych sytuacji: w pojedynczym obiekcie 
pewna informacja może się wielokrotnie powtórzyć.

A

A

B

C

D

DC A
A

B



DZIEDZICZENIE WIRTUALNE

 Dziedziczenie wirtualne może rozwiązać część 
problemów z dziedziczeniem wielobazowym.

 Dziedziczenie wirtualne powoduje, że pewne 
informacje występujące wielokrotnie w obiekcie 
mogą stać się wspólne dla wielu części.

 Dziedziczenie wirtualne deklaruje się słowem 
virtual występującym na liście pochodzenia 
przed klasą bazową.

 Konstruktor wirtualnej klasy podstawowej jest 
wywoływany przed konstruktorami jej klas 
pochodnych.



DZIEDZICZENIE WIRTUALNE

 Przykład dziedziczenia wirtualnego:
class pojazd

{/*…*/};

class samochód: public virtual pojazd

{/*…*/};

class łódź: public virtual pojazd

{/*…*/};

class amfibia: public samochód, public łódź

{/*…*/};

pojazd

łódźsamochód

amfibia

łódź

samochód

pojazd

amfibia



KONWERSJE STANDARDOWE

PRZY DZIEDZICZENIU

 Wskaźnik do obiektu klasy pochodnej może być niejawnie 
przekształcony na wskaźnik dostępnej jednoznacznie klasy 
bazowej (czyli wskaźnikiem do klasy bazowej możemy 
pokazywać na obiekty klas pochodnych).

 Referencja do obiektu klasy pochodnej może być 
niejawnie przekształcona na referencję dostępnej 
jednoznacznie klasy bazowej (czyli referencja do klasy 
bazowej może się odnosić do obiektu klasy pochodnej).

 Sformułowanie „dostępny jednoznacznie” w kontekście 
hierarchii klas oznacza dziedziczenie publiczne tylko po 
jednej klasie.



KONWERSJE STANDARDOWE

PRZY DZIEDZICZENIU

 Konwersje standardowe wskaźnika (albo referencji) do 
obiektu klasy pochodnej na wskaźnik (albo referencję) do 
obiektu klasy bazowej mogą zajść:

 przy przesyłaniu argumentów do funkcji,

 przy zwracaniu przez funkcję rezultatu,

 przy przeładowanych operatorach,

 w wyrażeniach inicjalizujących.

 Konwersja standardowa wskaźnika w przypadku 
dziedziczenia sprawdza się dobrze z pojedynczymi 
obiektami – konwersji tej nie wolno stosować w 
przypadku tablic.



KONSTRUKTORY DELEGATOWE

 Kompilator C++11 pozwala na wywołanie innych 
równorzędnych konstruktorów, zwanych delegacjami –
umożliwia to na wykorzystanie cech innego 
konstruktora za pomocą niewielkiego dodatku kodu.

 Przykład:
class SomeType {

int number;

public:

SomeType (int num) : number(num) {}

SomeType () : SomeType(45) {}

// …

}; 



KONSTRUKTORY DELEGATOWE

W C++ obiekt jest skonstruowany, jeśli dowolny 
konstruktor zakończy swe działanie.

 Jeśli wielokrotne wykonywanie konstruktorów 
jest dozwolone, to znaczy, że każdy konstruktor 
delegatowy będzie wykonywany na już 
skonstruowanym obiekcie.

Konstruktory klas pochodnych będą wywołane 
wtedy, gdy wszystkie konstruktory delegatowe 
ich klas bazowych będą zakończone. 



PRZENOSZENIE KONSTRUKTORÓW Z KLASY BAZOWEJ

 Kompilator C++11 pozwala się na odziedziczenie 
konstruktorów po klasie bazowej.

 Kompilator C++11 wygeneruje kod przenoszący do 
klasy pochodnej wszystkie konstruktory z klasy 
bazowej – jest to operacja typu wszystko albo nic: 
albo wszystkie konstruktory klasy bazowej są 
przenoszone albo żaden.

 Istnieją ograniczenia na dziedziczenie konstruktorów: 
 przy wielokrotnym dziedziczeniu konstruktory klas nie 

mogą być dziedziczone z dwóch klas używających 
konstruktorów o tej samej sygnaturze,

 oraz nie mogą istnieć konstruktory w klasie bazowej i 
pochodnej o tej samej sygnaturze.



PRZENOSZENIE KONSTRUKTORÓW Z KLASY BAZOWEJ

 Przykład:
class BaseClass {

public:

BaseClass(int iValue);

// …

};

class DerivedClass : public BaseClass

{

public:

using BaseClass::BaseClass;

// …

};



INICJALIZACJA PÓL W DEFINICJI KLASY

 Kompilator C++11 dopuszcza inicjalizację pól na etapie definicji klasy – jeśli 

konstruktor nie nadpisze tego pola własną wartością, to pozostanie tam wartość 

użyta w inicjalizatorze.

 Przykład (konstruktor klasy zainicjuje pole value określoną wartością, jeśli 

konstruktor nie nadpisze tego pola własną wartością):

class SomeClass {

protected:

OtherClass value = OtherClass(1,2.3,”cztery”);

public:

SomeClass () {}

explicit SomeClass (const OtherClass &newValue)

: value(newValue) {}

// …

};



TRADYCYJNE STRUKTURY DANYCH

 Klasa/struktura musi spełniać kilka wymagań, by stać się 
tradycyjną strukturą danych TSD (ang. Plain Old Data, 
POD) – typy spełniające te wymagania pozwalają 
implementacjom na takie ułożenie składowych w 
obiektach, które byłyby kompatybilne z C.

 Klasa/struktura jest uważana za TSD, jeśli jest trywialna, 
standardowo ułożona i nie posiada żadnych 
niestatycznych składowych niebędących TSD-ami.



TRADYCYJNE STRUKTURY DANYCH

 Klasa/struktura jest trywialna, jeśli:

 posiada trywialny konstruktor domyślny – może używać 
składni dla konstruktora domyślnego z deklaratorem 
default;

 posiada trywialny konstruktor kopiujący – być może ze 
składnią domyślności z deklaratorem default;

 posiada trywialny operator przypisania – być może ze 
składnią domyślności z deklaratorem default;

 posiada trywialny destruktor, który nie może być wirtualny.



TRADYCYJNE STRUKTURY DANYCH

 Standardowo ułożona klasa/struktura to taka, która:

 posiada tylko niestatyczne pola, które są standardowo ułożone;

 posiada ten sam poziom dostępu (private, protected, 
public) dla wszystkich niestatycznych składowych;

 nie posiada wirtualnych metod;

 nie posiada wirtualnych klas bazowych;

 posiada tylko standardowo ułożone klasy bazowe;

 nie posiada klas bazowych takiego samego typu jak pierwsze 
niestatyczne pole;

 może być tylko jedna klasa z niestatycznymi składowymi w 
hierarchii klas.



LISTY INICJUJĄCE WARTOŚCIAMI

 Struktura lub tablica mogą być tworzone poprzez listę 
argumentów o kolejności zgodnej, odpowiednio, z kolejnością 
definicji składowych struktury lub kolejnymi elementami 
tablicy.

 Listy inicjujące wartościami są rekursywne i mogą być 
zastosowane także do tablicy struktur albo struktury 
zawierającej inną strukturę.

 C++11 wiąże koncepcję inicjowania list z typem 
std::initializer_list – to pozwoli konstruktorowi 
lub metodom na podanie takich list jako argumentów.



LISTY INICJUJĄCE WARTOŚCIAMI

 Przykład:
class JakasKlasa {

public:

JakasKlasa (std::initializer_list<int> list);

// …

};

// …

JakasKlasa jakasZmienna = {1, 4, 5, 6};

 Taki konstruktor to konstruktor list inicjujących – klasy z takim 
konstruktorem są traktowane specjalnie podczas jednolitego inicjowania.

 Listy inicjujące w C++11 mogą być początkowo inicjowane tylko statycznie 
przez kompilator przy użyciu składni {} – lista może być kopiowana raz przy 
konstrukcji i jest to tylko kopia przez referencję.

 Lista inicjująca jest stałą – ani jej składowe ani też dane w tych składowych 
nie mogą być zmienione po jej utworzeniu.



JEDNOLITE INICJALIZOWANIE OBIEKTÓW

 C++11 posiada składnię w pełni ujednolicającą inicjalizowanie 
dowolnych typów, która jest rozszerzeniem składni listy inicjującej.

 Przykład:
struct PodstStrukt {

int x;

float y;

};

struct AlternatStrukt {

AlternatStrukt(float _y, int _x)

: x(_x), y(_y) {}

private:

int x;

float y;

};

// …

PodstStrukt zm1 {5, 3.2f}; // przypisanie do pól

AlternatStrukt zm2 {4.3f, 2}; // konstruktor


