KURS JEZYKA C++
— WYKtAD 5 (21.03.2018)
O

‘ Dziedziczenie

SPIS TRESCI

o Istota dziedziczenia
o Lista pochodzenia
o Dostep do sktadnikow

o Konstrukcja i destrukcja obiektu w warunkach
dziedziczenia

o Ustawianie metod jako default albo delete
o Dziedziczenie wielokrotne i wirtualne

o Konwersje standardowe przy dziedziczeniu

o Konstruktory delegatowe

o Przenoszenie konstruktorow z klasy bazowej

o Inicjalizacja pol w definicji klasy

ISTOTA DZIEDZICZENIA

o Kompozycja

o Dziedziczenie pozwala stworzy¢ nowg klase przy wykorzystaniu
juz istniejgcej klasy.

o Dziedziczenie to modyfikacja typu polegajaca na jego
przystosowaniu do okreslonych warunkéw — jest to wiec rodzaj
specjalizacji.

o W klasie pochodnej mozna:

» zdefiniowac¢ dodatkowe pola sktadowe,
» zdefiniowa¢ dodatkowe funkcje sktadowe,
» nadpisac funkcje sktadowg (mozna tez zastoni¢ pole sktadowe).

NAZEWNICTWO | OZNACZENIA

o Nomenklatura:

» klasa bazowa (podstawowa albo nadklasa) to klasa, z ktorej
dziedziczg inne klasy;

» klasa pochodna (podklasa) to nowa klasa, ktdra dziedziczy strukture
informacyjng i funkcjonalnosc¢ z innej klasy.

o Rysunek schematyczny:

LISTA POCHODZENIA

o Przyktad:
class punkt2D
{
protected:
double x, vy;
public:
string opis () const;
/] ..
i
class punkt3D : public punkt2D
{

protected:
double z;

public:
double odleglosc (const punkt3D &p) const;
string opis () const;

/] ..

by
o Lista pochodzenia jest umieszczona w nagtdwku klasy po dwukropku. ‘

DOSTEP DO SKtADNIKOW

o Sktadniki z klasy bazowej stajg sie sktadnikami w klasie
pochodnej (wszystko jest dziedziczone).

o Jesli w klasie pochodnej jest sktadnik o takiej samej
nazwie jak sktadnik w klasie bazowej, to w zakresie klasy
pochodnej sktadnik z tej klasy zastania sktadnik
odziedziczony.

o Do zastonietych sktadnikow z klasy bazowej mozna sie
odwotywac kwalifikujac ich nazwy nazwa klasy bazowe,;.
Przyktad:
punkt3D p(5.7,2.3,-0.1);

// ..
cout << p.punkt2D::opis() << endl; ‘

DOSTEP DO SKtADNIKOW

o W klasie pochodnej nie ma dostepu do odziedziczonych
sktadnikdw prywatnych (czyliprivate).

o W klasie pochodnej jest dostep do odziedziczonych
sktadnikdw nieprywatnych (czyliprotectedi
public).

o Sktadniki chronione (czyliprotected) sg dostepne
tylko w klasie biezgcej i w klasach pochodnych ale nie na
zewnagtrz.

DOSTEP DO SKtADNIKOW

o Klasa pochodna tez decyduje o zakresie widocznosci
odziedziczonych sktadnikow nieprywatnych poprzez
sposob dziedziczenia (public, protected,
private):

e przy dziedziczeniu publicznym odziedziczone sktadniki
nieprywatne zachowujg swoj zakres widocznosci;

e przy dziedziczeniu chronionym odziedziczone sktadniki
nieprywatne stajg sie chronione;

» przy dziedziczeniu prywatnym odziedziczone sktadniki
nieprywatne stajg sie prywatne.

o Domyslny sposob dziedziczeniato private.

DOSTEP DO SKtADNIKOW

o Za pomocg deklaracji dostepu using mozna wybidrczo przywracic
pierwotny zakres widocznosci sktadnika.

o Przyktad:
class potomek: private przodek

{

/] ..
protected:

using przodek::polechr;

using przodek::funchr;
public:

using przodek::polepub;

using przodek::funpub;

}i
o W deklaracji dostepu uzywamy tylko nazw sktadnikéw z klasy bazow‘

poprzedzonej kwalifikatorem zakresu dla tej klasy.

CZEGO SIE NIE DZIEDZICZY?

o Dziedziczy sie wszystko, ale pewne sktadniki nie bedg
dostepne w klasie pochodnej:

,hie dziedziczy sie” konstruktoréw (konstruktor w klasie
bazowej nie staje sie konstruktorem w klasie pochodnej);
,hie dziedziczy sie” operatora przypisania kopiujacego (jesli
nie zdefiniujemy operatora przypisania kopiujgcego w klasie
pochodnej to kompilator sam go wygeneruje jesli bedzie to
mozliwe);

yhie dziedziczy sie” destruktora.

HIERARCHIA KLAS

o Dziedziczenie moze miec wiele poziomow.

o Jedna klasa moze byc¢ klasg bazowg dla
wielu innych klas.

KONSTRUKCJA | DESTRUKCJA OBIEKTU
W WARUNKACH DZIEDZICZENIA

o Gdy tworzymy nowy obiekt klasy pochodnej to:
* najpierw zostanie wywotany konstruktor klasy bazowej,

» potem konstruktory obiektéw sktadowych (w kolejnosci ich
deklaracji w klasie),

* a na koncu ruszy do pracy konstruktor klasy pochodne;j.

o Jawne wywotanie konstruktora klasy bazowej moze sie
pojawic tylko na liscie inicjalizacyjnej konstruktora klasy
pochodnej (inaczej zostanie wywotany konstruktor
domysliny). Przyktfad:
potomek: :potomek () : przodek()

{/*.%/}

o Destruktory bedg wywotywane w odwrotnej kolejnos'ci‘

stosunku do konstruktorow.

KONSTRUKCJA | DESTRUKCJA OBIEKTU
W WARUNKACH DZIEDZICZENIA

o Konstruktor delegatowy wywotuje inny konstruktor z tej
samej klasy (zamiast konstruktora klasy bazowej).
Przyktad:
potomek: :potomek () : potomek (param)

{/*.%/}

o W konstruktorze delegatowym operujemy na

zainicjalizowanym obiekcie.

INICJALIZACJA PRZEZ KOPIOWANIE
W WARUNKACH DZIEDZICZENIA

o Gdy klasa pochodna nie definiuje swojego konstruktora
kopiujgcego, to konstruktor taki zostanie wygenerowany
automatycznie przez kompilator (o ile klasy bazowe i
obiekty sktadowe udostepniajg swoje konstruktory
kopiujace).

o Automatycznie wygenerowany konstruktor kopiujgcy

dziata na zasadzie konstruowania kopiujgcego czesci
odziedziczonej i kopiowania kolejnych sktadnikow.

PRZYPISANIE KOPIUJACE
W WARUNKACH DZIEDZICZENIA

o Gdy klasa pochodna nie definiuje swojego operatora
przypisania kopiujgcego, to przypisanie takie zostanie
wygenerowane automatycznie przez kompilator (o ile
klasa nie ma sktadowych statych lub referencyjnych oraz
wszystkie obiekty sktadowe mozna kopiowac
operatorem przypisania).

o Kopiowanie automatyczne dziata na zasadzie kopiowania
kolejnych sktadnikow.

INICJALIZACJA | PRZYPISANIE
WEDtUG STALEGO OBIEKTU WZORCOWEGO

W WARUNKACH DZIEDZICZENIA

o Kompilator automatycznie wygeneruje dla klasy K

konstruktor kopiujacy

K::K (const K &x)

| przypisanie kopiujgce

K & K::operator = (const K &x)

gdy wszystkie klasy bazowe oraz wszystkie klasy pol
sktadowych posiadajg analogiczne konstruktory
kopiujgce i przypisania kopiujace.

CO GENERUJE KOMPILATOR C++

o Kompilator C++ dotacza do obiektow konstruktor domysiny,
konstruktor kopiujacy i przypisanie kopiujace, konstruktor
przenoszgacy i przypisanie przenoszgce, gdy uzytkownik nie
zdefiniuje swoich wtasnych wersji tych metod.

o Kompilator C++ definiuje takze kilka globalnych operatorow
(takich jak operator new czy operator delete), ktore

pracujg ze wszystkimi klasami i ktore uzytkownik takze moze
zastgpi¢ swoimi wersjami.

o Stworzenie klasy nieinstancyjnej wymaga deklaracji tylko
prywatnych konstruktoréw lub niedefiniowania zadnego.

o Stworzenie klasy, po ktorej nie mozna dziedziczy¢ wymaga
dopisania w nagtowku klasy stowa £inal. ‘

USTAWIANIE METOD JAKO DEFAULT

o Deklaracja deault wymusza na kompilatorze wygenerowanie
domysinej metody (konstruktora domysinego).

o Aby kompilator C++ wygenerowat konstruktor domysiny pomimo
istnienia w klasie deklaracji innych konstruktorow nalezy uzyc
specyfikatora =deault:

Klasa () = default;

o Przyktad klasy z konstruktorem domysinym wygenerowanym przez
kompilator:
struct SomeType {
// domy$lny konstruktor
// jest jawnie okres$lony
SomeType () = default;
someType (OtherType value);

/] "I'
sy

USTAWIANIE METOD JAKO DELETE

o

Deklaracja delete blokuje w kompilatorze mechanizm generowania domysinych
metod (konstruktora kopiujgcego, przypisania kopiujgcego, konstruktora
domysinego).

Aby kompilator C++ nie wygenerowat automatycznie konstruktora kopiujgcego czy
przypisania kopiujgcego nalezy uzyc specyfikatora =delete:

Klasa (const Klasaé&) = delete;

Klasa& opeartor= (const Klasaé&) = delete;

Przyktad klasy, ktérej obiekty beda niekopiowalne:
struct NonCopyable {
// konstruktor kopiujacy 1 przypisanie kopiujace
// nie zostana wygenerowane
NonCopyable& operator= (const NonCopyable&) = delete;
NonCopyable (const NonCopyable&) = delete;

NonCopyable () = default;
/] .. ‘

b

USTAWIANIE METOD JAKO DELETE

o Przyktad klasy , ktérej obiektow nie bedzie mozna utworzy¢ za pomocg operatora new :
struct NonNewable {
vold* operator new (std::size t) = delete;
/] ..
}i
o Specyfikator =delete moze by¢ uzyty do zablokowania wywotania dowolnej metody, co
moze byc¢ uzyte do zablokowania wywotania metody z okreslonymi parametrami.

o Przykfad zakazania wywotania metody £ () z argumentem typu int (domysinie
kompilator dokonatby niejawnej konwersji do typu double) :
struct NoDouble {
void f (double d);
void £ (int) = delete;
/] ..
}i
o Uogdlnienie powyzszego przyktadu (zakazanie wywotania metody f () z argumentem
dowolnego typu réznym od int):
struct OnlyInt {
void £ (int 1);
template<typename T> void £ (T) = delete;
/] ..
}i

DZIEDZICZENIE WIELOKROTNE (WIELODZIEDZICZENIE)

o Wielodziedziczenie ma miejsce wtedy, gdy klasa ma kilka
klas bazowych.

o0 Za pomocg wielodziedziczenia mozna ze sobg tgczy¢ rézne
typy danych.

o Na liscie pochodzenia znajdujg sie rozne klasy i przy
kazdej z nich jest okreslony indywidualny sposob
dziedziczenia (public, protected, private).

o Wszystkie klasy na liscie pochodzenia muszg by¢ znane
kompilatorowi (nie wystarczy sama deklaracja

zapowiadajaca). ‘

DZIEDZICZENIE WIELOKROTNE (WIELODZIEDZICZENIE)

o Konstruktory klas bazowych bedg wywotywane w
kolejnosci ich wystepowania na liscie pochodzenia.

o Destruktory klas bazowych bedg wywotywane w
kolejnosci odwrotnej niz konstruktory.

o Istnieje ryzyko wieloznacznosci nazw przy dziedziczeniu
wielokrotnym.

O Przy rozstrzyganiu wieloznacznosci postugiwanie sie
operatorem zakresu jest mozliwe ale ryzykowne w
stosunku do funkcji wirtualnych.

o Blizsze pokrewienstwo nie usuwa wieloznacznosci i ‘
poszlaki nie sg uwzgledniane.

DzIEDZICZENIE WIELOKROTNE (WIELODZIEDZICZENIE)

o Wielodziedziczenie moze prowadzi¢ do wielu
skomplikowanych sytuacji: w pojedynczym obiekcie
pewna informacja moze sie wielokrotnie powtorzyc.

DZIEDZICZENIE WIRTUALNE

o Dziedziczenie wirtualne moze rozwigzac czesc
problemow z dziedziczeniem wielobazowym.

o Dziedziczenie wirtualne powoduje, ze pewne
informacje wystepujace wielokrotnie w obiekcie
mogq stac sie wspolne dla wielu czesci.

o Dziedziczenie wirtualne deklaruje sie stowem
virtual wystepujgcym na liscie pochodzenia
przed klasg bazowa.

o Konstruktor wirtualnej klasy podstawowej jest
wywotywany przed konstruktorami jej klas
pochodnych.

DZIEDZICZENIE WIRTUALNE

o Przyktad dziedziczenia wirtualnego:
class pojazd

{/*.%/};

class samochdéd: public virtual pojazd
{/*.%/};

class 16dz: public wvirtual pojazd
{/*.%/};

class amfibia: public samochdd, public 16dzZ

{/*.%/};

KONWERSJE STANDARDOWE
PRZY DZIEDZICZENIU

o Wskaznik do obiektu klasy pochodnej moze by¢ niejawnie
przeksztatcony na wskaznik dostepnej jednoznacznie klasy
bazowej (czyli wskaznikiem do klasy bazowej mozemy
pokazywac na obiekty klas pochodnych).

o Referencja do obiektu klasy pochodnej moze byc¢
niejawnie przeksztatcona na referencje dostepnej
jednoznacznie klasy bazowej (czyli referencja do klasy
bazowej moze sie odnosi¢ do obiektu klasy pochodnej).

o Sformutowanie ,,dostepny jednoznacznie” w kontekscie
hierarchii klas oznacza dziedziczenie publiczne tylko po
jednej klasie.

KONWERSJE STANDARDOWE
PRZY DZIEDZICZENIU

o Konwersje standardowe wskaznika (albo referencji) do
obiektu klasy pochodnej na wskaznik (albo referencje) do
obiektu klasy bazowej moga zajsc:

e przy przesytaniu argumentow do funkgcji,
e przy zwracaniu przez funkcje rezultatu,

o przy przetadowanych operatorach,

e w wyrazeniach inicjalizujgcych.

o Konwersja standardowa wskaznika w przypadku
dziedziczenia sprawdza sie dobrze z pojedynczymi
obiektami — konwers;ji tej nie wolno stosowac w
przypadku tablic.

KONSTRUKTORY DELEGATOWE

o Kompilator C++11 pozwala na wywotanie innych
rownorzednych konstruktorow, zwanych delegacjami—
umozliwia to na wykorzystanie cech innego
konstruktora za pomoca niewielkiego dodatku kodu.

o Przyktad:
class SomeType {
int number;

public:
SomeType (1int num) : number (num) {}
SomeType () : SomeType (45) {}

// ..

} i ‘

KONSTRUKTORY DELEGATOWE

o W C++ obiekt jest skonstruowany, jesli dowolny
konstruktor zakonczy swe dziatanie.

o Jesli wielokrotne wykonywanie konstruktorow
jest dozwolone, to znaczy, ze kazdy konstruktor
delegatowy bedzie wykonywany na juz
skonstruowanym obiekcie.

o Konstruktory klas pochodnych bedg wywotane
wtedy, gdy wszystkie konstruktory delegatowe
ich klas bazowych bedg zakonczone.

PRZENOSZENIE KONSTRUKTOROW Z KLASY BAZOWE)J

o Kompilator C++11 pozwala sie na odziedziczenie
konstruktorow po klasie bazowej.

o Kompilator C++11 wygeneruje kod przenoszacy do
klasy pochodnej wszystkie konstruktory z klasy
bazowej — jest to operacja typu wszystko albo nic:
albo wszystkie konstruktory klasy bazowej sg
przenoszone albo zaden.

O Istniejg ograniczenia na dziedziczenie konstruktorow:

e przy wielokrotnym dziedziczeniu konstruktory klas nie
mogg by¢ dziedziczone z dwdch klas uzywajgcych
konstruktorow o tej samej sygnaturze,

e oraz nie mogg istnie¢ konstruktory w klasie bazowej i ‘
pochodnej o tej samej sygnaturze.

PRZENOSZENIE KONSTRUKTOROW Z KLASY BAZOWE)J

o Przyktad:
class BaseClass {
public:
BaseClass (int 1iValue) ;
/] ..
} s

class DerivedClass : public BaseClass

{
public:
using BaseClass: :BaseClass;

i ®

INICJALIZACJIA POL W DEFINICJI KLASY

o Kompilator C++11 dopuszcza inicjalizacje pol na etapie definicji klasy — jesli
konstruktor nie nadpisze tego pola wtasng wartoscig, to pozostanie tam wartosc

uzyta w inicjalizatorze.

o Przyktad (konstruktor klasy zainicjuje pole value okreslong wartoscig, jesli
konstruktor nie nadpisze tego pola wtasng wartoscia):
class SomeClass {
protected:
OtherClass value = OtherClass(1,2.3,”cztery”);
public:
SomeClass () {}
explicit SomeClass (const OtherClass &newValue)

value (newValue) {}

// .. ‘
b

TRADYCYJNE STRUKTURY DANYCH

o Klasa/struktura musi spetniaé kilka wymagan, by stac sie
tradycyjng strukturg danych TSD (ang. Plain Old Data,
POD) — typy spetniajgce te wymagania pozwalaja
implementacjom na takie utozenie sktadowych w
obiektach, ktore bytyby kompatybilne z C.

o Klasa/struktura jest uwazana za TSD, jesli jest trywialna,
standardowo utozona i nie posiada zadnych
niestatycznych sktadowych niebedacych TSD-ami.

TRADYCYJNE STRUKTURY DANYCH

o Klasa/struktura jest trywialna, jesli:

e posiada trywialny konstruktor domysiny — moze uzywac
sktadni dla konstruktora domysinego z deklaratorem
default;

» posiada trywialny konstruktor kopiujgcy — by¢ moze ze
sktadnig domyslnosci z deklaratorem default;

» posiada trywialny operator przypisania — by¢ moze ze
sktadnig domysinosci z deklaratorem default;

» posiada trywialny destruktor, ktéry nie moze by¢ wirtualny.

TRADYCYJNE STRUKTURY DANYCH

o Standardowo utozona klasa/struktura to taka, ktora:

» posiada tylko niestatyczne pola, ktére sg standardowo utozone;

* posiada ten sam poziom dostepu (private, protected,
public) dla wszystkich niestatycznych sktadowych;

* nie posiada wirtualnych metod;
* nie posiada wirtualnych klas bazowych;
» posiada tylko standardowo utozone klasy bazowe;

* nie posiada klas bazowych takiego samego typu jak pierwsze
niestatyczne pole;

* moze byc tylko jedna klasa z niestatycznymi sktadowymi w
hierarchii klas.

LISTY INICJUJACE WARTOSCIAMI

o Struktura lub tablica mogg by¢ tworzone poprzez liste
argumentow o kolejnosci zgodnej, odpowiednio, z kolejnoscia
definicji sktadowych struktury lub kolejnymi elementami
tablicy.

o Listy inicjujgce wartosciami sg rekursywne i mogg byc
zastosowane takze do tablicy struktur albo struktury
zawierajgcej inng strukture.

o C++11 wigze koncepcje inicjowania list z typem
std::initializer list —to pozwoli konstruktorowi
lub metodom na podanie takich list jako argumentow.

LISTY INICJUJACE WARTOSCIAMI

o Przyktfad:

class JakasKlasa {

public:
JakasKlasa (std::i1nitializer list<int> list);
/] ..

I

// ..

JakasKlasa jakasZmienna = {1, 4, 5, 6};

o Taki konstruktor to konstruktor list inicjujgcych — klasy z takim
konstruktorem s traktowane specjalnie podczas jednolitego inicjowania.

o Listy inicjujgce w C++11 moga byc¢ poczatkowo inicjowane tylko statycznie
przez kompilator przy uzyciu sktadni { } —lista moze by¢ kopiowana raz przy
konstrukcji i jest to tylko kopia przez referencje.

o Lista inicjujgca jest statg — ani jej sktadowe ani tez dane w tych sktadow
nie moga by¢ zmienione po jej utworzeniu.

JEDNOLITE INICJALIZOWANIE OBIEKTOW

o C++11 posiada sktadnie w petni ujednolicajgcg inicjalizowanie
dowolnych typow, ktora jest rozszerzeniem sktadni listy inicjujgcej.

o Przyktad:
struct PodstStrukt {
int x;
float vy,
I
struct AlternatStrukt {
AlternatStrukt (float vy, int x)
x(x), y(y) {}
private:
int x;
float vy;
}i
// ..
PodstStrukt zml {5, 3.2f}; // przypisanie do pdl
AlternatStrukt zm2 {4.3f, 2}; // konstruktor

