
Zadanie 10 30 maja – 2 czerwca 2017 r.

język programowania C++
odwrotna notacja polska

Instytut Informatyki Uniwersytetu Wrocławskiego Paweł Rzechonek

ONP czyli odwrotna notacja polska to sposób zapisu wyrażeń arytmetycznych, w którym
znak wykonywanej operacji umieszczony jest po operandach (zapis postfiksowy), a nie pomię-
dzy nimi jak w konwencjonalnym zapisie algebraicznym (zapis infiksowy). Zapis ten pozwala na
całkowitą rezygnację z użycia nawiasów w wyrażeniach, jako że jednoznacznie określa kolejność
wykonywanych działań. Odwrotna notacja polska została opracowana przez australijskiego na-
ukowca Charlesa Hamblina jako odwrócenie beznawiasowej notacji polskiej Jana Łukasiewicza
na potrzeby zastosowań informatycznych.

Zadanie.
Napisz program interaktywnego kalkulatora. Kalkulator ten powinien interpretować i obli-

czać wyrażenia zapisane w Odwrotnej Notacji Polskiej. Program ma odczytywać polecenia ze
standardowego wejścia cin, wykonywać obliczenia i wypisywać wyniki na standardowe wyjście
cout. Wszelkie komentarze i uwagi program ma wysyłać na standardowe wyjście dla błędów
clog. Dodatkową funkcjonalnością tego kalkulatora ma być możliwość zapamiętywania wyników
obliczeń w zmiennych.
Zaprojektuj hierarchię klas, która umożliwi łatwą i elegancką klasyfikację poszczególnych

symboli (abstrakcyjna klasa symbol) w wyrażeniu ONP. Wyrażenie to ciąg operandów (klasa
operand) i operatorów/funkcji (klasa funkcja). Operandy to liczby rzeczywiste (klasa liczba
pamiętająca wartość typu double), zmienne (klasa zmienna z nazwą zmiennej) albo stałe (klasa
stala z nazwą stałej i skojarzoną z nią wartością) jak na przykład e i pi. W klasie zmienna
umieść kolekcję asocjacyjną ze zmiennymi w postaci niepublicznego pola statycznego (na przy-
kład map<string,double> albo unordered_map<string,double>) — wartość zmiennej odczy-
tujemy szukając w tym zbiorze pary z odpowiednią nazwą. Funkcje to przede wszystkim dwu-
argumentowe operatory dodawania, odejmowania, mnożenia i dzielenia; należy też zaimplemen-
tować funkcje dwuargumentowe modulo, min, max, log i pow oraz jednoargumentowe abs, sgn,
floor, ceil, frac, sin, cos, atan, acot, ln i exp.
Symbole występujące w wyrażeniu należy najpierw sparsować, potem utworzyć odpowied-

nie obiekty a na koniec umieścić je w wybranej kolekcji sekwencyjnej (na przykład vector<>
albo forward_list<>). Parametrem tego obiektu niech będzie shared_pointer<symbol>, czyli
sprytny wskaźnik będący opakowaniem dla różnych symboli, które mogą się pojawić w wyrażeniu
(nie można umieszczać klas pochonych w kolekcji).
Program kalkulatora ma pracować z użytkownikiem interaktywnie i powinien rozpoznawać

trzy rodzaje poleceń:

1



• print wyrażenieONP
Obliczenie wartości wyrażenia wyrażenieONP i wypisanie jej na standardowym wyjściu.
Wyrażenie będzie zapisane w postaci postfiksowej (Odwrotna Notacja Polska). Czytając
kolejne tokeny wyrażenia program powinien je zamieniać na konkretne symbole i umieszczać
w kolejce (klasa queue<>). Przy obliczaniu wartości wyrażenia należy się posłużyć stosem
(klasa stack<>).

• assign wyrażenieONP to zm
Utworzenie nowej zmiennej zm i przypisanie jej warości obliczonego wyrażenia wyraże-
nieONP. Wartość obliczonego wyrażenia należy wypisać na standardowym wyjściu. Jeśli
zmienna zm była zdefiniowana już wcześniej, to należy tylko zmodyfikować zapisaną w niej
wartość.

• clear
Usunięcie wszystkich zminnych zapamiętanych do tej pory w zbiorze zmiennych. Do kolek-
cji mogą trafiać tylko zmienne o nazwach będących poprawnymi identyfikatorami i różnych
od nazw standardowych dla tego programu funkcji.

• exit
Zakończenie działania programu. Zamknięcie strumienia wejściowego również powinno
zakończyć działanie programu.

Jeśli w wyrażeniu ONP zostanie wykryty błąd (nieznana komenda, źle sformułowane wy-
rażenie, błędna nazwa, błędny literał stałopozycyjny, czy nierozpoznany operator, funkcja lub
zmienna) to należy wypisać stosowny komunikat o błędzie, ale nie przerywać działania programu.
Zadbaj o to by nazwa każdej zmiennej nie była dłuższa niż 7 znaków oraz aby była różna od
słów kluczowych print, assign, to, clear, exit itp.

Wskazówka.
Wykorzystaj kolekcje zdefiniowane w STL.

Uzupełnienie.
Definicje klas opakowujących pliki umieść w przestrzeni nazw kalkulator.

Uwaga.
Podziel program na pliki nagłówkowe i źródłowe.

Elementy w programie, na które należy zwrócić szczególną uwagę.

• Użycie kolekcji standardowych.

• Wykorzystanie iteratorów do sekwencyjnego przeglądania kolekcji.

• Interaktywna procedura interpretująca polecenia użytkownika.

• Obsługa błędów za pomocą wyjątków.

• Podział programu na pliki nagłówkowe i źródłowe.

2


