
Zadanie 6 25–28 kwietnia 2017 r.

język programowania C++
wyrażenia arytmetyczne

Instytut Informatyki Uniwersytetu Wrocławskiego Paweł Rzechonek

Wyrażenie arytmetyczne w języku programowania to dowolne wyrażenie typu liczbowego.
Może być ono złożone ze zmiennych, liczb, symboli działań, nawiasów, funkcji, itp.
W matematyce podobne znaczenie ma wyrażenie algebraiczne, które jest złożone z jednego

lub większej liczby symboli algebraicznych, czyli stałych lub zmiennych, połączonych znakami
działań (dodawania, odejmowania, mnożenia, dzielenia, potęgowania, itp.) i ewentualnie nawia-
sów, zgodnie z regułami notacji matematycznej. Nie są natomiast wyrażeniami algebraicznymi
zapisy, w których uczestniczą symbole funkcji albo relacji.

Zadanie.
Zdefiniuj abstrakcyjną klasę bazową wyrazenie, reprezentującą wyrażenie arytmetyczne.

W klasie tej umieść deklaracje abstrakcyjnych metod oblicz() (jej zadaniem w klasach po-
tomnych będzie obliczenie wartości wyrażenia i przekanie wyniku typu double) oraz opis() (ta
metoda ma zwracać napis typu string reprezentujący całe wyrażenie z dopisanymi niezbęd-
nymi nawiasami — należy uwzględnić priorytety operatorów, na przykład priorytet mnożenia
jest wyższy niż priorytet dodawania, oraz ich łączność, na przykład mnożenie jest lewostronnie
łączne a potęgowanie prawostronnie).

wyrazenie

liczba operator1argzmiennastala

e fipi operator2arg

mnoz dziel

modulo potega

odejmijdodaj

logarytm

exp lncos

przeciw odwrotbezwzgl

sin

Następnie zdefiniuj klasy dziedziczące po klasie wyrazenie, które będą reprezentowały ope-
randy i operatory. Do operandów zaliczamy liczby (stała zmiennopozycyjna typu double),

1



zmienne (zmienna ma mieć określoną nazwę string, przez którą będzie można odwołać się
do zbioru zmiennych i stamtąd odczytać wartość) oraz stałe (stałe mają określoną nazwę typu
string, za którą kryje się pewna ustalona wartość). Operatory natomiast to podstawowe sym-
bole operacji arytmetycznych (dodawanie, odejmowanie, mnożenie, dzielenie, potęgowanie oraz
jednoargumentowa operacja zmiany znaku na przeciwny) i wybrane funkcje matematyczne (si-
nus, cosinus, logarytm,. . . ). Klasy te powinny być tak zaprojektowane, aby można z nich było
zbudować drzewo wyrażenia: obiekty klas liczba, zmienna czy stałe dziedziczące po stala to
liście a operatory i funkcje unarne albo binarne to węzły wewnętrzne w takim drzewie. W klasach
potomnych ponadpisuj metody oblicz() oraz opis().
Na koniec napisz krótki program testowy, sprawdzający działanie obiektów tych klas. W

swoim programie skonstruuj następujące drzewa obliczeń z wykorzystaniem zmiennej x:

((x-1)*x)/2
(3+5)/(2+x*7)
2+x*7-(y*3+5)
cos((x+1)*x)/e^x^2

Wypisz te wyrażenia korzystając z metody opis() a potem oblicz i wypisz wartości tych wyrażeń
dla wartości zmiennej x z zakresu od 0 do 1 ze skokiem co 0.01 stosując metodę oblicz().

Uzupełnienie.
Zmienne pamiętaj w zbiorze asocjacyjnym, czyli w obiekcie typu vector<pair<string,double>>.

Zbiór ten umieść jako prywatne pole statyczne w klasie zmienna i dopisz kilka publicznych sta-
tycznych metod pozwalających zarządzać tym zbiorem.

Przykład.
Wyrażenie pi-(2+x*7) należy zdefiniować następująco:

wyrazenie *w = new odejmij(
new pi(),
new dodaj(
new liczba(2),
new mnoz(
new zmienna("x"),
new liczba(7)

)
)

);

Potem można obliczać wartość takiego wyrażenia nadając zmiennej x różne wartości .

Elementy w programie, na które należy zwrócić szczególną uwagę.

• Podział programu na pliki nagłówkowe i źródłowe.

• Definicja abstrakcyjnej klasy wyrazenie z czysto wirtualnymi metodami abstrakcyjnymi.

• Nadpisanie metod oblicz() i opis() w klasach potomnych.

• W funkcji main() należy przetestować obiekty wszystkich klas nieabstrakcyjnych.

2


