
Zadanie 4 17, 18 listopada 2016 r.

kurs języka Java
kalkulator ONP

Instytut Informatyki Uniwersytetu Wrocławskiego Paweł Rzechonek

Zadanie 1.
Zaprojektuj hierarchię klas, która umożliwi łatwe zapamiętywanie a potem obliczanie wyra-

żeń zapisanych w Odwrotnej Notacji Polskiej. Wyrażenie ONP to ciąg symboli (abstrakcyjna
klasa Symbol). Symbolami tymi mogą być albo operandy (klasa Operand) albo funkcje (klasa
Funkcja). Operandy to liczby (klasa Liczba z wartością typu double) albo zmienne (klasa
Zmienna z nazwą zmiennej — identyfikatorem pasującym do wzorca "\\p{Alpha}\\p{Alnum}*").
Funkcje to przede wszystkim dwuargumentowe operatory dodawania, odejmowania, mnożenia i
dzielenia; należy też zaimplementować funkcje dwuargumentowe Min, Max, Log i Pow, jednoar-
gumentowe Abs, Sgn, Floor, Ceil, Frac, Sin, Cos, Atan, Acot, Ln i Exp oraz funkcje bezargu-
mentowe (pełniące rolę stałych) E i Pi (żadna zmienna nie powinna mieć takiej samej nazwy jak
funkcja).
Jaką funkcjonalność powinny mieć te klasy? Zarówno operandy (liczby i zmienne) jak i funk-

cje (bezargumentowe, jednoargumentowe i dwuargumentowe) powinny implementować interfejs
Obliczalny:

public interface Obliczalny
{
double obliczWartość () throws WyjątekONP;

}

Metoda obliczWartość() w odniesieniu do liczb i zmiennych powinna przekazywać pamiętane
w operandach wartości a w odniesieniu do funkcji wyliczać wartość na podstawie przekazanych
wcześniej argumentów. Funkcje powinny więc posiadać mechanizm umożliwiający przekazywanie
im argumentów przed wykonaniem obliczenia. Można go zapisać w postaci interfejsu Funkcyjny:

public interface Funkcyjny extends Obliczalny
{
int arność ();
int brakująceArgumenty ();
void dodajArgument (double) throws WyjątekONP;

}

Metoda arność() mówi o arności funkcji czy operatora. Metoda brakująceArgumenty() in-
formuje o liczbie brakujących argumentów, czyli argumentów które trzeba jeszcze dostarczyć do
funkcji za pomocą metody dodajArgument(), zanim wywoła się metodę obliczWartość(). Oto
przykład wykorzystania tego interfejsu do obliczenia wartości funkcji:

1

while (fun.brakująceArgumenty()>0) do
fun.dodajArgument(...);

double wynik = fun.obliczWartość();

Gdy liczba dostarczonych argumentów jest niezgodna z arnością funkcji to wywołanie metody
obliczWartość() powinno skutkować zgłoszeniem wyjątku WyjątekONP.
Pozostaje jeszcze pytanie: skąd i jak należy brać argumenty dla funkcji? Argumenty te

będa nam potrzebne w trakcie obliczania wartości wyrażenia. Można więc zdefiniować klasę
Wyrażenie, która będzie zawierała wyrażenie ONP w postaci kolejki symboli i stos z wynikami
pośrednimi. To właśnie z tego stosu należy pobierać argumenty dla funkcji i operatorów. Należy
jeszcze tak zaprojektować klasy związane z wyrażeniem, aby umożliwić dostęp do stosu symbolom
z kolejki.

class Wyrażenie
{
private Kolejka kolejka; // kolejka symboli wyrażenia ONP (elementy typu Symbol)
private Stos stos; // stos z wynikami pośrednimi obliczeń (elementy typu double)

private Lista zmienne; // lista zmiennych czyli pary klucz-wartość (String-double)

public Wyrażenie (String onp, Lista zm) throws WyjątekONP {/*...*/}

// ...
}

Klasa Wyrażenie powinna też mieć referencję do zbioru asocjacyjnego ze zmiennymi (będą one
potrzebne w trakcie obliczania wartości wyrażenia). Referencję tą możesz przekazać do obiektu
klasy Wyrażenie w konstruktorze.
Na koniec wyjątki. Zaprojektuj hierarchię klas wyjątków kontrolowanych przez kompilator,

dziedziczących po wspólnej klasie WyjątekONP. Tylko te wyjątki powinny być używane w klasach
reprezentujących wyrażenie ONP.

class WyjątekONP extends Exception {/*...*/}

class ONP_DzieleniePrzez0 extends WyjątekONP {/*...*/}
class ONP_NieznanySymbol extends WyjątekONP {/*...*/}
class ONP_BłędneWyrażenie extends WyjątekONP {/*...*/}
class ONP_PustyStos extends WyjątekONP {/*...*/}
// ...

Hierarchia twoich wyjątków powinna być co najmniej dwupoziomowa i składać się co najmniej
pięciu klas.
Do zapamiętania wyrażenia ONP i do obliczenia jego wartości będą nam potrzebne trzy

proste struktury danych: lista, kolejka i stos. Zaimplementuj je w postaci list dwukierunkowych
(homogeniczne dynamiczne struktury danych oparte na węzłach, opakowane klasą pośredniczącą
w dostępie do danych) i nie korzystaj z kolekcji z pakietów standardowych Javy. Klasa Lista
niech będzie klasą generyczną a klasy Kolejka i Stos niech korzystają z listy i naniej budują
swoją strukturę.
Definicje wszytkich klas, interfejsów i wyjątków umieść w pakiecie narzedzia oraz dopisz

do nich komentarze dokumentacyjne. Udokumentuj także cały pakiet narzedzia umieszczając
komentarz dokumentacyjny w pliku package-info.java.

2

Zadanie 2.
Finalną częścią tego projektu będzie program interaktywnego kalkulatora ONP. Kalkulator

ma interpretować i obliczać wyrażenia zapisane w postaci ONP. Program powinien odczytywać
polecenia ze standardowego wejścia (każde polecenie w osobnym wierszu), wykonywać obliczenia
i wypisywać wyniki na standardowe wyjście. Wszelkie komentarze i informacje o błędach program
ma wysyłać na standardowe wyjście dla błędów.
Program powinien rozpoznawać dwa rodzaje poleceń:

• calc wyrażenieONP (zm =) ⋆
Obliczenie wartości wyrażenia wyrażenieONP i wypisanie jej na standardowym wyjściu.
Wyrażenie będzie zapisane w postaci postfiksowej (Odwrotna Notacja Polska). Czytając
kolejne tokeny wyrażenia program powinien je zamieniać na obliczalne symbole i umiesz-
czać w kolejce. Przy obliczaniu wartości wyrażenia należy się posłużyć stosem.
W wersji rozszerzonej o nazwę zmiennej i znak przypisania, należy dodatkowo utworzyć
nową zmienną zm i przypisać jej warości obliczonego wyrażenia wyrażenieONP. Jeśli zmienna
zm była zdefiniowana już wcześniej, to należy tylko zmodyfikować zapisaną w niej wartość.
Takich przypisań można zwobić kilka w jednym wyrażeniu. Przykłady:
calc 7.5 r =
calc r
calc pi r 2 power *
calc 2.5 x = y = z =

• clear (zm) ⋆
Usunięcie wskazanych zminnych z kolekcji asocjacyjnej.
Jeśli w tym poleceniu nie występują żadne znazwy zmiennych, to wówczas należy usunąć
wszystkie używane do tej pory zmienne z kolekcji. Przykłady:
clear r
clear

• exit
Wyjście z programu. Alternatywą dla tego polecenia powinno być zamknięcie strumienia
wejściowego. Przykład:
exit

Jeśli w wyrażeniu ONP (polecenie calc) zostanie wykryty błąd (źle sformułowane wyrażenie,
błędna nazwa, błędny literał stałopozycyjny, czy nierozpoznany operator, funkcja lub zmienna)
to należy wypisać stosowny komunikat o błędzie, ale nie przerywać działania programu.
Do swojego programu wstaw asercję, która zgłosi wyjątek AssertionError gdy użytkownik

wpisze nieznaną komendę (inną niż calc, clear, exit).

Uwaga.
Program należy napisać, skompilować i uruchomić w zintegrowanym środowisku programi-

stycznym NetBeans! Wygeneruj też dokumentację całej zawartości pakietu narzedzia używając
odpowiedniego polecenia w NetBeans (menu Run, pozycja Generate Javadoc).

3

