Drzewa sufiksowe

referat z seminarium zaawansowane struktury danych
mgr Pawel Rzechonek, II UWR 2012/2013

Borys Dyczko
29 stycznia 2013

Spis tresci

1 Wstep
1.1 Historia
1.2 Definicje
1.3 Opis

1.4 Reprezentacja wezla

2 Operacje

2.1 Wyszukiwanie wzorca, ilo$¢ wystapien
2.2 Pierwsze k wystapien
2.3 Najdluzsze powtarzajace si¢ podstowo
24 Wiele tekstow oL oo
2.4.1 Najdtuzszy wspélny podciag
2.4.2 Liczba tekstow zawierajacych wzorzec

3 Konstrukcja drzew sufiksowych

3.1 Definicje

3.2 Algorytm McCreighta
3.2.1 Algorytm . .
3.2.2 Zlozonos¢ . .

3.3 Algorytm Ukkonena
3.3.1 Algorytm . .
3.3.2 Zlozonos¢ . .

4 Podsumowanie
4.1 Zastosowania

NelNoJlNe BEN BEN I e e i) S UL OT UL U s W W www

©

1 Wstep

Wyszukiwanie wzora w tekscie jest popularnym problemem algorytmicznym.
Istnieja algorytmy, ktére w szybkim czasie potrafia odpowiedzie¢ na pytanie
o wystepienia wzorca, np. Boyera-Moore’a, Morrisa-Pratta, Knutha-Morrisa-
Pratta. Jednak gdy interesujg nas pytania o wiele wzorcéw zawartych w jednym
tekscie, powyzsze algorytmy sie nie sprawdzaja. Aby otrzymacé lepsza zloznosé
czasowa, mozemy skorzystaé¢ z takich struktur danych jak tablice lub drzewa
sufiksowe. Wykorzystuja one preprocessing gléwnego tekstu do budowy swojej
struktury, aby w czasie liniowym odpowiedzie¢ na pytanie o wzorzec.

1.1 Historia

Koncepcje drzew sufiksowych (nazwanych wtedy drzewami pozycyjnymi)
wprowadzil Weiner w 1973 roku. Konstrukcja zostata uproszczona przez McCre-
ighta w 1976. Ukkonen w 1995 podal pierwszy liniowy algorytm konstrukeji
drzewa sufiksowego online, znany jako Algorytm Ukkonena.

1.2 Definicje

> - alfabet

|w| - dlugosé stowa w

T = totyta...t—1 - tekst dlugosci n
TZ- = titi+1ti+2...tn_1 - i—ty sufiks T'
n - dlugosé tekstu

m - dlugosé wzorca

Aby ustalié¢ écisty porzadek na sufiksach danego tekstu, bedzie wygodnie dotozyé
na koniec tekstu znak #. Przyjmujemy, ze jest leksykograficznie wigkszy od
dowolnego symbolu z X..

1.3 Opis

Drzewo sufiksowe jest drzewem, w ktérym kazda $ciezka jest etykietowana
kolejnymi symbolami pewnego sufiksu, oraz kazdy sufiks T jest obecny w drze-
wie. Kazdej krawedzi jest przypisane jako etykieta pewne podstowo T. Krawe-
dzie wychodzace z tego samego wezla, roznia sie pierwszymi symbolami swoich
etykiet.

Etykiety sa kodowane przedzialami w tekscie T: para liczb [7, j] reprezentuje
podstowo t;t;11...t;. Dzieki temu reprezentacja ma rozmiar O(n). Waga krawedzi
jest dtugosé odpowiadajacego jej stowa.

Przyktadowe drzewo sufiksowe znajduje sie¢ na rysunku 1.

1.4 Reprezentacja wezla

Rézne struktury wykorzystane do reprezentacji weztéw, daja rézne zlozo-
nodci czasowe i pamieciowe. Wybrane struktury sa przedstawione w tabeli 1.
Idealnym rozwiazaniem wydaje si¢ by¢ tablica haszujaca, jednak przy jej wy-
korzystaniu reprezentacja wezla nie zachowuje porzadku. Jest to potrzebne w

Rysunek 1: Drzewo sufiksowe dla stowa BANANA

u

Tabela 1: Reprezentacja weztéw, a ztozonosé

struktura czas pamieé
tablica O(m) O(n*|X])
BST O(m *log|X|) O(n)
tablica haszujaca O(m) O(n)
drzewo Van Emde Boas | O(m x loglog|X|) | O(n)

niektérych operacjach, np. podczas szukania poprzednika, nastepnika. Prostym
rozwiazaniem w implementacji z malym narzutem na pamieé, jest drzewo BST.

2 Operacje

Wszystkie operacje wykonywane na drzewach sufiksowych sg stosunkowo
proste, opieraja sie na umiejetnym przejsciu drzewa, z paroma drobnymi mody-
fikacjami.

Dany jest wzorzec P = pop1p2---Pm—_1-

2.1 Wyszukiwanie wzorca, ilos¢ wystapien

Wyszukiwanie wzorca P zaczynamy od korzenia. Za kazdym razem przecho-
dzimy po krawedziach w doét drzewa, az napotkamy miejsce w ktérym nie ma
krawedzi odowiadajacych literom wzorca. Jesli podczas przechodzenia drzewa
przeczytamy caly wzorzec, oznacza to, ze wystepuje on w tekscie. llos¢ wysta-
pien wzorca P odpowiada ilosci liSci w poddrzewie w ktéorym zakonczyliSmy
przechodzenie drzewa.

Latwo udowodnié zlozono$é czasowa O(m) powyzszej operacji. Przej$é po
krawedziach bedzie maksymalnie tyle, ile liter ma wzorzec, czyli m. Wykorzy-
stujac tablice haszujace, odszukanie krawedzi w wezle zajmuje O(1). Calosé
sumuje sie oczywiscie do O(m).

2.2 Pierwsze k wystgpien
Wprowadzenie modyfikacji:
e dodanie do kazdego wezta wskaznika, na lewego, skrajnego syna
e potlaczenie wszystkich lisci w liste cykliczna

Modyfikacje nie podnosza zloznoéci, a jedyne stala podczas budowy drzewa
sufiksowego, o czym jest w dalszej czesci pracy.

Aby znalezé pierwsze k wystapien, nalezy odszukaé odpowiedni wezel tak
samo jak w rozdziale 2.1. Nastepnie przegladnaé liste lisci. Daje to oczywista
ztozonosé O(k +m).

2.3 Najdtuzsze powtarzajace sie podstowo

Operacja polega na znalezienieniu najglebszego wezta ktory nie jest liSciem.
Czas operacji O(n).

Dlaczego jest to poprawne? Wezel o etykiecie x, ktéry posiada 2 lidcie, Swiad-
czy o istnientu 2 sufiksow w tekscie, ktorych prefiksem jest . Korzystajac z tego,
ze szukamy najglebszego wezla, dostajemy, ze 2 takie prefiksy z, sa najdluzsze.

2.4 Wiele tekstow

Danych jest z tekstéw T°, T2, T2 ... T*~!. Wprowadzamy modyfikacje w
reprezentacji drzewa:

e do kazdego tekstu 7" i dotaczamy na koniec $;

e kazdy wezel posiada informacje o liczbie unikalnych wystagpien $ w jego
poddrzewie

Przyktadowe drzewo sufiksowe dla kilku tekséw znajduje sie na rysunku 2.

Rysunek 2: Drzewo sufiksowe dla 3 stéw: ABAB, BABA, ABBA.

2.4.1 Najdluzszy wspoélny podciag

Znalezienie wezla o najwigkszej gltebokosci, ktéry posiada wszystkie $;. Do-
wod podobny jak w rodziale 2.3. Zlozonos¢ O(Y7—, |T'|).

2.4.2 Liczba tekstéw zawierajgcych wzorzec

Przejscie drzewa zgodnie z literami wzorca i odczytanie ilo$ci unikalnych $.
Sytuacja analogiczna jak w rozdziale 2.1.

3 Konstrukcja drzew sufiksowych

3.1 Definicje
Label(v) = stlowo otrzymane podazajac po drzewie od korzenia do wezla v.

Suf(v) (dowiazanie sufiksowe) = v takie ze

Label(v) = yoy1y2..-Yk
Label(v') = y1y2.--yk

Suf(root) = root.

parent(v) = rodzic v w drzewie T
parent(root) = root

3.2 Algorytm McCreighta

Algorytm buduje skompresowane drzewo sufiksowe w kolejnosci od najdtuz-
szego sufiksu do najkrétszego. Ogdlny schemat algorytmu jest nastepujacy:

e W fazie pierwszej inicjujemy drzewo najdiuzszym sufiksem, czyli pojedyn-
cza krawedzia reprezentujaca caly tekst 7'

e Zalozmy, ze jesteSmy w fazie k > 1 i dodajemy do drzewa sufiksg.

e Przedstawmy stowo sufiksy jako konkatenacje dwdch stéw pq takich, ze
stowo p jest najdiuzszym prefiksem su fiksy, ktéry mozna utworzyé poda-
zajac Sciezka od korzenia w dét drzewa. Taki rozktad jest jednoznaczny.

e Definiujemy glowe heady, k-tego sufiksu jako taki wezel v (byé moze nie-
jawny) w drzewie, ze Label(v) = p.

e Dodajemy do drzewa krawedz reprezentujaca stowo ¢ w wezle head,.

Szukanie glowy w sposéb naiwny - O(n?)

Aby obinizyé¢ ztozonoéé, skorzystamy z dowigzan sufiksowych. Aby szybko
znajdowaé glowe k-tego sufiksu, korzystamy z nastepujacych wlasnosci drzew
sufiksowych:

e head; jest potomkiem Suf(head;—1)
e Suf(v) jest potomkiem Suf(parent(v)), Vo € T

Skorzystamy z 2 sposobéw schodzenia w doét drzewa:

slowFind - przemieszczanie si¢ znak po znaku. Uzywane, gdy nie wiemy
wystarczajaco wiele o szukanym stowie, aby przemieszczaé si¢ w sposoéb szybki.

fastFind - gdy wyszukujemy w drzewie stowo, o ktérym wiemy, ze na pew-
no je znajdziemy, a bardziej interesuje nas gdzie (w jakim wezle jawnym lub

niejawnym) je znajdziemy. Pozwala to w czasie stalym omijaé cale krawedzie
drzewa.

Funkcje dla argumentéw (v, y) zwracaja wezel (byé moze niejawny), na kt6-
rym konczy sig¢ zejécie w dot drzewa zapoczatkowane w wezle v, w poszukiwaniu
stowa 7.

3.2.1 Algorytm

Pseudokod algorytmu zostal zaprezentowany jako algorytm 1.

Algorithm 1 Algorytm McCreighta - konstrukcja offline
T « inicjalne drzewo, zbudowane z jednej krawedzi etykietowanej calym tek-
stem x o dlugosci n
heady < root
leaf, « jedyny lis¢ drzewa
fort=2—ndo

p < etykieta na krawedzi parent(head;_1) — head;_1
q < etykieta na krawedzi head;_1 — lea f;_1
if head;_1 = root then
Usun pierwszy znak z g
head; «— slow find(root, q)
else
u — parent(head;_1)
if u = root then
Usun pierwszy znak z p
v « fastfind(root,p)

else
v — fastfind(Suf(u),p)

end if

if v jest weztem niejawnym then
head; «— v

else
head; «— slow find(v, q)

end if

end if

Suf(head;—1) «— v
Stworz wezel leaf;
if head; jest wezlem niejawnym then
rozbij krawedz, na ktorej znajduje sie head; na dwie krawedzie
end if
Stworz krawedz head; — leaf; o odpowiedniej etykiecie
end for

3.2.2 Zlozonosé

Twierdzenie 1. Algorytm McCreighta buduje drzewo sufiksowe tekstu o diu-
goscim w czasie O(n), przy zalozeniu |X| = O(1).

Dowdd. Rozwazmy oddzielnie czas dziatania wszystkich wykonan slowFind i
fastFind. Wszystkie pozostale operacje dzialaja w czasie stalym. Niech depth(v)

oznacza gleboko$é wezlta v w drzewie sufiksowym, tzn. liczbe weztéow w skom-
presowanym drzewie na $ciezce od korzenia do v.

Operacja fastFind zwieksza glebokosé, na ktorej przebywamy. Przejécie do
rodzica oraz przejscie dowiazaniem sufiksowym zmniejsza te glebokosé. Zacho-
dzi depth(v) <= depth(Suf(v)) + 1. Oznacza to, ze w kazdej iteracji algorytmu
najpierw zmniejszamy glebokos$é o co najwyzej 2, a nastepnie zwiekszamy te gte-
bokoé¢. Nie mozemy jej zwiekszaé w nieskoniczono$é, bo liczba weztéw drzewa
jest w danej fazie liniowa wzgledem numeru iteracji, zatem po wszystkich itera-
cjach wykonamy co najwyzej liniowo wiele przemieszczen po weztach drzewa w
trakcie fastfind.

Czas spedzony na wykonywaniu slowFind takze jest liniowy, co zakonczy
dowdd. Przez zapis |head;| rozumiemy odleglo$é wezla head; od korzenia w
sensie nieskompresowanego drzewa sufiksowego.

Uzywamy slowFind aby znalez¢ head; rozpoczynajac od Suf(head;—1). Po-
niewaz poczatkowych |head;—1| znakéw znajdujemy przy pomocy fastFind,
praca wykonana przez slowFind wynosi |head;| — |head;_1|+O(1). Zatem tacz-
nie wykonamy liniowo wiele operacji. O

3.3 Algorytm Ukkonena

Motywacja - ulepszenie algorytmu naiwnego. Budujemy nieskompresowane
drzewo sufiksowe dla stowa T = tgt1ts...th—1. W k-tej fazie dodajemy do drzewa
Tyr—1 krawedzie z etykieta ti, tak aby otrzymaé¢ drzewo Tj. Trzymamy liste
miejsc gdzie koncza sie sufiksy i przedluzamy je o t.

Algorytm korzysta z 3 wlasnosci:

e Za kazdym razem gdy przedtuzamy sufiks dodajac nowy lié¢ do drzewa
sufiksowego, mozemy o tym sufiksie juz zapomnieé. Przy zalozeniu opisu
krawedzi skompresowanych za pomoca dwdch liczb (poczatek i koniec ja-
kiego$ podstowa w T) mozemy jako drugiej liczby uzyé +o00. Zachowamy
wlasnosé online algorytmu. Taka krawedZ reprezentowaé bedzie dowolny
tekst zaczynajacy sie w okreslonym punkcie.

e Jesli rozwazajac kolejne sufiksy natrafimy na taki, ktérego nie musimy
przedtuzaé, bo odpowiednia krawedz znajduje sie¢ juz w drzewie, to nie
musimy tez przegladaé¢ dalszych, poniewaz dla nich takze odpowiednia
krawedz wystepuje.

e Aby w razie potrzeby namierzy¢ kolejne miejsce wymagajace rzeczywistej
aktualizacji, tzn. dodania krawedzi-liScia, mozna zastosowaé w tym celu
ten sam trik, co w algorytmie McCreighta. Zapamietujemy jedynie dowia-
zania sufiksowe wierzchotkéw jawnych, a jesli chcemy znalezé dowiazanie
wierzcholka niejawnego, to najpierw przechodzimy po dowiazaniu sufikso-
wym jego (jawnego) rodzica w drzewie, a nastepnie wykonujemy operacje
fastFind.

3.3.1 Algorytm

Pseudokod algorytmu zostal zaprezentowany jako algorytm 2.

Algorithm 2 Algorytm Ukkonena - konstrukcja online
T «— root
L — root
fort=1—ndo
for j=1—ndo
v~ Llj]
if nie istnieje krawedz w drzewie T o etykiecie x; wychodzaca z v then
dodaj taka krawedz
L[j] « v’ gdzie v’ jest wierzcholkiem docelowym krawedzi wycho-
dzacej z v etykietowanej x;;
end if
end for
L.push(root)
end for

3.3.2 Zlozonosé

Twierdzenie 2. Algorytm Ukkonena buduje drzewo sufiksowe tekstu o dlugosci
n w czasie O(n), przy zalozeniu |X| = O(1).

Dowdd. Obrotow wewnetrznej petli while mamy liniowo wiele - kazdy obieg
odpowiada dodaniu jednego lidcia, a tych jest O(n). Wszystkie operacje w petli
poza fastFind wykonujemy w czasie stalym. Nalezy zatem rozwazy¢ laczng
prace wykonang przez wszystkie wywotania fastFind. O

4 Podsumowanie

4.1 Zastosowania

Drzewa sufiksowe znajduja zastosowanie miedzy innymi w bioinformatyce,
gdzie shuza do analizy lancuchéw DNA i sekwencji aminokwaséw w bialkach,
oraz w kompresji danych (modyfikacje kompresji LZW).
Literatura

[1] Prof. Erik Demaine, http://courses.csail.mit.edu/6.851/spring12/scribe/lec16.pdf

[2] http://wazniak.mimuw.edu.pl/index.php?title=Algorytmy_i_struktury_danych

