
Drzewa sufiksowe
referat z seminarium zaawansowane struktury danych

mgr Paweł Rzechonek, II UWR 2012/2013

Borys Dyczko

29 stycznia 2013

1

Spis treści

1 Wstęp 3
1.1 Historia . 3
1.2 Definicje . 3
1.3 Opis . 3
1.4 Reprezentacja węzła . 3

2 Operacje 4
2.1 Wyszukiwanie wzorca, ilość wystąpień 4
2.2 Pierwsze k wystąpień . 5
2.3 Najdłuższe powtarzające się podsłowo 5
2.4 Wiele tekstów . 5

2.4.1 Najdłuższy wspólny podciąg 5
2.4.2 Liczba tekstów zawierających wzorzec 6

3 Konstrukcja drzew sufiksowych 6
3.1 Definicje . 6
3.2 Algorytm McCreighta . 6

3.2.1 Algorytm . 7
3.2.2 Złożoność . 7

3.3 Algorytm Ukkonena . 8
3.3.1 Algorytm . 8
3.3.2 Złożoność . 9

4 Podsumowanie 9
4.1 Zastosowania . 9

2

1 Wstęp

Wyszukiwanie wzora w tekście jest popularnym problemem algorytmicznym.
Istnieją algorytmy, które w szybkim czasie potrafią odpowiedzieć na pytanie
o występienia wzorca, np. Boyera-Moore’a, Morrisa-Pratta, Knutha-Morrisa-
Pratta. Jednak gdy interesują nas pytania o wiele wzorców zawartych w jednym
tekście, powyższe algorytmy się nie sprawdzają. Aby otrzymać lepszą złożność
czasową, możemy skorzystać z takich struktur danych jak tablice lub drzewa
sufiksowe. Wykorzystują one preprocessing głównego tekstu do budowy swojej
struktury, aby w czasie liniowym odpowiedzieć na pytanie o wzorzec.

1.1 Historia

Koncepcję drzew sufiksowych (nazwanych wtedy drzewami pozycyjnymi)
wprowadził Weiner w 1973 roku. Konstrukcja została uproszczona przez McCre-
ighta w 1976. Ukkonen w 1995 podał pierwszy liniowy algorytm konstrukcji
drzewa sufiksowego online, znany jako Algorytm Ukkonena.

1.2 Definicje

Σ - alfabet
|w| - długość słowa w
T = t0t1t2...tn−1 - tekst długości n
Ti = titi+1ti+2...tn−1 - i-ty sufiks T
n - długość tekstu
m - długość wzorca

Aby ustalić ścisły porządek na sufiksach danego tekstu, będzie wygodnie dołożyć
na koniec tekstu znak #. Przyjmujemy, że jest leksykograficznie większy od
dowolnego symbolu z Σ.

1.3 Opis

Drzewo sufiksowe jest drzewem, w którym każda ścieżka jest etykietowana
kolejnymi symbolami pewnego sufiksu, oraz każdy sufiks T jest obecny w drze-
wie. Każdej krawędzi jest przypisane jako etykieta pewne podsłowo T. Krawę-
dzie wychodzące z tego samego węzła, różnią się pierwszymi symbolami swoich
etykiet.

Etykiety są kodowane przedziałami w tekście T: para liczb [i, j] reprezentuje
podsłowo titi+1...tj . Dzięki temu reprezentacja ma rozmiarO(n). Wagą krawędzi
jest długość odpowiadającego jej słowa.

Przykładowe drzewo sufiksowe znajduje się na rysunku 1.

1.4 Reprezentacja węzła

Różne struktury wykorzystane do reprezentacji węzłów, dają różne złożo-
ności czasowe i pamięciowe. Wybrane struktury są przedstawione w tabeli 1.
Idealnym rozwiązaniem wydaje się być tablica haszująca, jednak przy jej wy-
korzystaniu reprezentacja węzła nie zachowuje porządku. Jest to potrzebne w

3

Rysunek 1: Drzewo sufiksowe dla słowa BANANA

Tabela 1: Reprezentacja węzłów, a złożoność
struktura czas pamięć
tablica O(m) O(n ∗ |Σ|)
BST O(m ∗ log|Σ|) O(n)
tablica haszująca O(m) O(n)
drzewo Van Emde Boas O(m ∗ loglog|Σ|) O(n)

niektórych operacjach, np. podczas szukania poprzednika, następnika. Prostym
rozwiązaniem w implementacji z małym narzutem na pamięć, jest drzewo BST.

2 Operacje

Wszystkie operacje wykonywane na drzewach sufiksowych są stosunkowo
proste, opierają się na umiejętnym przejściu drzewa, z paroma drobnymi mody-
fikacjami.

Dany jest wzorzec P = p0p1p2...pm−1.

2.1 Wyszukiwanie wzorca, ilość wystąpień

Wyszukiwanie wzorca P zaczynamy od korzenia. Za każdym razem przecho-
dzimy po krawędziach w dół drzewa, aż napotkamy miejsce w którym nie ma
krawędzi odowiadających literom wzorca. Jeśli podczas przechodzenia drzewa
przeczytamy cały wzorzec, oznacza to, że występuje on w tekście. Ilość wystą-
pien wzorca P odpowiada ilości liści w poddrzewie w którym zakończyliśmy
przechodzenie drzewa.

Łatwo udowodnić złożoność czasową O(m) powyższej operacji. Przejść po
krawędziach będzie maksymalnie tyle, ile liter ma wzorzec, czyli m. Wykorzy-
stując tablice haszujące, odszukanie krawędzi w węźle zajmuje O(1). Całość
sumuje się oczywiście do O(m).

4

2.2 Pierwsze k wystąpień

Wprowadzenie modyfikacji:

• dodanie do każdego węzła wskaźnika, na lewego, skrajnego syna

• połączenie wszystkich liści w listę cykliczną

Modyfikacje nie podnoszą złożności, a jedyne stałą podczas budowy drzewa
sufiksowego, o czym jest w dalszej częsci pracy.

Aby znaleźć pierwsze k wystąpień, należy odszukać odpowiedni węzeł tak
samo jak w rozdziale 2.1. Następnie przeglądnąć listę liści. Daje to oczywistą
złożoność O(k +m).

2.3 Najdłuższe powtarzające się podsłowo

Operacja polega na znalezienieniu najgłębszego węzła który nie jest liściem.
Czas operacji O(n).

Dlaczego jest to poprawne? Węzeł o etykiecie x, który posiada 2 liście, świad-
czy o istnientu 2 sufiksów w tekście, których prefiksem jest x. Korzystając z tego,
że szukamy najgłębszego węzła, dostajemy, że 2 takie prefiksy x, są najdłuższe.

2.4 Wiele tekstów

Danych jest z tekstów T 0, T 2, T 3 ... T z−1. Wprowadzamy modyfikacje w
reprezentacji drzewa:

• do każdego tekstu T i i dołączamy na koniec $i

• każdy węzeł posiada informację o liczbie unikalnych wystąpień $ w jego
poddrzewie

Przykładowe drzewo sufiksowe dla kilku teksów znajduje się na rysunku 2.

Rysunek 2: Drzewo sufiksowe dla 3 słów: ABAB, BABA, ABBA.

2.4.1 Najdłuższy wspólny podciąg

Znalezienie węzła o największej głębokości, który posiada wszystkie $i. Do-
wód podobny jak w rodziale 2.3. Złożoność O(

∑z−1
i=0 |T i|).

5

2.4.2 Liczba tekstów zawierających wzorzec

Przejście drzewa zgodnie z literami wzorca i odczytanie ilości unikalnych $.
Sytuacja analogiczna jak w rozdziale 2.1.

3 Konstrukcja drzew sufiksowych

3.1 Definicje

Label(v) = słowo otrzymane podążając po drzewie od korzenia do węzła v.

Suf(v) (dowiązanie sufiksowe) = v′ takie że
Label(v) = y0y1y2...yk
Label(v′) = y1y2...yk

Suf(root) = root.

parent(v) = rodzic v w drzewie T
parent(root) = root

3.2 Algorytm McCreighta

Algorytm buduje skompresowane drzewo sufiksowe w kolejności od najdłuż-
szego sufiksu do najkrótszego. Ogólny schemat algorytmu jest następujący:

• W fazie pierwszej inicjujemy drzewo najdłuższym sufiksem, czyli pojedyn-
czą krawędzią reprezentującą cały tekst T .

• Załóżmy, że jesteśmy w fazie k > 1 i dodajemy do drzewa sufiksk.

• Przedstawmy słowo sufiksk jako konkatenację dwóch słów pq takich, że
słowo p jest najdłuższym prefiksem sufiksk, który można utworzyć podą-
żając ścieżką od korzenia w dół drzewa. Taki rozkład jest jednoznaczny.

• Definiujemy głowę headk k-tego sufiksu jako taki węzeł v (być może nie-
jawny) w drzewie, że Label(v) = p.

• Dodajemy do drzewa krawędź reprezentującą słowo q w węźle headk.

Szukanie głowy w sposób naiwny - O(n2)
Aby obiniżyć złożoność, skorzystamy z dowiązań sufiksowych. Aby szybko

znajdować głowę k-tego sufiksu, korzystamy z następujących własności drzew
sufiksowych:

• headi jest potomkiem Suf(headi−1)

• Suf(v) jest potomkiem Suf(parent(v)), ∀v ∈ T

Skorzystamy z 2 sposobów schodzenia w dół drzewa:
slowFind - przemieszczanie się znak po znaku. Używane, gdy nie wiemy

wystarczająco wiele o szukanym słowie, aby przemieszczać się w sposób szybki.
fastF ind - gdy wyszukujemy w drzewie słowo, o którym wiemy, że na pew-

no je znajdziemy, a bardziej interesuje nas gdzie (w jakim węźle jawnym lub

6

niejawnym) je znajdziemy. Pozwala to w czasie stałym omijać całe krawędzie
drzewa.

Funkcje dla argumentów (v, y) zwracają węzeł (być może niejawny), na któ-
rym kończy się zejście w dół drzewa zapoczątkowane w węźle v, w poszukiwaniu
słowa y.

3.2.1 Algorytm

Pseudokod algorytmu został zaprezentowany jako algorytm 1.

Algorithm 1 Algorytm McCreighta - konstrukcja offline
T ← inicjalne drzewo, zbudowane z jednej krawędzi etykietowanej całym tek-
stem x o długości n
head1 ← root
leaf1 ← jedyny liść drzewa
for i = 2→ n do
p← etykieta na krawędzi parent(headi−1)→ headi−1
q ← etykieta na krawędzi headi−1 → leafi−1
if headi−1 = root then

Usuń pierwszy znak z q
headi ← slowfind(root, q)

else
u← parent(headi−1)
if u = root then

Usuń pierwszy znak z p
v ← fastfind(root, p)

else
v ← fastfind(Suf(u), p)

end if
if v jest węzłem niejawnym then
headi ← v

else
headi ← slowfind(v, q)

end if
end if
Suf(headi−1)← v
Stwórz węzeł leafi
if headi jest węzłem niejawnym then

rozbij krawędź, na której znajduje się headi na dwie krawędzie
end if
Stwórz krawędź headi → leafi o odpowiedniej etykiecie

end for

3.2.2 Złożoność

Twierdzenie 1. Algorytm McCreighta buduje drzewo sufiksowe tekstu o dłu-
gości n w czasie O(n), przy założeniu |Σ| = O(1).

Dowód. Rozważmy oddzielnie czas działania wszystkich wykonań slowFind i
fastF ind. Wszystkie pozostałe operacje działają w czasie stałym. Niech depth(v)

7

oznacza głębokość węzła v w drzewie sufiksowym, tzn. liczbę węzłów w skom-
presowanym drzewie na ścieżce od korzenia do v.

Operacja fastF ind zwiększa głębokość, na której przebywamy. Przejście do
rodzica oraz przejście dowiązaniem sufiksowym zmniejsza tę głębokość. Zacho-
dzi depth(v) <= depth(Suf(v)) + 1. Oznacza to, że w każdej iteracji algorytmu
najpierw zmniejszamy głębokość o co najwyżej 2, a następnie zwiększamy tę głę-
bokość. Nie możemy jej zwiększać w nieskończoność, bo liczba węzłów drzewa
jest w danej fazie liniowa względem numeru iteracji, zatem po wszystkich itera-
cjach wykonamy co najwyżej liniowo wiele przemieszczeń po węzłach drzewa w
trakcie fastfind.

Czas spędzony na wykonywaniu slowFind także jest liniowy, co zakończy
dowód. Przez zapis |headi| rozumiemy odległość węzła headi od korzenia w
sensie nieskompresowanego drzewa sufiksowego.

Używamy slowFind aby znaleźć headi rozpoczynając od Suf(headi−1). Po-
nieważ początkowych |headi−1| znaków znajdujemy przy pomocy fastF ind,
praca wykonana przez slowFind wynosi |headi|− |headi−1|+O(1). Zatem łącz-
nie wykonamy liniowo wiele operacji.

3.3 Algorytm Ukkonena

Motywacja - ulepszenie algorytmu naiwnego. Budujemy nieskompresowane
drzewo sufiksowe dla słowa T = t0t1t2...tn−1. W k-tej fazie dodajemy do drzewa
Tk−1 krawędzie z etykietą tk, tak aby otrzymać drzewo Tk. Trzymamy listę
miejsc gdzie kończą się sufiksy i przedłużamy je o tk.

Algorytm korzysta z 3 własności:

• Za każdym razem gdy przedłużamy sufiks dodając nowy liść do drzewa
sufiksowego, możemy o tym sufiksie już zapomnieć. Przy założeniu opisu
krawędzi skompresowanych za pomocą dwóch liczb (początek i koniec ja-
kiegoś podsłowa w T) możemy jako drugiej liczby użyć +∞. Zachowamy
własność online algorytmu. Taka krawędź reprezentować będzie dowolny
tekst zaczynający się w określonym punkcie.

• Jeśli rozważając kolejne sufiksy natrafimy na taki, którego nie musimy
przedłużać, bo odpowiednia krawędź znajduje się już w drzewie, to nie
musimy też przeglądać dalszych, ponieważ dla nich także odpowiednia
krawędź występuje.

• Aby w razie potrzeby namierzyć kolejne miejsce wymagające rzeczywistej
aktualizacji, tzn. dodania krawędzi-liścia, można zastosować w tym celu
ten sam trik, co w algorytmie McCreighta. Zapamiętujemy jedynie dowią-
zania sufiksowe wierzchołków jawnych, a jeśli chcemy znaleźć dowiązanie
wierzchołka niejawnego, to najpierw przechodzimy po dowiązaniu sufikso-
wym jego (jawnego) rodzica w drzewie, a następnie wykonujemy operację
fastF ind.

3.3.1 Algorytm

Pseudokod algorytmu został zaprezentowany jako algorytm 2.

8

Algorithm 2 Algorytm Ukkonena - konstrukcja online
T ← root
L← root
for i = 1→ n do

for j = 1→ n do
v ← L[j]
if nie istnieje krawędź w drzewie T o etykiecie xi wychodząca z v then

dodaj taką krawędź
L[j]← v′, gdzie v′ jest wierzchołkiem docelowym krawędzi wycho-

dzącej z v etykietowanej xi;
end if

end for
L.push(root)

end for

3.3.2 Złożoność

Twierdzenie 2. Algorytm Ukkonena buduje drzewo sufiksowe tekstu o długości
n w czasie O(n), przy założeniu |Σ| = O(1).

Dowód. Obrotów wewnętrznej pętli while mamy liniowo wiele - każdy obieg
odpowiada dodaniu jednego liścia, a tych jest O(n). Wszystkie operacje w pętli
poza fastF ind wykonujemy w czasie stałym. Należy zatem rozważyć łączną
pracę wykonaną przez wszystkie wywołania fastF ind.

4 Podsumowanie

4.1 Zastosowania

Drzewa sufiksowe znajdują zastosowanie między innymi w bioinformatyce,
gdzie służą do analizy łańcuchów DNA i sekwencji aminokwasów w białkach,
oraz w kompresji danych (modyfikacje kompresji LZW).

Literatura

[1] Prof. Erik Demaine, http://courses.csail.mit.edu/6.851/spring12/scribe/lec16.pdf

[2] http://wazniak.mimuw.edu.pl/index.php?title=Algorytmy i struktury danych

9

