Signature Sort

Jan Sochiera

23 pazdziernika 2012

Zaawansowane Struktury Danych 2012

Wstep

W artykule poréwnane sa rézne metody sortowania liczb catkowitych oraz
opisana doktadnie jedna z nich - Signature Sort.

Jako model obliczeniowy przyjmujemy model word-RAM, czyli taki, w
ktorym wszystkie operacje bitowe oraz arytmetyczne wykonywane na jed-
nym stowie maszynowym wykonuja sie w czasie stalym.

1 Poréwnanie metod sortowania

Ponizsze zestawienie pokazuje ztozonos¢ réznych algorytmoéw sortowania
liczb catkowitych w modelu RAM.

w oznacza dtugosé stowa maszynowego, jakim dysponujemy, a b to mak-
symalna liczba bitow zajmowana przez liczbe. Domyslnie b = w.

e Poréwnania miedzy elementami: O(n logn)

e Sortowanie przez zliczanie: O(n + 2%)

e Sortowanie pozycyjne (radix sort): O(nze)

e Emde Boas: O(n log:=-)

logn

e Han: O(n loglogn) - deterministyczny i AC® RAM

e Han and Thorup: O (n log+~ >

logn
e Packed sort: O(n) dla w = Q(b logn loglogn)

e Signature sort: O(n) dla w = Q(log**n)

2 Operacja Merge w czasie logarytmicznym

W tym dziale dowiemy sie, jak wykonaé operacje scalania dwdch posor-
towanych ciagéw w czasie logarytmicznym od dtugoéci ciagu. Zaktadamy, ze
liczby sa poukladane w dwoch potowach jednego stowa maszynowego i two-
rzg ciagi rosnace od poczatku do potowy oraz od potowy do konca. Chcemy
otrzyma¢ jedno stowo, w ktorym wszystkie liczby sa posortowane.

Mozemy tego dokonaé¢ odwracajac pierwsza polowe stowa, a nastepnie
sortujac cate stowo bedace ciagiem bitonicznym przy pomocy algorytmu
Bitonic Sort. Jezeli obie operacje wykonamy w czasie logarytmicznym, to
cala operacja scalania rowniez zostanie wykonana w czasie logarytmicznym.

2.1 Bitonic Sort

Bitonic Sort jest pomocniczym algorytmem shuzacym do sortowania cia-
géw bitonicznych.

Ciag bitoniczny - cykliczny ciag posiadajacy jedno minimum lokalne i
jedno maksimum lokalne. Na rysuknu zaréwno a) i b) sa ciagami bi-
tonicznymi.

Algorytm Bitonic Sort:
e Podziel ciag bitoniczny na 2 réwne czesci: L oraz P
e Vi jesli L; > P;, zamien L; oraz P; miejscami

e Posortuj nowe L i P réwnolegle

Zakltadajac, ze wszystkie liczby ciggu bitonicznego mieszcza sie w jed-
nym stowie maszynowym chcemy, by drugi krok algorytmu wykonywany byt
w czasie stalym oraz aby sortowaé wszystkie ciagi otrzymane z podzialéw
jednego ciagu jednocze$nie. Mozemy to wykonaé¢ wykorzystujac operacje bi-
towe.

Zakladamy, ze liczba zajmuje b bitéw, a przed kazda liczba znajduje
sie bit pomocniczy. W pierwszej polowie ciagu ustawiamy go na 1, a w
drugiej na 0. Odejmujemy od siebie otrzymane w ten sposéb stowa. Na
miejscu bitu pomocniczego pozostanie 1, jezli liczba z pierwszej polowy ciagu
byta wieksza badz réwna albo zmieni sie na 0 w przeciwnym przypadku.
Zerujemy wszystkie bity niepomocnicze, a nastepnie odejmujemy od stowa
jego przesuniecie w prawo o b bitow. W ten sposéb otrzymamy maske bitowa,
w ktérej cate slowo bedzei pokryte jednykami jesli bedzie wicksze niz jego
odpowiednik w drugiej potowie ciggu i zerami jesli mniejsze. Koniunkcja
stowa z maska pozostawi tylko liczby wieksze niz ich konkurenci, a z negacja
maski tylko mniejsze.

Wszystko przedstawia ponizszy rysunek.

LA JL B |
!

| laalaalaalaa |

— | 0bbObbOBLOLL [+—
v

(R RR—

L8 631 bbdd |

| small A's | | small B's |
)
| small |‘7

| bigs |

L i

| small | | bigs |

Poniewaz wszystkie operacje bitowe sa identyczne dla ciagéow tej samej
wielkosci, mozemy wykonywaé drugi krok algorytmu Bitonic Sort dla wszyst-
kich otrzymanych ciagéw naraz, gdyz mieszcza sie one w jednym stowie ma-
SZynowym.

2.2 Odwracanie ciggu

Aby z dwoch ciaggéw rosnacych otrzymacé ciag bitoniczny, nalezy odwrdcié
jeden z ciagow. Wykorzystujac operacje bitowe mozna to zrobié¢ szybciej niz
liniowo.

Dzielimy ciag na polowy i zamieniamy je miejscami. Naktadajac odpo-
wiednie maski bitowe i przesuwajac stowa, mozemy wykonaé podzielenie
stéw na potowy i zamienienie poléw miejcsami w czasie stalym.

L R
-
R L
¥ ! ¥ !
L R L R
 a<a —a
R L R L

2.3 Zlozonosé czasowa

Poniewaz kazdy krok operacji Bitonic Sort oraz Reverse wykonuje sie w
czasie stalym w modelu RAM, przy czym po kazdym kroku zmniejszamy
dtugosé pojedyczego fragmentu o potowe, wykonamy logarytmicznie wiele
krokéw od dlugosci ciagu. W takim wypadku rowniez czas merge wynosi
O(logn).

3 Packed Sort

Algorytm Packed Sort jest warianetem sortowania przez scalanie dziata-
jacym w czsie O(n), o ile dlogosé stowa w > 2(b + 1) lognloglogn, gdzie b
jest liczba bitéw zajmowana przez jedna liczbe.

Powyzsze ograniczenie pozwala nam na upakowanie do jednej polowy
stowa logn loglogn liczb, gdzie przed kazda liczba zostawiamy jeden wolny
bit, a druga polowa stowa jest pusta.

Sortowanie przebiega w 3 krokach:

e Poukladanie po jednej liczbie w stowie, zostawiajac 1 bit wolny przed
kazdag liczba

e Scalenie liczb, aby w jednym stowie miescito si¢ ich k = log nloglogn.
e Scalenie wszystkich posortowanych ciagéw k liczb.

Drugi oraz trzeci punkt wykonujemy uzywajac algorytmu Merge Sort
stosujac scalanie opisane w poprzednim rozdziale. Nalezy tylko zwrdci¢ uwa-
ge na to, ze podczas scalania dwoch list posortowanych stow otrzymujemy
stowo, ktorego pierwsza polowe przekazujemy na liste wynikowa, a druga
wrzucamy z powrotem do listy zaczynajacej sie¢ od wiekszego elementu.

3.1 Zlozonos$é czasowa

k
T(k) = 2T(5) + O(logn) = T(k) = O(k)
Dowdd:

logk—1 ' log k—1 ' logk—1 '

> 2(logk—i)= > 2 -logk — Y 2'-i

=0 =0 =0

= (1424+4+...+k/2)logk — 2°F(logk —2) + 2
=(k—1)-logk —klogk +2k —2=2(k—1) = O(k)

= T(k) = O(k)

4 Signature Sort

Wykorzystujac opisany wyzej algorytm Packed Sort, za pomoca Signature
Sort mozemy posortowaé n liczb w-bitowych w czasie O(n). Zakladamy przy
tym, ze w > log?™ nloglogn. Algorytm stada sie z 7 oddzielnych czesci:

1. Podziatl liczb na kawatki

Tworzenie sygnatur

Sortowanie sugnatur

Budowa skompresowanego drzewa Trie
Rekurencyjne sortowanie krawedzi drzewa

Przywracanie prawidlowej permutacji krawedzi

Ne o e N

Wypisywanie wszystkich wartosci lisci w porzadku in-order

4.1 Podzial liczb na kawalki

Po prostu dzielimy liczbe na log®n réwnych czesci. Podzial jest tylko
wirtualny, gdyz wszystkie kawalki nadal trzymane sg w jednym slowie.

4.2 Tworzenie sygnatur

Nastepnie kazdy z kawalkéw osobno haszujemy zastepujac go O(logn)-
bitowym hashem. Wszystkie log® n czesci musimy posortowaé w czasie sta-
lym, zeby hashowanie nie zdominowalo czasu dziatlania algorytmu. Mozemy
to zrobi¢ maskujac co drugi kawatek i mnozac stowo przez jakas liczbe - wte-
dy kazdy kawalek zostanie pomnozony osobno. To samo robimy dla drugiej
potowy kawaltkéw. Szansa na kolizje jest bardzo bardzo mata, wiec w razie
czego mozemy powtorzy¢ haszowanie.

W ten sposéb otrzymalismy z liczby jej O(log!™* n)-bitowy podpis.

4.3 Sortowanie sygnatur

Kazdy z pospiséw zajmuje O(log!™n) bitéw, a rozmiar stowa wynosi
log?*¢ nloglog n, wiec iloraz mniedzy nimi bedzie réwny Q(lognloglogn).
Takie ograniczenia pozdala nam posortowaé¢ podpisy w czasie stalym za
pomoca algorytmu Packed Sort.

4.4 Budowa skompresowanego drzewa Trie

Poniewaz posortowane sygnatury nie zachowaly porzadku pomiedzy praw-
dziwymi waro$ciami liczb, mogtoby sic wydawac, ze sortowanie nie przy-
noiosto oczekiwanego efektu. Ale poniewaz kazdy kawalek haszowany byl
osobno, okazuje sie, ze drzewo Trie utworzone z liczb w ktorym kawaltki
liczb sa krawedziami, jest izomorficzne z drzewem utworonym z pospiséw.
Zeby zachowaé czas liniowy tworzymy skompresowane drzew Trie, czyli ta-
kie w ktérym wierzchotki nieposiadajace rozgaltezien zawarte sa w swoich
rodzicach.

4.5 Rekurencyjne sortowanie krawedzi drzewa

Aby przywrécié¢ prawidlows kolejnosé wierzchotkéw, sortujemy je reku-
rencyjnie po trzech wartosciach:

(numer wierzchotka, prawidlowa warto$é¢ kawalka, nr krawedzi)

Numer wierzcholka to jego wartoéé¢ in-order, a prawidtowa warto$é to war-
tos¢ przed hashowaniem. Nr krawedzi zostawiamy, by moc nastepnie doko-
naé¢ permutacji krawedzi i znalezé odpowiednig kolejnosé liczb.

Pierwsza i trzecia warto$¢ sa O(logn)-bitowe. Zostana zdominowane
przez druga warto$¢, ktéra zajmuje w/log®n bitéw. Jako algorytmu sor-
tujacego uzywamy rekurencyjnie algorytmu Signature Sort. Po zaglebieniu
sie w rekurencje 1+ 1/ razy, czyli stalo liczbe, otrzymujemy do sortowania
wyrazenie zajmujace O(logn + ﬁ) = O(logl%en) = O(m) bi-
tow. Wtedy mozemy posortowaé je w czasie liniowym za pomoca algorytmu
Packed Sort.

4.6 Przywracanie prawidlowej permutacji krawedzi

Majac posortowane krawedzie drzewa mozemy teraz pozamienia ich ko-
lejno$¢ na taka, jaka bylaby w oryginalnym drzewie Trie.

4.7 Wypisywanie wszystkich wartosci liSci w porzadku in-
order

Nastepnie wystarczy przejrzeé¢ drzewo w porzadku in-order i wypisywaé

......

Literatura

[1] Prof. Erik Demaine, Advanced Data Structures, Spring 2012

[2] Wolfram—Alpha: Computational Knowledge Engine

