
Signature Sort

Jan Sochiera

23 października 2012

Zaawansowane Struktury Danych 2012

Wstęp

W artykule porównane są różne metody sortowania liczb całkowitych oraz
opisana dokładnie jedna z nich - Signature Sort.

Jako model obliczeniowy przyjmujemy model word-RAM, czyli taki, w
którym wszystkie operacje bitowe oraz arytmetyczne wykonywane na jed-
nym słowie maszynowym wykonują się w czasie stałym.

1 Porównanie metod sortowania

Poniższe zestawienie pokazuje złożoność różnych algorytmów sortowania
liczb całkowitych w modelu RAM.
ω oznacza długość słowa maszynowego, jakim dysponujemy, a b to mak-

symalna liczba bitów zajmowana przez liczbę. Domyślnie b = ω.

• Porównania między elementami: O(n log n)

• Sortowanie przez zliczanie: O(n+ 2ω)

• Sortowanie pozycyjne (radix sort): O(n ωlog n)

• Emde Boas: O(n log ωlog n)

• Han: O(n log log n) - deterministyczny i AC0 RAM

• Han and Thorup: O
(
n
√
log ωlog n

)
• Packed sort: O(n) dla ω = Ω(b log n log log n)

• Signature sort: O(n) dla ω = Ω(log2+εn)

1

2 Operacja Merge w czasie logarytmicznym

W tym dziale dowiemy się, jak wykonać operację scalania dwóch posor-
towanych ciągów w czasie logarytmicznym od długości ciągu. Zakładamy, że
liczby są poukładane w dwóch połowach jednego słowa maszynowego i two-
rzą ciągi rosnące od początku do połowy oraz od połowy do końca. Chcemy
otrzymać jedno słowo, w którym wszystkie liczby są posortowane.

Możemy tego dokonać odwracając pierwszą połowę słowa, a następnie
sortując całe słowo będące ciągiem bitonicznym przy pomocy algorytmu
Bitonic Sort. Jeżeli obie operacje wykonamy w czasie logarytmicznym, to
cała operacja scalania również zostanie wykonana w czasie logarytmicznym.

2.1 Bitonic Sort

Bitonic Sort jest pomocniczym algorytmem służącym do sortowania cią-
gów bitonicznych.

Ciąg bitoniczny - cykliczny ciąg posiadający jedno minimum lokalne i
jedno maksimum lokalne. Na rysuknu zarówno a) i b) są ciągami bi-
tonicznymi.

Algorytm Bitonic Sort:

• Podziel ciąg bitoniczny na 2 równe części: L oraz P

• ∀i jeśli Li > Pi, zamień Li oraz Pi miejscami

• Posortuj nowe L i P równolegle

2

Zakładając, że wszystkie liczby ciągu bitonicznego mieszczą się w jed-
nym słowie maszynowym chcemy, by drugi krok algorytmu wykonywany był
w czasie stałym oraz aby sortować wszystkie ciągi otrzymane z podziałów
jednego ciągu jednocześnie. Możemy to wykonać wykorzystując operacje bi-
towe.

Zakładamy, że liczba zajmuje b bitów, a przed każdą liczbą znajduje
się bit pomocniczy. W pierwszej połowie ciągu ustawiamy go na 1, a w
drugiej na 0. Odejmujemy od siebie otrzymane w ten sposób słowa. Na
miejscu bitu pomocniczego pozostanie 1, jeżli liczba z pierwszej połowy ciągu
była większa bądź równa albo zmieni się na 0 w przeciwnym przypadku.
Zerujemy wszystkie bity niepomocnicze, a nastepnie odejmujemy od słowa
jego przesunięcie w prawo o b bitów. W ten sposób otrzymamy maskę bitową,
w której całe słowo będzei pokryte jednykami jesli będzie większe niż jego
odpowiednik w drugiej połowie ciągu i zerami jeśli mniejsze. Koniunkcja
słowa z maską pozostawi tylko liczby większe niż ich konkurenci, a z negacją
maski tylko mniejsze.

Wszystko przedstawia poniższy rysunek.

3

Ponieważ wszystkie operacje bitowe są identyczne dla ciągów tej samej
wielkości, możemy wykonywać drugi krok algorytmu Bitonic Sort dla wszyst-
kich otrzymanych ciągów naraz, gdyż mieszczą się one w jednym słowie ma-
szynowym.

2.2 Odwracanie ciągu

Aby z dwóch ciągów rosnących otrzymać ciąg bitoniczny, nalezy odwrócić
jeden z ciągów. Wykorzystując operacje bitowe można to zrobić szybciej niż
liniowo.

Dzielimy ciąg na połowy i zamieniamy je miejscami. Nakładając odpo-
wiednie maski bitowe i przesuwając słowa, możemy wykonać podzielenie
słów na połowy i zamienienie połów miejcsami w czasie stałym.

2.3 Złożoność czasowa

Ponieważ każdy krok operacji Bitonic Sort oraz Reverse wykonuje się w
czasie stałym w modelu RAM, przy czym po każdym kroku zmniejszamy
długość pojedyczego fragmentu o połowę, wykonamy logarytmicznie wiele
kroków od długości ciągu. W takim wypadku również czas merge wynosi
O(log n).

3 Packed Sort

Algorytm Packed Sort jest warianetem sortowania przez scalanie działa-
jącym w czsie O(n), o ile dłogość słowa ω ­ 2(b + 1) log n log logn, gdzie b
jest liczbą bitów zajmowaną przez jedną liczbę.

Powyższe ograniczenie pozwala nam na upakowanie do jednej połowy
słowa log n log log n liczb, gdzie przed każdą liczbą zostawiamy jeden wolny
bit, a druga połowa słowa jest pusta.

4

Sortowanie przebiega w 3 krokach:

• Poukładanie po jednej liczbie w słowie, zostawiając 1 bit wolny przed
każdą liczbą

• Scalenie liczb, aby w jednym słowie mieściło się ich k = log n log log n.

• Scalenie wszystkich posortowanych ciągów k liczb.

Drugi oraz trzeci punkt wykonujemy używając algorytmu Merge Sort
stosując scalanie opisane w poprzednim rozdziale. Należy tylko zwrócić uwa-
gę na to, że podczas scalania dwóch list posortowanych słów otrzymujemy
słowo, którego pierwszą połowę przekazujemy na listę wynikową, a drugą
wrzucamy z powrotem do listy zaczynającej się od większego elementu.

3.1 Złożoność czasowa

T (k) = 2T (
k

2
) +O(log n)⇒ T (k) = O(k)

Dowód:

log k−1∑
i=0

2i(log k − i) =
log k−1∑
i=0

2i · log k −
log k−1∑
i=0

2i · i

= (1 + 2 + 4 + ...+ k/2) log k − 2logk(log k − 2) + 2

= (k − 1) · log k − k log k + 2k − 2 = 2(k − 1) = O(k)

⇒ T (k) = O(k)

4 Signature Sort

Wykorzystując opisany wyżej algorytm Packed Sort, za pomocą Signature
Sort możemy posortować n liczb ω-bitowych w czasie O(n). Zakładamy przy
tym, że ω ­ log2+ε n log log n. Algorytm słada się z 7 oddzielnych części:

1. Podział liczb na kawałki

2. Tworzenie sygnatur

3. Sortowanie sugnatur

4. Budowa skompresowanego drzewa Trie

5. Rekurencyjne sortowanie krawędzi drzewa

6. Przywracanie prawidłowej permutacji krawędzi

7. Wypisywanie wszystkich wartości liści w porządku in-order

5

4.1 Podział liczb na kawałki

Po prostu dzielimy liczbę na logε n równych części. Podział jest tylko
wirtualny, gdyż wszystkie kawałki nadal trzymane są w jednym słowie.

4.2 Tworzenie sygnatur

Następnie każdy z kawałków osobno haszujemy zastępując go O(log n)-
bitowym hashem. Wszystkie logε n częsci musimy posortować w czasie sta-
łym, żeby hashowanie nie zdominowało czasu działania algorytmu. Możemy
to zrobić maskując co drugi kawałek i mnożąc słowo przez jakąś liczbę - wte-
dy każdy kawałek zostanie pomnożony osobno. To samo robimy dla drugiej
połowy kawałków. Szansa na kolizję jest bardzo bardzo mała, więc w razie
czego możemy powtórzyć haszowanie.

W ten sposób otrzymaliśmy z liczby jej O(log1+ε n)-bitowy podpis.

4.3 Sortowanie sygnatur

Każdy z pospisów zajmuje O(log1+ε n) bitów, a rozmiar słowa wynosi
log2+ε n log log n, więc iloraz mniędzy nimi będzie równy Ω(log n log logn).
Takie ograniczenia pozdala nam posortować podpisy w czasie stałym za
pomocą algorytmu Packed Sort.

4.4 Budowa skompresowanego drzewa Trie

Ponieważ posortowane sygnatury nie zachowały porządku pomiędzy praw-
dziwymi warościami liczb, mogłoby się wydawać, że sortowanie nie przy-
noiosło oczekiwanego efektu. Ale ponieważ każdy kawałek haszowany był
osobno, okazuje się, że drzewo Trie utworzone z liczb w którym kawałki
liczb są krawędziami, jest izomorficzne z drzewem utworonym z pospisów.
Żeby zachować czas liniowy tworzymy skompresowane drzew Trie, czyli ta-
kie w którym wierzchołki nieposiadające rozgałezień zawarte są w swoich
rodzicach.

6

4.5 Rekurencyjne sortowanie krawędzi drzewa

Aby przywrócić prawidłową kolejność wierzchołków, sortujemy je reku-
rencyjnie po trzech wartościach:

(numer wierzchołka, prawidłowa wartość kawałka, nr krawędzi)

Numer wierzchołka to jego wartość in-order, a prawidłowa wartość to war-
tość przed hashowaniem. Nr krawędzi zostawiamy, by móc następnie doko-
nać permutacji krawędzi i znaleźć odpowiednią kolejność liczb.

Pierwsza i trzecia wartość są O(log n)-bitowe. Zostaną zdominowane
przez drugą wartość, która zajmuje ω/ logε n bitów. Jako algorytmu sor-
tującego używamy rekurencyjnie algorytmu Signature Sort. Po zagłębieniu
się w rekurencję 1 + 1/ε razy, czyli stało liczbę, otrzymujemy do sortowania
wyrażenie zajmujące O(log n + ω

log1+ε n
) = O(ω

log1+ε n
) = O(ω

logn log logn) bi-
tów. Wtedy możemy posortować je w czasie liniowym za pomocą algorytmu
Packed Sort.

4.6 Przywracanie prawidłowej permutacji krawędzi

Mając posortowane krawędzie drzewa możemy teraz pozamienia ich ko-
lejność na taką, jaka byłaby w oryginalnym drzewie Trie.

4.7 Wypisywanie wszystkich wartości liści w porządku in-
order

Następnie wystarczy przejrzeć drzewo w porządku in-order i wypisywać
właściwe wartości liści jako już posortowanych liczb całkowitych.

7

Literatura

[1] Prof. Erik Demaine, Advanced Data Structures, Spring 2012

[2] Wolfram—Alpha: Computational Knowledge Engine

8

