

Zaawansowane technologie Javy

Wykład 11 (24 kwietnia 2012)

JNI – trochę C (a może
Prologa?) w Javie

Co to jest JNI?
 Mechanizm do uruchamia w JVM kodu pisanego

w innych językach
 Głównie C, C++, Assembler
 Ale istnieją zewnętrzne biblioteki umożliwiające

obsługę innych języków

Kiedy używać JNI?
 Gdy potrzebne są rzeczy niedostępne w Javie,

zależne od sprzętu, systemu itp. (Np. globalne
skróty klawiaturowe)

 Gdy korzystamy z istniejącego już
kodu/systemu/biblioteki i jego ponowna
implementacja w Javie to zbyt duży koszt

 Gdy potrzebujemy kodu napisanego jak
najbardziej efektywnie (np. w assemblerze)

Wady JNI
 Błąd w kodzie natywnym bywa trudny do wykrycia i bywa

niebezpieczny dla części pisanej w Javie
 Tracimy silną kontrolę typów Javy np. na rzecz

luźniejszej w C (kolejna okazja dla błędów)
 Z tych powodów najlepiej jest projektować kod tak, żeby

metody natywne były skupione w poszczególnych
klasach, których jest niewiele.

 Pewien narzut czasowy związany z wywołaniem metody
w innym języku.

 Utrata wieloplatformowości. Sami musimy troszczyć o
odpowiednie wersje rodzimych bibliotek dla różnych
systemów.

Deklaracja metod
natywnych
 Słowo kluczowe native.
 Przykładowa klasa „HelloNative.java”:

class HelloNative{

public static native void greeting();

}
 Deklarujemy jak metodę abstrakcyjną
 Treść metody w bibliotece zewnętrznej

Przyjemny plik
nagłówkowy

/* Tu była linijka ale ją usunęliśmy */

#include <jni.h>

/* Header for class HelloNative */

#ifndef _Included_HelloNative

#define _Included_HelloNative

#ifdef __cplusplus

extern "C" {

#endif

/*

 * Class: HelloNative

 * Method: greeting

 * Signature: ()V

 */

JNIEXPORT void JNICALL Java_HelloNative_greeting

 (JNIEnv *, jclass);

#ifdef __cplusplus

}

#endif

#endif

Oto wycięta linijka:
 /* DO NOT EDIT THIS FILE – it is
machine generated */

 Żeby wygenerować ten plik:
 javac HelloNative.java
 javah HelloNative

Char, String – jchar, jstring
 Java korzysta z kodowania UTF-16
 C korzysta z UTF-8
 jchar to kod UTF-16
 Otrzymujemy zestaw metod:

 jstring NewStringUTF(JNIEnv*, const char[])
 Jsize GetStringUTFLength(JNIEnv*, jstring)
 … w książce

Wywoływanie metod
JNIEnv
 Pierwsze parametry metody natywnej to

zmienna środowiskowa JNIEnv* oraz struktura
typu jclass lub jobject.

 JNIEnv* wskazuje na tablicę wskaźników na funkcje

jstr=(*env)->NewStringUTF(env,
„Greetings!”); // w C

jstr=env->NewStringUTF(env,
„Greetings!”); // w C++

HelloNative.c

#include "HelloNative.h"
#include <stdio.h>

JNIEXPORT void JNICALL
Java_HelloNative_greeting(JNIEnv* env, jclass
cl){
 printf("Hello Native World!\n");
}

Kompilacja i uruchomienie
gcc -fPIC -I <katalog z JDK>/include -I
<katalog z JDK>/include/linux -shared -o
libHelloNative.so HelloNative.c

 W przypadku innych systemów lub innych
kompilatorów prosimy o sięgnięcie do
dokumentacji

Ładowanie biblioteki
class HelloNative{

public static native void greeting();

static{

System.loadLibrary(„HelloNative”)

}

}
 Maszyna wirtualna musi znać ścieżkę dostępu do

biblioteki, np:

java -Djava.library.path=. HelloNativeTest

Typy w kodzie natywnym
(C/C++)

Java C Bajty

boolean jboolean 1

byte jbyte 1

char jchar 2

short jshort 2

int jint 4

long jlong 8

float jfloat 4

double jdouble 8

Dostęp do pól obiektu

jclass class_Employee =

(*env)->GetObjectClass(env,this_obj);

jfieldID id_salary =

(*env)->getFieldID(env, class_Employee, „salary”,”D”);

jdouble salary=

(*env)->GetDoubleField(env, this_obj, id_salary);

salary*=1+byPercent/100;

(*env)->setDoubleField(env,this_obj,id_salary,salary);

Dostęp do pól statycznych
jclass class_System=

(*env)->FindClass(env, „java/lang/System”);

jfieldID id_out=

(*env)->GetStaticFieldID(env, class_System,
„out”, „Ljava/io/PrintStream; ”);

jobject obj_out =

(*env)->GetStaticObjectField(env,class_System,
id_out);

Sygnatury
 B byte
 C char
 D double
 F float
 I int
 J long
 Lclassname typ będący klasą
 S short
 V void
 Z boolean
 [tablica

 A tak naprawdę, to:
javap -s -private HelloNative

Wywoływanie metod
obiektów

class_PrintWriter =

(*env)->GetObjectClass(env,out);

id_print =

(*env)->GetMethodID(env, class_PrintWriter,
„print”, „Ljava/lang/String;)V”);

(*env)->CallVoidMethod(env,out,id_print,str);

Wyjątkowy program
 class CatchThrow {
 private native void doit()
 throws IllegalArgumentException;
 private void callback() throws NullPointerException {
 throw new NullPointerException("CatchThrow.callback");
 }
 public static void main(String args[]) {
 CatchThrow c = new CatchThrow();
 try {
 c.doit();
 } catch (Exception e) {
 System.out.println("In Java:\n\t" + e);
 }
 }
 static {
 System.loadLibrary("CatchThrow");
 }
 }

Wyjątkowy program 2
 JNIEXPORT void JNICALL

 Java_CatchThrow_doit(JNIEnv *env, jobject obj)

 {

 jthrowable exc;

 jclass cls = (*env)->GetObjectClass(env, obj);

 jmethodID mid = (*env)->GetMethodID(env, cls, "callback", "()V");

 if (mid == NULL) {

 return;

 }

 (*env)->CallVoidMethod(env, obj, mid);

 exc = (*env)->ExceptionOccurred(env);

 if (exc) {

 jclass newExcCls;

 (*env)->ExceptionDescribe(env);

 (*env)->ExceptionClear(env);

 newExcCls = (*env)->FindClass(env, "java/lang/IllegalArgumentException");

 if (newExcCls == NULL) {

 /* Unable to find the exception class, give up. */

 return;

 }

 (*env)->ThrowNew(env, newExcCls, "thrown from C code");

 }

 }

Uwaga!

 Obecnie wyrzucanie wyjątków przez metody
macierzyste tworzone w języku C++ nie jest
zaimplementowane. Dlatego w kodzie macierzystym
rzucamy wyjątki metodami Throw i ThrowNew bez
wykorzystywania mechanizmów C++!

Coś i bibliografia
 LibreOffice Impress robi lepsze wcięcia niż DevC++, ale

wie lepiej co człowiek ma na myśli.
 http://docs.oracle.com/javase/7/docs/technotes/guides/j

ni/spec/jniTOC.html
 http://java.sun.com/docs/books/jni/html/titlepage.html
 Cay Horstmann, Gary Cornell: Core Java. Techniki

zaawansowane. Wydanie 8. Wydawnictwo HELION,
Gliwice 2009.

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21

