I Zaawansowane technologie Javy

Wyktad 11 (24 kwietnia 2012)

JNI - troche C (a moze
Prologa?) w Javie

-H Co to jest JNI?

Mechanizm do uruchamia w JVM kodu pisanego
w innych jezykach

= Gtownie C, C++, Assembler

= Ale istniejg zewnetrzne biblioteki umozliwiajgce
obstuge innych jezykow

. . . NI
l.ﬁM Kiedy uzywac NI

= Gdy potrzebne sg rzeczy niedostepne w Javie,
zalezne od sprzetu, systemu itp. (Np. globalne
skréoty klawiaturowe)

= Gdy korzystamy z istniejgcego juz
kodu/systemu/biblioteki i jego ponowna
Implementacja w Javie to zbyt duzy koszt

= Gdy potrzebujemy kodu napisanego jak
najbardzie] efektywnie (np. w assemblerze)

Wady JNI

" Btad w kodzie natywnym bywa trudny do wykrycia i bywa
niebezpieczny dla czesci pisanej w Javie

= Tracimy silng kontrole typdw Javy np. na rzecz
luzniejszej w C (kolejna okazja dla btedéw)

= Z tych powodow najlepiej jest projektowac kod tak, zeby
metod%/ natywne byty skupione w poszczegdlnych
klasac ktorych jest niewiele.

" Pewien narzut czasowy zwigzany z wywotaniem metody
w innym jezyku.
= Utrata wieloplatformowosci. Sami musimy troszczyc¢ o

odpowiednie wersje rodzimych bibliotek dla réznych
systemow.

Deklaracja metod

L*« natywnych

= Stowo kluczowe native.
= Przyktadowa klasa ,HelloNative.java”:

class HelloNative{
public static native void greeting();

h
= Deklarujemy jak metode abstrakcyjng

= Tres¢ metody w bibliotece zewnetrzne;

oy I >4 |
nagtowko
/* Tu byta linijka ale jg usunelismy */

#include <jni.h>

/* Header for class HelloNative */

#ifndef _Included HelloNative
#define _Included HelloNative
#ifdef __cplusplus

extern "Cc" {

#endif

/*
* Cclass: HelloNative
* Method: greeting

* Signature: ()V
*/

JNIEXPORT void JNICALL Java_HelloNative greeting
(JNIEnv *, jclass);

#ifdef __cplusplus
}

#endif

#endif

L;ﬁ« Oto wycieta linijka:

= /* DO NOT EDIT THIS FILE - it 1s
machine generated */

= Zeby wygenerowac ten plik:
" javac HelloNative.java
= javah HelloNative

L&M Char, String - jchar, jstring

= Java korzysta z kodowania UTF-16

= C korzysta z UTF-8

= jchar to kod UTF-16

= Otrzymujemy zestaw metod:
= jstring NewStringUTF(JNIEnv*, const charl])
= Jsize GetStringUTFLength(JNIEnv*, jstring)
= ... wksigzce

Wywotywanie metod
JNIENV

" Pierwsze parametry metody natywnej to
zmienna srodowiskowa JNIEnv* oraz struktura
typu jclass lub jobject.
= JNIEnv* wskazuje na tablice wskaznikow na funkcje

jstr=(*env)->NewStringUTF(env,
,Greetings!”); // w C

b

jstr=env->NewStringUTF(env,
,Greetings!”); // w C++

HelloNative.c

#include "HelloNative.h"
#include <stdio.h>

JNIEXPORT void JNICALL
Java_HelloNative_greeting(JNIEnv* env, jclass

c1){
printf("Hello Native World!\n");
¥

kim Kompilacja i uruchomienie

gcc -fPIC -I <katalog z JDK>/include -I
<katalog z JDK>/include/linux -shared -o
libHelloNative.so HelloNative.c

= W przypadku innych systeméw lub innych
kompilatorow prosimy o siegniecie do
dokumentacji

tadowanie biblioteki

class HelloNative{
public static native void greeting(),;

static{
System. loadLibrary(,HelloNative”)

}

= Maszyna wirtualna musi znac sciezke dostepu do
biblioteki, np:

java -Djava.library.path=. HelloNativeTest

Typy w kodzie natywnym
(C/C++)

Java C Bajty
boolean jboolean 1
byte joyte 1
char jchar 2
short jshort 2
int jint 4
long jlong 8
float jfloat 4
double jdouble 8

L&M Dostep do pdl obiektu

jclass class_Employee =

(*env)->GetObjectClass(env, this_obj);
jfieldID id_salary =

(*env)->getFieldID(env, class_Employee, ,salary”,”D");
jdouble salary=

(*env)->GetDoubleField(env, this_obj, id_salary);
salary*=1+byPercent/100;

(*env)->setDoubleField(env, this_obj, i1d_salary, salary);

L&M Dostep do pél statycznych

jclass class_System=
(*env)->FindClass(env, ,java/lang/System”);
jfieldID id_out=

(*env)->GetStaticFieldID(env, class_Systenm,
ysout”, ,Ljava/io/PrintStream; ");

jobject obj_out =

(*env)->GetStaticObjectField(env,class_System,
1d_out);

Sygnatury

B byte

C char

D double
F float

| int

J long
Lclassname typ bedacy klasa
S short

V void

Z boolean
[tablica

= A tak naprawde, to:
javap -s -private HelloNative

Wywotywanie metod
obiektow

class_PrintWriter =
(*env)->GetObjectClass(env,out);
1d_print =

(*env)->GetMethodID(env, class_PrintWriter,
,print”, ,Ljava/lang/String;)V");

(*env)->CallVoidMethod(env, out,id_print, str);

L*« Wyjatkowy program

class CatchThrow {
private native void doit()
throws IllegalArgumentException;
private void callback() throws NullPointerException {
throw new NullPointerException("CatchThrow.callback");
}
public static void main(String args[]) {
CatchThrow ¢ = new CatchThrow();
try {
c.doit();
} catch (Exception e) {
System.out.println("In Java:\n\t" + e);

b
b
static {
System.loadLibrary("CatchThrow");
b

{

Wyjatkowy program 2

JNIEXPORT void JNICALL
Java_CatchThrow_doit (JNIEnv *env, jobject obj)

jthrowable exc;
jclass cls = (*env)->GetObjectClass(env,
jmethodID mid = (*env)->GetMethodID(env,
if (mid == NULL) {
return;
}
(*env)->CallvVoidMethod(env, obj, mid);
exc = (*env)->ExceptionOccurred(env);
if (exc) {
jclass newExcCls;
(*env) ->ExceptionDescribe(env);
(*env)->ExceptionClear(env);

obj);
cls, "callback", "()V");

newexcCls = (*env)->FindClass(env, "java/lang/IllegalArgumentException");

if (newExcCls == NULL) {

/* Unable to find the exception class, give up. */

return;

}

(*env)->ThrowNew(env, newkExcCls, "thrown from C code");

l.ﬂ Uwaga!

Obecnie wyrzucanie wyjgtkow przez metody
macierzyste tworzone w jezyku C++ nie jest
zaimplementowane. Dlatego w kodzie macierzystym
rzucamy wyjatki metodami Throw i ThrowNew bez
wykorzystywania mechanizmoéw C++!

Cos i bibliografia

= LibreOffice Impress robi lepsze wciecia niz DevC++, ale
wie lepiej co cztowiek ma na mysili.

= http://docs.oracle.com/javase/7/docs/technotes/quides/j
ni/spec/jniTOC.html

= http://java.sun.com/docs/books/jni/html/titlepage.html

= Cay Horstmann, Gary Cornell: Core Java. Techniki
zaawansowane. Wydanie 8. Wydawnictwo HELION,
Gliwice 20009.

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21

