laboratorium: zadanie 4 termin: 7-8 marca 2012 r.

KURS JEZYKA CH+

TABLICA BITOW

Instytut Informatyki Uniwersytetu Wroctawskiego Pawel Rzechonek

Zadanie.

Zdefiniuj klase tab_bit reprezentujaca tablice bitéw. Najprosciej implementuje sie taka strukture danych za
pomoca zwyklej tablicy typu int [1, przeznaczajac na zapamietanie bitu cale stowo. Jest to rozwiazanie proste,
ale bardzo rozrzutne co do zuzywanej pamigci — tablica bitéw pamietana w ten sposéb jest kilka/kilanascie
razy obszerniejsza niz potrzeba. A wiec takie rozwigzanie nas nie satysfakcjonuje, szczegdlnie gdy trzeba
postugiwaé sie w programie wieloma duzymi tablicami (chodzi o tablice zawierajace tysiace a nawet miliony
bitéw).

Nalezy zatem tak zaprojektowaé tablice bitowe, aby przydzielona pamieé¢ byla wykorzystywana co do
bitu (modulo rozmiar stowa). W klasie tab_bit zdefiniuj operator indeksowania, ktéry umozliwialby zaréwno
czytanie z tablicy, jak rowniez pisanie do niej. Oto fragment kodu, ktéry powinien sie skompilowaé i uruchomicé:

tab_bit t(72); // tablica 72 bitow

t[0] = 1; // ustawienie bitu O-ego bitu na 1

t[71] = true; // ustawienie bitu 71-go bitu na 1

bool b = t[0]; // odczytanie bitu O-ego

t[40] = b; // ustawienie bitu 40-go

t[36] = t[38] = t[71]; // przepisanie bitu 71-go do bitow 38-go i 36-go
cout<<t<<endl; // wysietlenie zawartosci tablicy bitow na ekranie

Poniewaz nie mozna zaadresowaé pojedynczego bitu (a tym samym nie mozna ustamowié¢ referencji do
niego), wiec trzeba sie poshuzyé specjalna technika umozliwiajaca dostep do pojedynczego bitu w tablicy.
Robi sie to poprzez zastosowanie obiektéw niewidocznej dla programisty klasy pomocniczej, umiejacej odczytaé
i zapisa¢ pojedynczy bit.

class tab_bit
{
typedef unsigned long long slowo; // komorka w tablicy
static const int rozmiarSlowa; // rozmiar slowa w bitach
friend istream & operator >> (istream &we, tab_bit &tb);
friend ostream & operator << (ostream &wy, const tab_bit &tb);
class ref; // klasa pomocnicza dla operatora indeksowania
protected:
int dl; // liczba bitéw
slowo *tab; // tablica bitéw
public:
explicit tab_bit (int rozm);
tab_bit (const tab_bit &tb);
tab_bit & operator = (const tab_bit &tb);
~tab_bit O;
private:
bool czytaj (int i) const;
bool pisz (int i, bool b);
public:
bool operator[] (int i) const;
ref operator[] (int i);
inline int rozmiar () const { return dl; }

};

Klasa ref jest klasa pomocnicza, ktorej zadaniem jest zaadresowanie pojedynczego bitu w tablicy —
zastanow sie jak powinna ona by¢ zaimplementowana.

Do kompletu podefiniuj operatory koniunkcji, alternatywy, réznicy symetrycznej w polaczeniu z przypi-
saniem oraz operator negacji, ktére beda wykonywaé¢ dzialania na calych tablicach bitow. Nie zapomnij tez
o operatorach czytania ze strumienia wejsciowego i pisania do strumienia wyj$ciowego. Wymienione operatory
powinny sie przyjazni¢ z klasa tab_bit.

Definicje klasy umies¢ w pliku tabbit.h, a definicje funkcji sktadowych w pliku tabbit.cpp. Program
gltéwny w pliku main.cpp ma rzetelnie przetestowaé poprawnos¢ zdefiniowanych przez Ciebie operacji na
tablicach bitowych i operacji na poszczegdlnych bitach tablicy.

Uzupelnienie.
Napisz program, ktéry rzetelnie przetestuje klase tab_bit (operacje na poszczegélnych bitach tablicy oraz
na calych tablicach bitéw).

Uwaga 1.
W programie zglaszaj bledy za pomoca wyjatkéw (instrukcja throw string("komunikat o bledzie")).

Uwaga 2.
Podziel program na pliki nagléwkowe i zrédlowe. Definicje klasy umie$¢ w pliku tabbit.h, a definicje
funkeji sktadowych w pliku tabbit.cpp. Program testujacy umie$¢ w pliku main. cpp.

