
laboratorium: zadanie 4 termin: 7–8 marca 2012 r.

kurs języka C++
tablica bitów

Instytut Informatyki Uniwersytetu Wrocławskiego Paweł Rzechonek

Zadanie.
Zdefiniuj klasę tab bit reprezentującą tablicę bitów. Najprościej implementuje się taką strukturę danych za

pomocą zwykłej tablicy typu int[], przeznaczając na zapamiętanie bitu całe słowo. Jest to rozwiązanie proste,
ale bardzo rozrzutne co do zużywanej pamięci — tablica bitów pamiętana w ten sposób jest kilka/kilanaście
razy obszerniejsza niż potrzeba. A więc takie rozwiązanie nas nie satysfakcjonuje, szczególnie gdy trzeba
posługiwać się w programie wieloma dużymi tablicami (chodzi o tablice zawierające tysiące a nawet miliony
bitów).
Należy zatem tak zaprojektować tablice bitowe, aby przydzielona pamięć była wykorzystywana co do

bitu (modulo rozmiar słowa). W klasie tab bit zdefiniuj operator indeksowania, który umożliwiałby zarówno
czytanie z tablicy, jak również pisanie do niej. Oto fragment kodu, który powinien się skompilować i uruchomić:

tab_bit t(72); // tablica 72 bitow
t[0] = 1; // ustawienie bitu 0-ego bitu na 1
t[71] = true; // ustawienie bitu 71-go bitu na 1
bool b = t[0]; // odczytanie bitu 0-ego
t[40] = b; // ustawienie bitu 40-go
t[36] = t[38] = t[71]; // przepisanie bitu 71-go do bitow 38-go i 36-go
cout<<t<<endl; // wysietlenie zawartosci tablicy bitow na ekranie

Ponieważ nie można zaadresować pojedynczego bitu (a tym samym nie można ustamowić referencji do
niego), więc trzeba się posłużyć specjalną techniką umożliwiającą dostęp do pojedynczego bitu w tablicy.
Robi się to poprzez zastosowanie obiektów niewidocznej dla programisty klasy pomocniczej, umiejącej odczytać
i zapisać pojedynczy bit.

class tab_bit
{
typedef unsigned long long slowo; // komorka w tablicy
static const int rozmiarSlowa; // rozmiar slowa w bitach
friend istream & operator >> (istream &we, tab_bit &tb);
friend ostream & operator << (ostream &wy, const tab_bit &tb);
class ref; // klasa pomocnicza dla operatora indeksowania

protected:
int dl; // liczba bitów
slowo *tab; // tablica bitów

public:
explicit tab_bit (int rozm);
tab_bit (const tab_bit &tb);
tab_bit & operator = (const tab_bit &tb);
~tab_bit ();

private:
bool czytaj (int i) const;
bool pisz (int i, bool b);

public:
bool operator[] (int i) const;
ref operator[] (int i);
inline int rozmiar () const { return dl; }

};

1



Klasa ref jest klasą pomocniczą, której zadaniem jest zaadresowanie pojedynczego bitu w tablicy —
zastanów się jak powinna ona być zaimplementowana.
Do kompletu podefiniuj operatory koniunkcji, alternatywy, różnicy symetrycznej w połączeniu z przypi-

saniem oraz operator negacji, które będą wykonywać działania na całych tablicach bitów. Nie zapomnij też
o operatorach czytania ze strumienia wejściowego i pisania do strumienia wyjściowego. Wymienione operatory
powinny się przyjaźnić z klasą tab bit.
Definicję klasy umieść w pliku tabbit.h, a definicje funkcji składowych w pliku tabbit.cpp. Program

główny w pliku main.cpp ma rzetelnie przetestować poprawność zdefiniowanych przez Ciebie operacji na
tablicach bitowych i operacji na poszczególnych bitach tablicy.

Uzupełnienie.
Napisz program, który rzetelnie przetestuje klasę tab bit (operacje na poszczególnych bitach tablicy oraz

na całych tablicach bitów).

Uwaga 1.
W programie zgłaszaj błędy za pomocą wyjątków (instrukcja throw string("komunikat o błędzie")).

Uwaga 2.
Podziel program na pliki nagłówkowe i źródłowe. Definicję klasy umieść w pliku tabbit.h, a definicje

funkcji składowych w pliku tabbit.cpp. Program testujący umieść w pliku main.cpp.

2


