
laboratorium: zadanie 12 termin: 11/12 stycznia 2012 r.

kurs programowania w Javie
drzewo BST

Instytut Informatyki Uniwersytetu Wrocławskiego Paweł Rzechonek

Zadanie 1.
Zdefiniuj klasę sparametryzowaną do pamiętania zbioru dynamicznego w postaci drzewa binarnych poszu-

kiwań DrzewoBST<T>. Klasa ta ma być opakowaniem dla homogenicznej struktury tworzonej wewnątrz na
obiektach typu Węzeł. Twoja klasa powinna implementować operacje słownikowe (sprawdzać czy element o
zadanej wartości istnieje szukaj, dodawać nowy element do zbioru wstaw i usuwać element zadany element
usuń) zdefiniowane w interfejsie Słownik<T>.

class DrzewoBST<T extends Comparable<T>> implements Słownik<T>
{
private class Węzeł <T extends Comparable<T>>
{
Węzeł<T> lewy, prawy, ojciec;
T dane;
// ...

}

private Węzeł<T> korzeń;

// ... metody słownikowe
public String toString () { /*...*/ }

}

Przy próbie włożenia do drzewa wartości null należy zgłosić wyjątek NullPointerException. Dopisz też
metody podające ilość elementów w zbiorze ile() i usuwającej wszystkie elementy z drzewa czyść().
Zdefiniowana przez Ciebie klasa DrzewoBST<T> powinna prawidłowo działać w warunkach pracy współbież-

nej, gdy wiele wątków jednocześnie pracuje na takim drzewie.

Zadanie 2.
Do klasy reprezentującej drzewo BST dopisz metodę iterator(), która będzie tworzyła i zwracała iterator

związany z danym drzewem. Zdefiniuj więc klasę iteratora dedykowaną dla Twojego drzewa i implementującą
interfejs Iterator<T>. Iterator ten powinien być wrażliwy na wszelkie zmiany w drzewie, po którym iteruje —
jeśli w trakcie iteracji po drzewie zostanie na nim dokonana jakakolwiek zmiana, to następne użycie iteratora
powinno skutkować zgłoszeniem wyjątku ConcurrentModificationException.

Zadanie 3.
Napisz program konsolowy, rzetelnie testujący działanie zdefiniowanego przez Ciebie drzewa BST. Pro-

gram ten ma symulować działanie producentów i konsumentów (uruchom kilkanaście/kilkadziesiąt wątków dla
producentów i konsumentów). Producent ma produkować losowe dane (na przykład losowe łańcuchy znaków)
a konsument pobierać dane z wylosowanego przedziału.
Producenci i konsumenci mają wykonywać swoje działania w losowych odstępach czasu. Wszystkie pro-

dukty mają być umieszczane w albo pobierane z jednego drzewa BST. Każdy producent i konsument ma wy-
świetlić zawatość listy po wykonanej przez siebie pracy za pomocą niesynchronizowanej metody toString(),
która korzysta z iteratora.

1


