laboratorium: zadanie 5 termin: 2/3 listopada 2011 7.

KURS PROGRAMOWANIA W JAVIE

KALKULATOR ONP

Instytut Informatyki Uniwersytetu Wroctawskiego Pawel Rzechonek

Zadanie 1.

Zaprojektuj hierarchie klas, ktora umozliwi latwe zapamietanie a potem obliczenie wyrazen zapisanych w
Oduwrotnej Notacji Polskiej. Wyrazenie ONP to ciag symboli (abstrakcyjna klasa Symbol). Symbolami tymi
moga by¢ albo operandy (klasa Operand) albo funkcje (klasa Funkcja). Operandy to liczby (klasa Liczba
z warto$cia typu double) albo zmienne (klasa Zmienna z nazwa zmiennej — identyfikatorem pasujacym do
wzorca "\\p{Alpha}\\p{Alnum}*"). Funkcje to przede wszystkim dwuargumentowe operatory dodawania,
odejmowania, mnozenia i dzielenia; nalezy tez zaimplementowa¢ funkcje dwuargumentowe Min, Max, Log i
Pow, jednoargumentowe Abs, Sgn, Floor, Ceil, Frac, Min, Max, Sin, Cos, Atan, Acot, Ln i Exp oraz funkcje
bezargumentowe (pelniace role stalych) E i Pi.

Jaka funkcjonalno$é powinny mieé te klasy? Zaréwno operandy (liczby i zmienne) jak i funkcje (bezargu-
mentowe, jednoargumentowe i dwuargumentowe) powinny implementowaé interfejs Obliczalny:

public interface Obliczalny
{

double obliczWartosé () throws WyjatekONP;
X

Metoda obliczWartosé() w odniesieniu do operandéw powinna przekazywaé pamietane w nich wartosci a w
odniesieniu do funkcji wylicza¢ wartos¢ na podstawie przekazanych wczesniej argumentéw. Funkcje powinny
wiec posiada¢ mechanizm umozliwiajacy przekazywanie im argumentéw przed wykonaniem obliczenia. Mozna
go zapisa¢ w postaci interfejsu Funkcyjny:

public interface Funkcyjny extends Obliczalny

{

int armosé ();

int brakujgceArgumenty () ;

void dodajArgument (double) throws WyjatekONP;
}

Metoda arnosé¢() moéwi o arnosci funkeji czy operatora. Metoda brakujaceArgumenty () informuje o liczbie
brakujacych argumentéw, czyli argumentéw ktore trzeba jeszcze dostarczyé do funkcji za pomoca metody
dodajArgument (), zanim wywola sie¢ metode obliczWartosé(). Oto przyklad wykorzystania tego interfejsu
do obliczenia wartosci funkcji:

while (fun.brakujaceArgumenty()>0) do
fun.dodajArgument(...);
double wynik = fun.obliczWartos$é();

Gdy liczba dostarczonych argumentéw jest niezgodna z arnoscig funkcji to wywotanie metody obliczWartosé ()
powinno skutkowaé zgtoszeniem wyjatku WyjatekONP. W wyrazeniach ONP wygodnie jest dostarcza¢ argu-
menty od konca.

Pozostaje jeszcze pytanie: skad i jak nalezy bra¢ argumenty dla funkcji? Argumenty te beda nam potrzebne
w trakcie obliczania wartosci wyrazenia. Mozna wiec zdefiniowaé klase Wyrazenie, ktora bedzie zawieralta
wyrazenie ONP w postaci kolejki symboli i stos z wynikami po$rednimi. To wladnie z tego stosu nalezy
pobiera¢ argumenty dla funkcji i operatoréw. Aby umozliwié¢ dostep do stosu symbolom z kolejki, mozna
omdwiona wczesniej cala hierarchie symboli umieéci¢ wewnatrz klasy Wyrazenie.

class Wyrazenie

{
private Kolejka kolejka; // kolejka symboli wyrazenia ONP (elementy typu Symbol)
private Stos stos; // stos z wynikami posrednimi obliczen (elementy typu double)
private Lista zmienne; // lista zmiennych czyli pary klucz-wartosé (String-double)
protected class Symbol {/*...*/}
/...
public Wyrazenie (String onp, Lista zm) throws WyjatekONP {/*...*/}
/...

}

Klasa Wyrazenie powinna tez mieé referencje do zbioru asocjacyjnego ze zmiennymi (moga one by¢ potrzebne
w trakcie obliczania wartosci wyrazenia). Referencje ta mozesz przekazaé¢ do obiektu klasy Wyrazenie w
konstruktorze.

Na koniec wyjatki i asercje. Zaprojektuj hierarchi¢ klas wyjatkéw kontrolowanych przez kompilator, dzie-
dziczacych po wspolnej klasie Wy jatekONP. Tylko te wyjatki powinny by¢ uzywane w klasach reprezentujacych
wyrazenie ONP. Hierarchia twoich wyjatkéw powinna by¢ co najmniej dwupoziomowa i skladaé sig¢ co najmniej
pieciu klas.

class WyjatekONP extends Exception {/*...*/}

class ONP_DzieleniePrzez0 extends WyjatekONP {/*...*/}
class ONP_NieznanySymbol extends WyjatekONP {/*...x*/}
class ONP_BtedneWyrazenie extends WyjatekONP {/x...*/}
class ONP_PustyStos extends WyjatekONP {/*...x/}
/...

W newralgicznych miejscach programu umiesé asercje.

Do zapamigtania wyrazenia ONP i do obliczenia jego wartos$ci beda nam potrzebne trzy proste struktury
danych: lista, kolejka i stos. Zaimplementuj je jako homogeniczna dynamiczna strukture danych oparta na
wezlach (podobnie jak w poprzednich zadaniach).

Definicje wszytkich klas, interfejséw 1 wyjatkow umie$é w pakiecie narzedzia.

Zadanie 2.

Finalna czescia tego projektu bedzie program interaktywnego kalkulatora ONP. Kalkulator ma interpreto-
wac 1 oblicza¢ wyrazenia zapisane w notacji ONP. Program powinien odczytywaé polecenia ze standardowego
wejscia (kazde polecenie w osobnym wierszu), wykonywadé obliczenia i wypisywaé¢ wyniki na standardowe wyj-
$cie. Wszelkie komentarze i informacje o btedach program ma wysytaé na standardowe wyjscie dla bltedéw.

Program powinien rozpoznawaé¢ dwa rodzaje polecen:

o calc wyrazenieONP (zm =)x

Obliczenie wartosci wyrazenia wyrazenieONP i wypisanie jej na standardowym wyjsciu. Wyrazenie
bedzie zapisane w postaci postfiksowej (Odwrotna Notacja Polska). Czytajac kolejne tokeny wyrazenia
program powinien je zamienia¢ na obliczalne symbole i umieszcza¢ w kolejce. Przy obliczaniu wartosci
wyrazenia nalezy sie postuzy¢ stosem.

W wersji rozszerzonej o nazwe zmiennej i znak przypisania, nalezy dodatkowo utworzyé¢ nows zmienng
zm 1 przypisac jej waroéci obliczonego wyrazenia wyrazenieONP. Jesli zmienna zm byla zdefiniowana juz
wczesniej, to nalezy tylko zmodyfikowaé zapisana w niej wartos¢. Takich przypisan mozna zwobié kilka
w jednym wyrazeniu.

e clear (zm)x*
Usuniecie wszystkich zminnych zapamietanych do tej pory w kolekcji asocjacyjne;j.
W wersji z lista zmiennych, nalezy usunaé tylko wymienione zmienne.

Po wydaniu polecenia calc, je$li w wyrazeniu ONP zostanie wykryty blad (Zle sformulowane wyrazenie,
bledna nazwa, bledny literal stalopozycyjny, czy nierozpoznany operator, funkcja lub zmienna) to nalezy
wypisa¢ stosowny komunikat o bledzie, ale nie przerywaé dzialania programu.

Uwaga.
Program nalezy skompilowaé i uruchomié¢ z wiersza polecen!

