
laboratorium: zadanie 5 termin: 2/3 listopada 2011 r.

kurs programowania w Javie
kalkulator ONP

Instytut Informatyki Uniwersytetu Wrocławskiego Paweł Rzechonek

Zadanie 1.
Zaprojektuj hierarchię klas, która umożliwi łatwe zapamiętanie a potem obliczenie wyrażeń zapisanych w

Odwrotnej Notacji Polskiej. Wyrażenie ONP to ciąg symboli (abstrakcyjna klasa Symbol). Symbolami tymi
mogą być albo operandy (klasa Operand) albo funkcje (klasa Funkcja). Operandy to liczby (klasa Liczba
z wartością typu double) albo zmienne (klasa Zmienna z nazwą zmiennej — identyfikatorem pasującym do
wzorca "\\p{Alpha}\\p{Alnum}*"). Funkcje to przede wszystkim dwuargumentowe operatory dodawania,
odejmowania, mnożenia i dzielenia; należy też zaimplementować funkcje dwuargumentowe Min, Max, Log i
Pow, jednoargumentowe Abs, Sgn, Floor, Ceil, Frac, Min, Max, Sin, Cos, Atan, Acot, Ln i Exp oraz funkcje
bezargumentowe (pełniące rolę stałych) E i Pi.
Jaką funkcjonalność powinny mieć te klasy? Zarówno operandy (liczby i zmienne) jak i funkcje (bezargu-

mentowe, jednoargumentowe i dwuargumentowe) powinny implementować interfejs Obliczalny:

public interface Obliczalny
{
double obliczWartość () throws WyjątekONP;

}

Metoda obliczWartość() w odniesieniu do operandów powinna przekazywać pamiętane w nich wartości a w
odniesieniu do funkcji wyliczać wartość na podstawie przekazanych wcześniej argumentów. Funkcje powinny
więc posiadać mechanizm umożliwiający przekazywanie im argumentów przed wykonaniem obliczenia. Można
go zapisać w postaci interfejsu Funkcyjny:

public interface Funkcyjny extends Obliczalny
{
int arność ();
int brakująceArgumenty ();
void dodajArgument (double) throws WyjątekONP;

}

Metoda arność() mówi o arności funkcji czy operatora. Metoda brakująceArgumenty() informuje o liczbie
brakujących argumentów, czyli argumentów które trzeba jeszcze dostarczyć do funkcji za pomocą metody
dodajArgument(), zanim wywoła się metodę obliczWartość(). Oto przykład wykorzystania tego interfejsu
do obliczenia wartości funkcji:

while (fun.brakująceArgumenty()>0) do
fun.dodajArgument(...);

double wynik = fun.obliczWartość();

Gdy liczba dostarczonych argumentów jest niezgodna z arnością funkcji to wywołanie metody obliczWartość()
powinno skutkować zgłoszeniem wyjątku WyjątekONP. W wyrażeniach ONP wygodnie jest dostarczać argu-
menty od końca.
Pozostaje jeszcze pytanie: skąd i jak należy brać argumenty dla funkcji? Argumenty te będa nam potrzebne

w trakcie obliczania wartości wyrażenia. Można więc zdefiniować klasę Wyrażenie, która będzie zawierała
wyrażenie ONP w postaci kolejki symboli i stos z wynikami pośrednimi. To właśnie z tego stosu należy
pobierać argumenty dla funkcji i operatorów. Aby umożliwić dostęp do stosu symbolom z kolejki, można
omówioną wcześniej całą hierarchię symboli umieścić wewnątrz klasy Wyrażenie.

1

class Wyrażenie
{
private Kolejka kolejka; // kolejka symboli wyrażenia ONP (elementy typu Symbol)
private Stos stos; // stos z wynikami pośrednimi obliczeń (elementy typu double)

private Lista zmienne; // lista zmiennych czyli pary klucz-wartość (String-double)

protected class Symbol {/*...*/}
// ...

public Wyrażenie (String onp, Lista zm) throws WyjątekONP {/*...*/}
// ...

}

Klasa Wyrażenie powinna też mieć referencję do zbioru asocjacyjnego ze zmiennymi (moga one być potrzebne
w trakcie obliczania wartości wyrażenia). Referencję tą możesz przekazać do obiektu klasy Wyrażenie w
konstruktorze.
Na koniec wyjątki i asercje. Zaprojektuj hierarchię klas wyjątków kontrolowanych przez kompilator, dzie-

dziczących po wspólnej klasie WyjątekONP. Tylko te wyjątki powinny być używane w klasach reprezentujących
wyrażenie ONP. Hierarchia twoich wyjątków powinna być co najmniej dwupoziomowa i składać się co najmniej
pięciu klas.

class WyjątekONP extends Exception {/*...*/}

class ONP_DzieleniePrzez0 extends WyjątekONP {/*...*/}
class ONP_NieznanySymbol extends WyjątekONP {/*...*/}
class ONP_BłędneWyrażenie extends WyjątekONP {/*...*/}
class ONP_PustyStos extends WyjątekONP {/*...*/}
// ...

W newralgicznych miejscach programu umieść asercje.
Do zapamiętania wyrażenia ONP i do obliczenia jego wartości będą nam potrzebne trzy proste struktury

danych: lista, kolejka i stos. Zaimplementuj je jako homogeniczną dynamiczną strukturę danych opartą na
węzłach (podobnie jak w poprzednich zadaniach).
Definicje wszytkich klas, interfejsów i wyjątków umieść w pakiecie narzędzia.

Zadanie 2.
Finalną częścią tego projektu będzie program interaktywnego kalkulatora ONP. Kalkulator ma interpreto-

wać i obliczać wyrażenia zapisane w notacji ONP. Program powinien odczytywać polecenia ze standardowego
wejścia (każde polecenie w osobnym wierszu), wykonywać obliczenia i wypisywać wyniki na standardowe wyj-
ście. Wszelkie komentarze i informacje o błędach program ma wysyłać na standardowe wyjście dla błędów.
Program powinien rozpoznawać dwa rodzaje poleceń:

• calc wyrażenieONP (zm =) ?
Obliczenie wartości wyrażenia wyrażenieONP i wypisanie jej na standardowym wyjściu. Wyrażenie
będzie zapisane w postaci postfiksowej (Odwrotna Notacja Polska). Czytając kolejne tokeny wyrażenia
program powinien je zamieniać na obliczalne symbole i umieszczać w kolejce. Przy obliczaniu wartości
wyrażenia należy się posłużyć stosem.
W wersji rozszerzonej o nazwę zmiennej i znak przypisania, należy dodatkowo utworzyć nową zmienną
zm i przypisać jej warości obliczonego wyrażenia wyrażenieONP. Jeśli zmienna zm była zdefiniowana już
wcześniej, to należy tylko zmodyfikować zapisaną w niej wartość. Takich przypisań można zwobić kilka
w jednym wyrażeniu.

• clear (zm) ?
Usunięcie wszystkich zminnych zapamiętanych do tej pory w kolekcji asocjacyjnej.
W wersji z listą zmiennych, należy usunąć tylko wymienione zmienne.

Po wydaniu polecenia calc, jeśli w wyrażeniu ONP zostanie wykryty błąd (źle sformułowane wyrażenie,
błędna nazwa, błędny literał stałopozycyjny, czy nierozpoznany operator, funkcja lub zmienna) to należy
wypisać stosowny komunikat o błędzie, ale nie przerywać działania programu.

Uwaga.
Program należy skompilować i uruchomić z wiersza poleceń!

2

