
Lista zadań. Nr 6. 30 kwietnia 2011

Algorytmy i Struktury Danych
IIUWr. II rok informatyki.

1. (2pkt) Podaj nierekurencyjną wersję procedury Quicksort, która

- poza tablicą z danymi (A[1..n] of integer) używa tylko stałej (niezależnej od n) liczby
komórek typu integer (zakładamy, że max(n,max{A[i] | i = 1, .., n}) jest największą liczbą
jaką może pomieścić taka komórka),

- czas jej działania jest co najwyżej o stały czynnik gorszy od czasu działania wersji reku-
rencyjnej.

2. (2pkt) Niech A = a1, a2, . . . , an będzie ciągiem elementów oraz niech p i q będą dodatnimi
liczbami naturalnymi. Rozważmy p-podciągi ciągu A, tj. podciągi utworzone przez wybranie co
p-tego elementu. Posortujmy osobno każdy z tych podciągów. Powtórzmy to postępowanie dla
wszystkich q−podciągów. Udowodnij, że po tym wszystkie p−podciągi pozostaną posortowane.

3. (1pkt) Czy można tak zmodyfikować drzewa AVL, by operacje insert, delete, search, minimum,
maksimum nadal wykonywały się w czasie O(log n), a operacje następnik(v) i poprzednik(v),
gdzie v jest adresem węzła, wykonywane były w czasie O(1)?

4. (2pkt) Niech h(v) oznacza odległość wierzchołka v do najbliższego pustego wskaźnika w pod-
drzewie o korzeniu v. Rozważ możliwość wykorzystania drzew binarnych, w których zachowany
jest następujący warunek zrównoważenia:

h(lewy syn v) ≥ h(prawy syn v) dla każdego wierzchołka v,

do implementacji kolejki priorytetowej.

5. (2pkt) Ułóż algorytm, który dla danego ciągu liczbowego znajduje najdłuższy jego podciąg ro-
snący. Jeśli podciągów rosnących o maksymalnej długości jest więcej niż jeden, Twój algorytm
powinien wypisać pierwszy z nich (wg porządku leksykograficznego). Jaka jest złożoność pamię-
ciowa i czasowa Twojego algorytmu?

6. (2pkt) Ułóż algorytm, który dla danego ciagu liczbowego oblicza, ile zawiera on podciągów
rosnących o maksymalnej długości. Jaka jest złożoność pamięciowa i czasowa Twojego algo-
rytmu? Przyjmij, że operacje arytmetyczne na dowolnie długich liczbach wykonują się w czasie
jednostkowym.

7. (2pkt) Napisz procedurę Split(T, k) rozdzielającą drzewo AVL T na dwa drzewa AVL. Jedno
zawierające klucze mniejsze od k i drugie zawierające pozostałe klucze. Jaka jest złożoność
Twojej procedury?

Zadania dodatkowe

1. (2pkt) Opracuj wersję algorytmu Mergesort, która działa w miejscu.

2. (2pkt) Pokaż w jaki sposób można zaimplementować kolejkę priorytetową tak, by operacje na
niej wykonywane były w czasie O(log logm), gdzie m jest mocą uniwersum, z którego pochodzą
klucze.

3. (2pkt) Bolesną dolegliwością związaną z drzewami AVL jest konieczność poświęcenia dwóch
bitów w każdym węźle na pamiętanie współczynnika zrównoważenia. Zastanów się, czy aby na
pewno mamy do czynienia z ”koniecznością”.

1

Zadania dodatkowe - nie będą rozwiązywane na ćwiczeniach

1. (0pkt) Pokaż, że Quicksort działa w czasie Θ(n log n), gdy wszystkie elementy tablicy A mają
tę samą wartość.

2. (0pkt) Pokaż, żeQuicksort działa w czasie Θ(n2), gdy tablica A jest uporządkowana niemalejąco.

3. (0pkt) Załóżmy, że na każdym poziomie rekursji procedury Quicksort procedura partition dzieli
daną tablicę na dwie podtablice w proporcji 1 − α do α, gdzie 0 < α ≤ 1

2 jest stałą. Pokaż,
że minimalna głębokość liścia w drzewie rekursji wynosi około − logn

logα a maksymalna głębokość
liścia wynosi około − logn

log(1−α) .

4. (1pkt) Opracuj wersję algorytmu Quicksort, która będzie efektywnie działać na ciągach zawie-
rających wielokrotne powtórzenia kluczy.

5. (1pkt) Napisz procedury obsługujące kopiec Minimaksowy.

6. (2pkt) n-elementowym ciągiem o jednym zaburzeniu nazywamy dowolny ciąg, który może być
otrzymany z ciągu {1, 2, . . . , n} poprzez wykonanie jednej transpozycji. Załóżmy, że algorytm In-
sertSort będzie uruchamiany jedynie na ciągach o jednym zaburzeniu. Zbadaj średnią złożoność
algorytmu przy założeniu, że dla każdego n, wszystkie takie ciągi n-elementowe są jednakowo
prawdopodobne.

7. (1pkt) (Poprawność procedury Partition). Rozważ następującą procedurę:

8. (1pkt) Rozważmy modyfikację podanego na wykładzie algorytmu sprawdzającego izomorfizm
drzew, który porządkując wektory przypisane wierzchołkom stosuje sortowanie leksykograficzne
ciągów jednakowej długości (po uprzednim wyrównaniu długości wektorów - przez dopisanie
symbolu spoza alfabetu). Podaj przykład ”złośliwych” danych dla takiego algorytmu. Oszacuj
czas działania algorytmu na tych danych.

Partition(A, p, r)
x← A[p]
i← p− 1
j ← r + 1
while true do

repeat j −−
until A[j] ≤ x

repeat i+ +
until A[i] ≥ x

if i < j
then zamień A[i]↔ A[j]
else return j

Udowodnij co następuje

(a) Indeksy i oraz j nigdy nie wskazują na element A poza przedziałem [p..r].

(b) Po zakończeniu Partition indeks j nie jest równy r (tak więc podział jest nietrywialny).

(c) Po zakończeniu Partition każdy element A[p..j] jest mniejszy lub równy od dowolnego
elementu A[j + 1, r].

9. (1pkt) Ułóż algorytm sortujący w miejscu ciągi rekordów o kluczach ze zbioru {1, 2, 3}.

10. (1pkt) Ułóż algorytm sortujący ciąg n liczb całkowitych w czasie O(n) i pamięci O(n). Przyjmij,
że liczby są z zakresu long long.

2

11. (2pkt) Serią w ciągu nazwiemy dowolny niemalejący podciąg kolejnych jego elementów. Seria
jest maksymalna, jeśli nie można jej rozszerzyć o kolejne elementy. Załóżmy, że algorytm Insert-
Sort uruchamiany będzie jedynie na permutacjach zbioru {1, 2, . . . , n}, które można rozbić na
co najwyżej dwie serie maksymalne. Zbadaj średnią złożoność algorytmu przy założeniu, że dla
każdego n, wszystkie takie permutacje n-elementowe są jednakowo prawdopodobne.

12. (2pkt) Rozważmy permutacje liczb {1, 2, . . . , n}, których wszystkie 2-podciągi i 3-podciągi są
uporządkowane.

(a) Ile jest takich permutacji?

(b) Jaka jest maksymalna liczba inwersji w takiej permutacji?

(c) Jaka jest łączna liczba inwersji w takich permutacjach?

3

