SEMINARIUM: ALGORYTMY HEURYSTYCZNE
ITUWR 2010/2011

Przemystaw Gospodarczyk

PRZESZUKIWANIE Z TABU (06.04.11)

OPRACOWANIE
Wersja | Zmiany Autor Data
1.0 Pierwsza wersja Przemystaw Gospodarczyk 2011-04-05

Przeszukiwanie z tabu

Spis tresci

1. Teoria 3
1.1. Historia Tabu Search i nowe trendy 3
1.2. Definicja Tabu Search i ogélnaidea 3
1.3. Tabu Search — schemat ogdlny algorytmu 4
1.4. Struktury sasiedztwa Lo 4
1.5. Kryterium aspiracji o Lo e)

1.6. Wykorzystanie pamieci dlugoterminowej, pojecia dywersyfikacji i intensyfikacji 5

2. Probabilistic Tabu Search 5
3. Reactive Tabu Search 6
4. Tabu Cycle Method 6
5. Iterated Tabu Search 7
5.1, Algorytm L 7
5.2. Zapamigtywanie rozwiazan oL oo 7
5.3. Wybér kandydatéw do zoptymalizowania oL 8
5.4. Rekonstrukcja rozwigzania oL Lo oo 8
6. Opis problemu QAP 8
6.1. Opis problemu i specyfikacja 8
6.2. Zrédlo danych 9

7. Zastosowanie poltaczenia Tabu Search z algorytmem ewolucyjnym do roz-
wigzania problemu QAP 9
7.1 Algorytm e 9
7.1.1. Schemat ogélny zastosowanego algorytmu 9
7.1.2. Imicjowanie populacjio 10
7.1.3. Tabu Search jako heurystyka usprawniajaca 11
7.1.4. Wyboér rodzicéw i generowanie nowego zbioru rozwigzan 11
7.1.5. Zamiana pokolenia 11
7.1.6. Wlasne usprawnieniao 11
7.2. Obshluga programu e 12
7.2.1. Kompilacja i uruchamianie 12
7.2.2. Wywolanie i parametry algorytméw 12
7.3, Testy . . . o o o o e e 12
7.3.1. Oznaczenia e 13
7.3.2. Komentarz dotestOw 13

Przeszukiwanie z tabu

1. Teoria

1.1. Historia Tabu Search i nowe trendy

Fred Glover w roku 1977 przedstawil prace dotyczaca m.in. wykorzystania pamigci krétko-
trwalej i dlugotrwalej w przeszukiwaniu lokalnym. Pamieé¢ dlugotrwalta miata stuzy¢ do zapa-
mietania najbardziej atrakcyjnych elementéw przestrzeni przeszukiwan podczas, gdy pamie¢
kréotkotrwala stuzylta do pamietania ostatnich ruchéw i miata ulega¢ nadpisywaniu w kolej-
nych iteracjach przeszukiwania.

Wyzej wymienione pomysty staly sie podstawg do dzialania Tabu Search i w roku 1986 Fred
Glover wydal pierwsza prace dotyczaca tej heurystyki.

Co ciekawe Michael Hansen, réwniez w 1986 roku wydal swoja prace na temat podobnej heu-
rystyki. Heurystyka o nazwie Steepest Ascent Mildest Descent Heuristic powstata niezaleznie
od pracy Freda Glovera.

W ciagu lat powstato bardzo wiele réznych usprawnien, o ktére mozna wzbogaci¢ Tabu Search.
Niektore z nich opisatlem w tej pracy. Ostatnie trendy to hybrydyzacja algorytméw heurystycz-
nych, ktora zazwyczaj przejawia si¢ dodawaniem Tabu Search do algorytmoéw ewolucyjnych,
ktore rozwijaja sie bardzo sprawnie i dajg coraz lepsze rezultaty. Szczegélnie techniki gene-
rujace juz w pierwszych iteracjach informacje specyficzne o problemie i wykorzystujace je w
praktyce (lepsze niz losowe rozwiazanie startowe, krzyzowanie fragmentéw najlepszych roz-
wigzan znalezionych przez TS, wiedzac, ze pewne pozycje w wektorze rozwigzan powinny by¢
wypelnione w okreslony sposéb lub zaleza od siebie) sa obecnie najbardziej wykorzystywane.
Nie bez znaczenia dla rozwoju Tabu Search jest réwniez mozliwo$é zréwnoleglania (kazdy
procesor niezaleznie moze modyfikowaé¢ dane mu rozwiazanie).

1.2. Definicja Tabu Search i ogélna idea

Przeszukiwanie z tabu jest metahuerystyka do rozwigzywania probleméw optymalizacyj-
nych, opartg na iteracyjnym przeszukiwaniu przestrzeni rozwiazan, wykorzystujac sasiedztwo
pewnych elementéw tej przestrzeni oraz zapamietujac przy tym przeszukiwaniu ostatnie ruchy,
dopdki nie zostanie spetniony warunek koncowy. Ruchy zapisywane sg w postaci atrybutéow
przejScia (parametry opisujace jednoznacznie wykonany ruch) na liScie (zwanej tez czasami
zbiorem) tabu. Obecno$¢ danego ruchu na lidcie tabu jest tymczasowa (zazwyczaj na okre-
Slona liczbe iteracji od ostatniego uzycia) i oznacza, ze danego ruchu nie mozna wykonaé przez
okreslona liczbe iteracji — chyba, ze ruch spelnia tzw. kryterium aspiracji (ang. aspiration
criterion). Lista tabu ma za zadanie wykluczy¢ (w praktyce jednak jedynie zmniejszy¢) praw-
dopodobienistwo zapetlen przy przeszukiwaniu i zmusi¢ algorytm do przeszukiwania nowych,
niezbadanych regionéw przestrzeni przeszukiwan.

Przeszukiwanie z tabu zmniejsza nieco szybko$¢ zbieznosci poprzez zamienianie danego roz-
wigzania z najlepszym jego sasiadem, bez wzgledu na to, czy sasiad jest od niego lepszy, czy
gorszy. Pozytywnym aspektem tego podejscia jest jednak mozliwosé szybszego wyjscia z re-
gionu przyciggania ekstremum lokalnego, ktore niekoniecznie musi by¢ globalnie optymalne
(w szczegdlnosei, moze byé czasami bardzo odlegle od optymalnego).

Zazwycza] warunkiem koncowym przeszukiwania jest zadana z gory liczba iteracji do wyko-

Przeszukiwanie z tabu

nania, brak zmiany globalnie najlepszego rozwiazania w okreslonej liczbie iteracji z rzedu (co
moze by¢ réwniez motywacja do wygenerowania nowego rozwigzania startowego i rozpoczecia
algorytmu od poczatku z pewna wiedza nabyta w poprzednim wykonaniu) lub jezeli osiagnie-
my zadang z géry wartos¢ funkcji celu.

Pojecie metaheurystyki zostalo wymyélone przez Freda Glovera w roku 1986 i oznacza heu-
rystyke nadrzedna (co sugeruje podrzedno$é innych w stosunku do tej), ktéra dzigki swojej
ogolnosci potrafi sterowaé innymi, odpowiednio dopasowanymi na potrzeby danego problemu
optymalizacyjnego. Tabu Search jest wiec ideg, a nie konkretnym algorytmem rozwigzujacym
konkretny problem optymalizacji.

1.3. Tabu Search — schemat ogélny algorytmu

//losowe rozwigzanie startowe
s = best = RANDOM_SOLUTION()
//inicjowanie listy tabu
t =[]
//petla trwa dopoki nie zostana spelnione okreslone warunki koncowe
WHILE NOT(TERMINATION_CONDITION)
{
//wykonanie kroku
s = SELECT(NEIGHBORS(s),t))
//aktualizowanie listy tabu
t = UPDATE TABU(s,t)
//najlepsze rozwiazanie zapamietujemy
if (f(best) < £(s))

{
}

best = s

}

return best

1.4. Struktury sasiedztwa

Ze wzgledu na przestrzen rozwiazan nalezy zdefiniowaé relacje sasiedztwa na parach elemen-
toéw tej przestrzeni, ktéra obejmuje cala dziedzine przestrzeni przeszukiwan. Definicja relacji
zalezy oczywiscie od przestrzeni i formatu rozwigzan (np. rozwiazaniami moga by¢ wektory
binarne, wektory liczb rzeczywistych, permutacje zbioru liczb naturalnych itp...).
Przyktadowo, jezeli rozwazamy przestrzen permutacji zbioru n elementowego to mozemy roz-
wazy¢ 3 mozliwe strategie przejscia dla permutacji 7 =< 7(0),7(1),...,m(n — 1) >:

- insert(i,j) — przeniesienie j-tego elementu na pozycje i-ta,

- swap(i,j) — zamiana miejscami i-tego elementu z j-tym,

Przeszukiwanie z tabu

- invert(i,j) — odwré6cenie kolejnosci w podciagu zaczynajacym sie na i-tej pozycji i kon-
czacym sie na pozycji j-tej.

W powyzszych przejSciach argumenty i,j nazywamy atrybutami przejscia, ktore jednoznacznie
pozwalaja identyfikowaé przejécie.

1.5. Kryterium aspiracji

Czasami zabranianie pewnych ruchéw, mimo, ze nie prowadzi do zapetlen, to moze spowodo-
waé ogdlna stagnacje przy przeszukiwaniu lub wrecz calkowicie uniemozliwi¢ ruch (sytuacja,
gdy wszyscy sasiedzi sa na lidcie tabu).

Spetnienie kryterium aspiracji pozwala na ztamanie tabu, czyli wykonanie ruchu pomimo, ze
jego atrybuty znajduja sie na liScie ruchéw zabronionych. Najprostszym i najczesciej stosowa-
nym kryterium aspiracji jest zezwolenie na wykonanie ruchu, jezeli prowadzi on bezposrednio
do uzyskania najlepszego znanego globalnie rozwiazania. Inne ciekawsze, ale znacznie bardziej
skomplikowane kryteria aspiracji opieraja sic na wyspecjalizowanych metodach badajacych
mozliwosci powstania cyklu po wykonaniu danego ruchu (co udalo si¢ efektywnie zaimple-
mentowaé¢ naukowcom w latach 1989, 1991).

1.6. Wykorzystanie pamieci dlugoterminowej, pojecia dywersyfikacji i in-
tensyfikacji

Podstawowym pomystem strategii Tabu Search jest wykorzystanie pamigci dlugoterminowej
do przechowywania najlepszego globalnie rozwiazania, ktére na koniec algorytmu zostaje zwro-
cone jako wynik dziatania heurystyki.

Istnieje wiele innych pomystéw na wykorzystanie pamieci dtugoterminowej przy przeszukiwa-
niu przestrzeni rozwiazan, ktérych cecha wspolng jest cheé utworzenia statystyki o korzyst-
nych ruchach z przesztych iteracji. Statystyke mozna wykorzystaé do bardziej inteligentnych
i wyspecjalizowanych strategii, ktore pozwalaja na zaspokajanie dwéch istotnych kryteriow:

- intensyfikacji, czyli zageszczenia prébkowania obszaru, jezeli w tym obszarze znajduja
sie dobre rozwigzania;

- dywersyfikacji, czyli rozproszenia przeszukiwania, aby nie pominaé¢ wszystkich podob-
Szarow.

Pomystem na egzekwowanie powyzszych pomystéw moze byé tez funkcja kary, ktora zalezy
od czestotliwoéci wykonywania danego ruchu i zaburza wartosci funkcji celu.

2. Probabilistic Tabu Search

Metoda na ogdt mniej skuteczna niz klasyczny Tabu Search, ale duzo wydajniejsza i przydat-
na, gdy funkcja celu jest skomplikowana i liczy sie dtugo oraz, gdy przestrzen przeszukiwania
jest duza (oraz, co za tym idzie, by¢ moze sasiedztwo).

Probabilistic Tabu Search sprawdza tylko losowy podzbiér sasiadéw (zamiast wszystkich).

Przeszukiwanie z tabu

Ponadto randomizacja jest silnym mechanizmem anty-cyklowym, co pozwala skracaé liste ta-
bu.

W zwigzku z tym, ze tatwo przeoczy¢ w ten sposdb dobre rozwigzania, mimo ze sa one blisko,
warto co kilka iteracji przeprowadzaé kilka iteracji klasycznego Tabu Search (Glover i Laguna,
1993).

Ewentualnie po zakoniczeniu dziatania Probabilistic Tabu Search, mozna wtaczyé klasyczny
Tabu Search na kilka iteracji, aby zoptymalizowaé¢ otrzymane rozwigzanie, tak by byto przy-
najmniej optimum lokalnym.

Pelny opis metody mozna znalezé w [5].

3. Reactive Tabu Search

Metoda pozwala dynamicznie sterowaé¢ dtugoscia listy tabu w trakcie dziatania algorytmu za
cene pamieciozernodci i zwiekszonej ztozonosci obliczeniowej. Pamietajac wszystkie dotych-
czasowe rozwiazania wraz z numerem iteracji, w pamieci dtugotrwatej, algorytm sprawdza
powtarzalno$¢ uzyskiwanych rozwiazan. Jezeli rozwiazania zaczynaja sie powtarzac, to al-
gorytm w kolejnych iteracjach wolniej redukuje liste (co powoduje zwigkszenie jej dlugosci)
niedopuszczajac do powstania cyklow i ”uciekajac” z regionu przyciggania ekstremum lokal-
nego.

Przypadek, gdy liste mozna skroci¢ zachodzi, gdy rozwiazania nie powtarzaja sie.

Aby zmniejszy¢ zlozono$é, stosuje sie haszowanie i kompresje (do rozréznienia m rozwigzan
wystarczy log(m) bitéw).

Pelny opis metody mozna znalezé w [6].

4. Tabu Cycle Method

Metoda dzieli w trakcie dziatania liste tabu na grupy, gdzie k-ta grupa zawiera elementy do-
dane w okreslonym przedziale iteracji.

Ruchy w grupie najmtodszej nr. 0, zwanej Buffer Group sa zabronione na stale. Algorytm
pozwala na tamanie tabu dla starszych grup, z czestotliwoscia zalezng od wspdlczynnika
TC(k) = n — k + 1, gdzie k jest numerem grupy, a n liczba grup. Wspélczynnik T'C(k)
moéwi o tym, co ile iteracji wolno tamaé¢ tabu w grupie k-tej.

Ponadto wprowadza si¢ wspdlczynnik CC(k) inkrementowany o 1 w kazdej iteracji, w ktorej
nie nastepuje tamanie tabu w grupie k-tej. Jezeli nastapito ztamanie tabu, to V;>,CC(h) =
CC(h)-TC(h). W zaleznosci od wyzej wymienionych wspélezynnikéw, poszezegélnym gru-
pom nadawane sg nastepujace statusy:

- OFF — grupie nigdy nie wolno tamaé tabu, przypadek dla CC(k) < TC(K);
- ON - grupie wolno tamac tabu co T'C(K) iteracji, przypadek CC(k) > TC(K);

- FREE — na grupe nie jest natozone zadne tabu, przypadek, gdy grupa jest ON i kazda
starsza od niej tez jest ON.

Przeszukiwanie z tabu

Jezeli dozwolony ruch dla grupy k-tej nie jest wykonany to: CC(k) = min(CC(k)+1,aTC(k))
, gdzie a jest odpowiednio dobranym wspolczynnikiem, ktéry pilnuje jak duza wielokrotnoéé
TC mozna osiagnaé (czasami CC(k) staje sie tak duzy, ze grupy sa ON lub wrecz FREE zbyt
dlugo). Pelny opis metody mozna znalezé w pracy autorstwa Glovera i Laguny z 1997 roku.

5. Iterated Tabu Search

5.1. Algorytm

Uproszczony schemat ogdlny algorytmu w pseudokodzie (w szczegélnosci pewne metody nie
zostaly jawnie zdefiniowane i algorytm nalezy samodzielnie dospecyfikowaé, ze wzgledu na
specyfike danego problemu):

//losowe rozwiazanie startowe
s = RANDOM_SOLUTION()
//wywotanie klasycznego Tabu Search na rozwiazaniu startowym
s’ = TABU_SEARCH(s)
//zapamietujemy najlepsze dotychczasowe rozwiazanie jako s*
s*x = s’
//petla trwa dopoki nie zostana spelnione okreslone warunki koncowe
WHILE NOT(TERMINATION_CONDITION)
{
//wybieranie rozwiazania do zoptymalizowania
s = CANDIDATE_ACCEPTANCE(s’, s’’, s*, s, ...)
/ /rekonstrukcja wybranego rozwiazania
s’ = RECONSTRUCTION(s)
//wywolanie klasycznego Tabu Search na wybranym rozwiazaniu
s’’ = TABU_SEARCH(s’)
//najlepsze rozwiazanie zapamietujemy
if (£(s%) < £(s77))

{

}
}

return s*
Oryginalna wersja oméwionego w tej pracy algorytmu pochodzi z pracy [8].

5.2. Zapamietywanie rozwigzan

Algorytm ITS zawsze zapamietuje najlepsze znane do tej pory rozwiazanie jako s*. Reszta
rozwigzan, ktora okazuje sie stabsza, a w szczegdlnosci pewne rozwigzania posrednie, réwniez
moga by¢ warte zapamietywania (w zaleznosci od strategii wyboru kandydatéw do zoptyma-
lizowania), ale trzymanie tych rozwiazan nie jest obowiazkowe.

Przeszukiwanie z tabu

5.3. Wybér kandydatéw do zoptymalizowania

Wyboér, ktérego nalezy dokonaé to pewien kompromis miedzy intensyfikacja a dywersyfikacja
przeszukiwania.

Najprostszy pomyst polega na wyborze najlepszego znanego rozwiazania (s* w schemacie
algorytmu) i moze prowadzié¢ (szczegdlnie przy slabszej metodzie rekonstrukeji) do intensyfi-
kacji. Pomyst moze sprzyjaé¢ réwniez szybszej zbieznosc.

Inne pomysty, ktére wymagaja pamietania rozwiazan posrednich, jak np. losowe wybieranie
moze prowadzi¢ do dywersyfikacji.

Czesto stosuje sie tez metode WYA (skrét od ang. ,where are you”) polega na wyborze kolej-
nych optiméw z poprzedniej iteracji, bez wzgledu na ich jakos¢ z globalnego punktu widzenia.
Wszystkie ,inteligentniejsze” metody wyboru rozwiazan wymagaja znacznie bardziej wyspe-
cjalizowanych metod, ktére dotycza bardziej zaawansowanych algorytméw ewolucyjnych np.
BOA (ang. Bayesian optimization algorithm), ECGA (ang. Extended Compact Genetic Algo-
rithm), PBIL (ang. Population Based Incremental Learning). Pierwsze dwa daja juz po kilku
iteracjach pewng specyficzng wiedze na temat zadania, pozwalaja zlokalizowaé zaleznosci mie-
dzy genami i wykorzystaé¢ uzyskana wiedze do dokonywania bardziej swiadomych wyboréw.
Omawianie tych algorytmoéw przekracza znacznie temat tej pracy.

5.4. Rekonstrukcja rozwigzania

Wybér metody rekonstrukcji rozwiazania to kolejny kompromis miedzy intensyfikacja a dy-
wersyfikacja przeszukiwania.

7 jednej strony rekonstrukcja musi by¢ na tyle silna, aby umozliwi¢ skuteczna ”ucieczke” z
regionu przyciggania ekstremum lokalnego. Z drugiej strony zalezy nam na tym, aby nie traci¢
wiedzy o dobrych rozwiazaniach (jezeli zaburzymy rozwiazanie zbyt mocno to algorytm stanie
sie zbyt losowy).

6. Opis problemu QAP

6.1. Opis problemu i specyfikacja

Kwadratowy problem przydziatu (ang. Quadratic assignment problem — QAP) to jeden z naj-
wazniejszych NP-trudnych probleméw optymalizacji kombinatorycznej. Przedstawiona poni-
zej interpretacja tego problemu jest jedna z wielu znanych.

Dysponujemy zbiorami N fabryk i N lokacji oraz dwoma kwadratowymi macierzami roz-
miaru N (macierz d odlegloéci miedzy kazda para lokacji i macierz £ wag miedzy kazda para
fabryk), gdzie N jest parametrem algorytmu (liczba naturalna).

Zadanie polega na przypisaniu kazdej z fabryk do jednej z lokacji (kazda do innej) tak,
aby zminimalizowaé¢ sume iloczynéw dystanséw miedzy lokacjami i odpowiadajacych wag. W
praktyce chodzi o minimalizacje pewnej funkcji celu:

Przeszukiwanie z tabu

min Y > dli][5] * flp[il][plJ] (1)

pell i 3

gdzie p jest wektorem przypisania.

Wektor przypisania jest w rzeczywistosci permutacja liczb naturalnych z zakresu [0,N), gdzie
na i-tym polu odpowiadajacym i-tej lokacji znajduje sie numer fabryki, ktora jest przypisana
do tej lokacji.

6.2. Zrédlo danych

Wszystkie zestawy danych testowych w postaci plikow o rozszerzeniu .DAT pochodza z serwisu
QAPLIB - A Quadratic Assignment Problem Library (adres [2]). Struktura pliku z danymi
sklada sie z trzech czesci:

- liczba naturalna N;

- poprzedzona pustym wierszem zawarto$¢ macierzy £ (w kazdej z N linijek jeden wiersz
macierzy);

- poprzedzona pustym wierszem zawarto$¢ macierzy d (w kazdej z N linijek jeden wiersz
macierzy).

Serwis udostepnia ponadto najlepsze znane rozwiazania dla wszystkich udostepnionych testéow.

7. Zastosowanie polaczenia Tabu Search z algorytmem ewolu-
cyjnym do rozwigzania problemu QAP

7.1. Algorytm

Oryginalna wersja oméwionego w tej pracy algorytmu pochodzi z pracy [1], wersja opisana w
tej pracy zostala zaimplementowana na nowo, interpretujac i rozszerzajac pomysty z wersji
oryginalne;j.

7.1.1. Schemat ogélny zastosowanego algorytmu

Uproszczony schemat ogdlny algorytmu w pseudokodzie (w szczegdlnosei, w kodzie Zrédio-
wym nazwy poszczeg6lnych metod i ich parametry sa inne):

//czyta dane z pliku

READ DATA(file)

//inicjuje obie populacje (zréznicowana i najlepsza)
INIT_BOTH_POPULATIONS(DIV_POP, BEST_POP)

/ /heurystyka Tabu Search

Przeszukiwanie z tabu

BEST_POP_UPDATE (BEST_POP)
//warunkiem koncowym jest osiagniecie zadanej liczby iteracji
FOR (i = 0; i < MAX-ITER; i++)
{
//jezeli w poprzedniej iteracji nie dodano zadnego nowego rozwiazania
if ('added)
{
//inicjujemy na nowo zréznicowana populacje
INIT_DIV_POPULATION(DIV_POP)
¥
// krzyzowanie osobnikéw (krok zréwnoleglony, osobno dla kazdej pary)
CHILDREN = CROSSOVER(DIV_POP, BEST_POP)
// podmiana starego pokolenia na nowe
(DIV_POP, BEST_POP) = REPLACEMENT(CHILDREN, DIV_POP, BEST_POP)
//heurystyka Tabu Search
BEST_POP_UPDATE (BEST_POP)

7.1.2. Inicjowanie populacji

Generujemy startowy zbiér rozwigzan wykorzystujac wiedze o typie problemu. Pewna z géry
ustalona liczba méwi nam ile chcemy rozwiazan najlepszej jakosci, a ile najbardziej réznorod-
nych (one rozszerzaja nam przestrzen poszukiwan i zmniejszaja prawdopodobienstwo zbiezno-
$ci do ekstremum lokalnego). Mozna stosowaé wyspecjalizowane heurystyki, ulepszajace zbiér
startowy.

Wykorzystano tzw. metode Glovera, ktéra gwarantuje pewien poziom zrdéznicowania w
zbiorze rozwiazan (w przeciwienstwie do podejscia czysto losowego). Wygenerowane przez
metode wektory sg poprawne i nie trzeba ich naprawiac.

Jako ziarno wykorzystujemy 1 losowy, poprawny wektor x. Na podstawie ziarna tworzymy
nowe rozwiazanie.
Dane:

- b — naturalne, mniejsze od N;

- s — pozycja startowa, na poczatku réwna b.

Algorytm:
Rozwiazanie x’ budujemy dodajac najpierw element x[s], potem kolejno x[s + b], x[s +
2b], ..., x[s + rbl, gdzie r jest tak dobrane, ze s+rb nie przekracza N. Kiedy dojdziemy

do konca ziarna, to pozycja startowa zmniejsza sie o 1 i cala operacja sie¢ powtarza az nie
zapelimy calego wektora x’ (musimy odwiedzi¢ wszystkie pozycje w x).

10

Przeszukiwanie z tabu

7.1.3. Tabu Search jako heurystyka usprawniajaca

Dla najlepszej populacji wygenerowanych osobnikéow stosujemy metode przeszukiwania tabu
Erica Taillarda dla QAP.

Heurystyka oblicza mozliwe zamiany lokacji 2 firm, wykorzystujac prosta liste tabu (ruchy
niedozwolone). Aby zmusi¢ algorytm do przeszukiwania niezbadanych fragmentéw przestrze-
ni, wymieniane sg ze sobg tylko te elementy, ktore nie byty wymieniane przez kilka ostatnich
iteracji (na podstawie listy tabu). Jezeli jednak, zabroniona zmiana doprowadza do wypro-
dukowania najlepszego nieznanego do tej pory przez algorytm rozwiazania, to zamiana sie
dokonuje, mimo obecnosci na lidcie tabu (ang. aspiration criterion).

7.1.4. Wybér rodzicéw i generowanie nowego zbioru rozwigzan

Wszystkie rozwigzania ze zbioru laczymy w pary (metoda kazdy z kazdym). Stosujemy me-
tode path-relinking.

Wektorami wiodacymi, zostaja te, ktére sa lepsze w swojej parze (lepiej optymalizuja f. ce-
lu), potomek jest inicjowany wektorem niewiodacym. Iterujemy wektory. Jezeli na napotkane;
pozycji wektory rodzicow nie réznia sie, to odpowiadajaca pozycja w potomku jest pozosta-
wiana. Jezeli na napotkanej pozycji wektory rodzicéw réznig sie oraz pozycja ta w potomku
nie byla wczesniej zmieniana to do potomka przepisywana jest warto$é¢ z wektora wiodacego
(pod warunkiem, ze nie zwieksza wartosci funkeji celu). Jezeli pozycja byla juz rozwazana to
nie ulega zmianie (algorytm nigdy nie robi zamiany wstecz).

7.1.5. Zamiana pokolenia

Niech R1 to zbiér najlepszych rozwiazan oraz niech R2 to zbiér najbardziej zréznicowanych
rozwiazan.

Nowe rozwiazanie wchodzi do R1, jezeli jest lepsze niz najgorsze z tego zbioru i nie ma jego
kopii ani w R1 ani w R2. Nowe rozwigzanie wchodzi do R2, jezeli jest bardziej zréznicowane
niz najmniej zréznicowane z tego zbioru i nie ma jego kopii ani w R1 ani w R2.
Roéznorodnoéé rozwiazania x jest zdefiniowana jako dystans miedzy tym rozwigzaniem, a
wszystkimi rozwigzaniami z R1.

N
Vorem d(w, a') =) v — 2| (2)
i=1

D(z,Ry) = Z d(z, zt) (3)

x1€R1

7.1.6. Wlasne usprawnienia

Populacja zréznicowana jest inicjowana na nowo, jezeli w ciagu pieciu kolejnych iteracji nie
znaleziono nowego minimum.
Réznorodnoéé rozwiazania x jest zdefiniowana jako dystans miedzy tym rozwiazaniem, a

11

Przeszukiwanie z tabu

wszystkimi rozwiazaniami z R1 oraz z R2. Zapobiega to zbieznosci populacji zréznico-
wanej do okreslonych wartoéci, bo nowe przedzialy przeszukiwania rozwiazania zaleza teraz
takze od populacji najlepszej.

7.2. Obsluga programu
7.2.1. Kompilacja i uruchamianie

Program zostal napisany w calosci w jezyku C++ przy uzyciu zestawu narzedzi programistycz-
nych Dev-C++ w wersji 4.9.9.2.

Nie gwarantuje, ze przy innej wersji zintegrowanego srodowiska programistycznego, a w szcze-
gblnosci innej wersji kompilatora jezyka C++ program bedzie dziatal poprawnie. Aplikacja byla
testowana pod systemem Windows XP Professional z zainstalowanym dodatkiem Service Pack
2 i jest przeznaczona wylacznie dla systemoéw operacyjnych Microsoft Windows.

Kod Zrédlowy implementacji znajduje si¢ w catosci w pliku main. cpp.

7.2.2. Wywolanie i parametry algorytméw

Przed uruchomieniem algorytmu mozna ustawié¢ nastepujace parametry (jako state zdefinio-
wane na poczatku kodu zrédlowego):

- wielko$¢ populacji zréznicowanej i najlepszej (stala P, domyslnie P = 50) — laczna wiel-
ko$¢ populacji wynosi wiec 2P;

- liczba iteracji (stala MAX_ITER, domy$lnie MAX_ITER = 500).

Pozostate parametry dostarczane sg wraz z plikiem z danymi, jego struktura zostata oméwiona
w jednym z poprzednich dziatéw tej pracy.

Przyktadowe wywolanie skompilowanego programu:

Projekt.exe < plik.dat, gdzie plik.dat to plik z danymi o odpowiedniej strukturze.

7.3. Testy
Wyniki algorytmu

Test Rozmiar | MAX_ITER | MIN_ITER P T | %best_known Y%opt
Wil100 100 50 38 2%70 | 5 1.6% 3.4%
Inst100 100 25 12 2*¥100 | 5 0.05% brak danych
Sko100c 100 35 22 2*¥150 | 5 2.6% 5.73%
Sko100f 100 50 28 2*¥150 | 5 1.99% 6.43%
Esc128 128 20 8 2*110 | 10 0% 96.86%
Thol50 150 75 57 2*110 | 10 1.8% 6.3%
Tail50b 150 40 17 2*%100 | 5 1.9% 12.66%
Inst200 200 50 23 2*100 | 10 0.34% brak danych
Tai256¢ 256 80 42 2*¥120 | 5 0.55% 2.03%

12

Przeszukiwanie z tabu

7.3.1. Oznaczenia

Test — nazwa testu.

N — rozmiar testu.

MAXITER — liczba wszystkich iteracji, jakie wykonal algorytm.

MIN_ITER — minimalna liczba iteracji, jakich potrzebuje algorytm do znalezienia najlepszego
rozwiazania.

P — suma rozmiaréw populacji.

T — liczba iteracji bez poprawy najlepszego rozwiazania, ktora skutkuje wygenerowaniem po-
pulacji zréznicowanej na nowo.

%best_known — procent o jaki gorsze jest rozwigzanie algorytmu od najlepszego znanego roz-
wigzania.

%opt — procent o jaki gorsze jest najlepsze znane rozwiazanie od optymalnego.

7.3.2. Komentarz do testéw

Badanie pokazalo, ze zastosowanie Tabu Search jako wspomagania innych heurystyk do roz-
wigzywania NP-trudnych, kombinatorycznych probleméw takich jak QAP znajduje swoje uza-
sadnienie w praktyce. Algorytm we wszystkich opisanych testach znalazt rozwigzania niewiele
gorsze od najlepszych znanych (w jednym przypadku udalo sie wyréwnaé najlepszy znany
wynik). Ponadto na podstawie wynikéw ze strony QAP mozna zauwazy¢, ze nie istnieje obec-
nie ani jeden algorytm heurysytyczny, ktéry radzilby sobie wzorowo ze wszystkimi testami
(najlepsze znane rezultaty sa osiagane przez wiele implementacji, réznych algorytméw, nie
tylko ewolucyjnych i Tabu Search).

13

Przeszukiwanie z tabu

Literatura

[1] T. James, C. Rego, F. Glover Sequential and Parallel Path-Relinking Algorithms for the
Quadratic Assignment Problem, IEEE Computer Society 2005;

[2] http://www.seas.upenn.edu/qaplib/inst.html (ostatni dostep 05.04.2011);
[3] http://www.soften.ktu.lt/ gintaras/qproblem.html (ostatni dostep 05.04.2011);

[4] M.Laguna Exploration of Metaheuristic Optimization: Tabu Search, Scatter Search and
Path Relinking ;

[5] F.Glover, M.Laguna Tabu Search ;

[6] R.Battiti, G. Tecchiolli The Reactive Tabu Search , ORSA Journal on Computing Vol.6,
No. 2 (1994);

[7] M.Laguna Implementing and Testing the Tabu Cycle and Conditional Probability Methods,
Leeds School of Business University of Colorado Boulder,(2005);

[8] A. Misevicius, A. Lenkevicius, D. Rubliauskas Iterated Tabu Search: An Improvement To
Standrard Tabu Search, Information Technology and Control, 2006, Vol. 35, No. 3.

14

