
Seminarium: Algorytmy heurystyczne

IIUWr 2010/2011

Przemysław Gospodarczyk

Przeszukiwanie z tabu (06.04.11)
opracowanie

Wersja Zmiany Autor Data

1.0 Pierwsza wersja Przemysław Gospodarczyk 2011-04-05



Przeszukiwanie z tabu

Spis treści

1. Teoria 3
1.1. Historia Tabu Search i nowe trendy . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2. Definicja Tabu Search i ogólna idea . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3. Tabu Search – schemat ogólny algorytmu . . . . . . . . . . . . . . . . . . . . . 4
1.4. Struktury sąsiedztwa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5. Kryterium aspiracji . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6. Wykorzystanie pamięci długoterminowej, pojęcia dywersyfikacji i intensyfikacji 5

2. Probabilistic Tabu Search 5

3. Reactive Tabu Search 6

4. Tabu Cycle Method 6

5. Iterated Tabu Search 7
5.1. Algorytm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.2. Zapamiętywanie rozwiązań . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.3. Wybór kandydatów do zoptymalizowania . . . . . . . . . . . . . . . . . . . . . 8
5.4. Rekonstrukcja rozwiązania . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6. Opis problemu QAP 8
6.1. Opis problemu i specyfikacja . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6.2. Źródło danych . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

7. Zastosowanie połączenia Tabu Search z algorytmem ewolucyjnym do roz-
wiązania problemu QAP 9
7.1. Algorytm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

7.1.1. Schemat ogólny zastosowanego algorytmu . . . . . . . . . . . . . . . . . 9
7.1.2. Inicjowanie populacji . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
7.1.3. Tabu Search jako heurystyka usprawniająca . . . . . . . . . . . . . . . . 11
7.1.4. Wybór rodziców i generowanie nowego zbioru rozwiązań . . . . . . . . . 11
7.1.5. Zamiana pokolenia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
7.1.6. Własne usprawnienia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

7.2. Obsługa programu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
7.2.1. Kompilacja i uruchamianie . . . . . . . . . . . . . . . . . . . . . . . . . . 12
7.2.2. Wywołanie i parametry algorytmów . . . . . . . . . . . . . . . . . . . . 12

7.3. Testy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
7.3.1. Oznaczenia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.3.2. Komentarz do testów . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2



Przeszukiwanie z tabu

1. Teoria

1.1. Historia Tabu Search i nowe trendy

Fred Glover w roku 1977 przedstawił pracę dotyczącą m.in. wykorzystania pamięci krótko-
trwałej i długotrwałej w przeszukiwaniu lokalnym. Pamięć długotrwała miała służyć do zapa-
miętania najbardziej atrakcyjnych elementów przestrzeni przeszukiwań podczas, gdy pamięć
krótkotrwała służyła do pamiętania ostatnich ruchów i miała ulegać nadpisywaniu w kolej-
nych iteracjach przeszukiwania.
Wyżej wymienione pomysły stały się podstawą do działania Tabu Search i w roku 1986 Fred
Glover wydał pierwszą pracę dotyczącą tej heurystyki.
Co ciekawe Michael Hansen, również w 1986 roku wydał swoją pracę na temat podobnej heu-
rystyki. Heurystyka o nazwie Steepest Ascent Mildest Descent Heuristic powstała niezależnie
od pracy Freda Glovera.
W ciągu lat powstało bardzo wiele różnych usprawnień, o które można wzbogacić Tabu Search.
Niektóre z nich opisałem w tej pracy. Ostatnie trendy to hybrydyzacja algorytmów heurystycz-
nych, która zazwyczaj przejawia się dodawaniem Tabu Search do algorytmów ewolucyjnych,
które rozwijają się bardzo sprawnie i dają coraz lepsze rezultaty. Szczególnie techniki gene-
rujące już w pierwszych iteracjach informacje specyficzne o problemie i wykorzystujące je w
praktyce (lepsze niż losowe rozwiązanie startowe, krzyżowanie fragmentów najlepszych roz-
wiązań znalezionych przez TS, wiedząc, że pewne pozycje w wektorze rozwiązań powinny być
wypełnione w określony sposób lub zależą od siebie) są obecnie najbardziej wykorzystywane.
Nie bez znaczenia dla rozwoju Tabu Search jest również możliwość zrównoleglania (każdy
procesor niezależnie może modyfikować dane mu rozwiązanie).

1.2. Definicja Tabu Search i ogólna idea

Przeszukiwanie z tabu jest metahuerystyką do rozwiązywania problemów optymalizacyj-
nych, opartą na iteracyjnym przeszukiwaniu przestrzeni rozwiązań, wykorzystując sąsiedztwo
pewnych elementów tej przestrzeni oraz zapamiętując przy tym przeszukiwaniu ostatnie ruchy,
dopóki nie zostanie spełniony warunek końcowy. Ruchy zapisywane są w postaci atrybutów
przejścia (parametry opisujące jednoznacznie wykonany ruch) na liście (zwanej też czasami
zbiorem) tabu. Obecność danego ruchu na liście tabu jest tymczasowa (zazwyczaj na okre-
śloną liczbę iteracji od ostatniego użycia) i oznacza, że danego ruchu nie można wykonać przez
określoną liczbę iteracji – chyba, że ruch spełnia tzw. kryterium aspiracji (ang. aspiration
criterion). Lista tabu ma za zadanie wykluczyć (w praktyce jednak jedynie zmniejszyć) praw-
dopodobieństwo zapętleń przy przeszukiwaniu i zmusić algorytm do przeszukiwania nowych,
niezbadanych regionów przestrzeni przeszukiwań.
Przeszukiwanie z tabu zmniejsza nieco szybkość zbieżności poprzez zamienianie danego roz-
wiązania z najlepszym jego sąsiadem, bez względu na to, czy sąsiad jest od niego lepszy, czy
gorszy. Pozytywnym aspektem tego podejścia jest jednak możliwość szybszego wyjścia z re-
gionu przyciągania ekstremum lokalnego, które niekoniecznie musi być globalnie optymalne
(w szczególności, może być czasami bardzo odległe od optymalnego).
Zazwyczaj warunkiem końcowym przeszukiwania jest zadana z góry liczba iteracji do wyko-

3



Przeszukiwanie z tabu

nania, brak zmiany globalnie najlepszego rozwiązania w określonej liczbie iteracji z rzędu (co
może być również motywacją do wygenerowania nowego rozwiązania startowego i rozpoczęcia
algorytmu od początku z pewną wiedzą nabytą w poprzednim wykonaniu) lub jeżeli osiągnie-
my zadaną z góry wartość funkcji celu.
Pojęcie metaheurystyki zostało wymyślone przez Freda Glovera w roku 1986 i oznacza heu-
rystykę nadrzędną (co sugeruje podrzędność innych w stosunku do tej), która dzięki swojej
ogólności potrafi sterować innymi, odpowiednio dopasowanymi na potrzeby danego problemu
optymalizacyjnego. Tabu Search jest więc ideą, a nie konkretnym algorytmem rozwiązującym
konkretny problem optymalizacji.

1.3. Tabu Search – schemat ogólny algorytmu

//losowe rozwiązanie startowe
s = best = RANDOM SOLUTION()
//inicjowanie listy tabu
t = []
//pętla trwa dopóki nie zostaną spełnione określone warunki końcowe
WHILE NOT(TERMINATION CONDITION)
{
//wykonanie kroku
s = SELECT(NEIGHBORS(s),t))
//aktualizowanie listy tabu
t = UPDATE TABU(s,t)
//najlepsze rozwiązanie zapamiętujemy
if (f(best) < f(s))
{

best = s
}

}
return best

1.4. Struktury sąsiedztwa

Ze względu na przestrzeń rozwiązań należy zdefiniować relację sąsiedztwa na parach elemen-
tów tej przestrzeni, która obejmuje całą dziedzinę przestrzeni przeszukiwań. Definicja relacji
zależy oczywiście od przestrzeni i formatu rozwiązań (np. rozwiązaniami mogą być wektory
binarne, wektory liczb rzeczywistych, permutacje zbioru liczb naturalnych itp...).
Przykładowo, jeżeli rozważamy przestrzeń permutacji zbioru n elementowego to możemy roz-
ważyć 3 możliwe strategie przejścia dla permutacji π =< π(0), π(1), ..., π(n− 1) >:

- insert(i,j) – przeniesienie j-tego elementu na pozycję i-tą,

- swap(i,j) – zamiana miejscami i-tego elementu z j-tym,

4



Przeszukiwanie z tabu

- invert(i,j) – odwrócenie kolejności w podciągu zaczynającym się na i-tej pozycji i koń-
czącym się na pozycji j-tej.

W powyższych przejściach argumenty i,j nazywamy atrybutami przejścia, które jednoznacznie
pozwalają identyfikować przejście.

1.5. Kryterium aspiracji

Czasami zabranianie pewnych ruchów, mimo, że nie prowadzi do zapętleń, to może spowodo-
wać ogólną stagnację przy przeszukiwaniu lub wręcz całkowicie uniemożliwić ruch (sytuacja,
gdy wszyscy sąsiedzi są na liście tabu).
Spełnienie kryterium aspiracji pozwala na złamanie tabu, czyli wykonanie ruchu pomimo, że
jego atrybuty znajdują się na liście ruchów zabronionych. Najprostszym i najczęściej stosowa-
nym kryterium aspiracji jest zezwolenie na wykonanie ruchu, jeżeli prowadzi on bezpośrednio
do uzyskania najlepszego znanego globalnie rozwiązania. Inne ciekawsze, ale znacznie bardziej
skomplikowane kryteria aspiracji opierają się na wyspecjalizowanych metodach badających
możliwości powstania cyklu po wykonaniu danego ruchu (co udało się efektywnie zaimple-
mentować naukowcom w latach 1989, 1991).

1.6. Wykorzystanie pamięci długoterminowej, pojęcia dywersyfikacji i in-
tensyfikacji

Podstawowym pomysłem strategii Tabu Search jest wykorzystanie pamięci długoterminowej
do przechowywania najlepszego globalnie rozwiązania, które na koniec algorytmu zostaje zwró-
cone jako wynik działania heurystyki.
Istnieje wiele innych pomysłów na wykorzystanie pamięci długoterminowej przy przeszukiwa-
niu przestrzeni rozwiązań, których cechą wspólną jest chęć utworzenia statystyki o korzyst-
nych ruchach z przeszłych iteracji. Statystykę można wykorzystać do bardziej inteligentnych
i wyspecjalizowanych strategii, które pozwalają na zaspokajanie dwóch istotnych kryteriów:

- intensyfikacji, czyli zagęszczenia próbkowania obszaru, jeżeli w tym obszarze znajdują
się dobre rozwiązania;

- dywersyfikacji, czyli rozproszenia przeszukiwania, aby nie pominąć wszystkich podob-
szarów.

Pomysłem na egzekwowanie powyższych pomysłów może być też funkcja kary, która zależy
od częstotliwości wykonywania danego ruchu i zaburza wartości funkcji celu.

2. Probabilistic Tabu Search

Metoda na ogół mniej skuteczna niż klasyczny Tabu Search, ale dużo wydajniejsza i przydat-
na, gdy funkcja celu jest skomplikowana i liczy się długo oraz, gdy przestrzeń przeszukiwania
jest duża (oraz, co za tym idzie, być może sąsiedztwo).
Probabilistic Tabu Search sprawdza tylko losowy podzbiór sąsiadów (zamiast wszystkich).

5



Przeszukiwanie z tabu

Ponadto randomizacja jest silnym mechanizmem anty-cyklowym, co pozwala skracać listę ta-
bu.
W związku z tym, że łatwo przeoczyć w ten sposób dobre rozwiązania, mimo że są one blisko,
warto co kilka iteracji przeprowadzać kilka iteracji klasycznego Tabu Search (Glover i Laguna,
1993).
Ewentualnie po zakończeniu działania Probabilistic Tabu Search, można włączyć klasyczny
Tabu Search na kilka iteracji, aby zoptymalizować otrzymane rozwiązanie, tak by było przy-
najmniej optimum lokalnym.
Pełny opis metody można znaleźć w [5].

3. Reactive Tabu Search

Metoda pozwala dynamicznie sterować długością listy tabu w trakcie działania algorytmu za
cenę pamięciożerności i zwiększonej złożoności obliczeniowej. Pamiętając wszystkie dotych-
czasowe rozwiązania wraz z numerem iteracji, w pamięci długotrwałej, algorytm sprawdza
powtarzalność uzyskiwanych rozwiązań. Jeżeli rozwiązania zaczynają się powtarzać, to al-
gorytm w kolejnych iteracjach wolniej redukuje listę (co powoduje zwiększenie jej długości)
niedopuszczając do powstania cyklów i ”uciekając” z regionu przyciągania ekstremum lokal-
nego.
Przypadek, gdy listę można skrócić zachodzi, gdy rozwiązania nie powtarzają się.
Aby zmniejszyć złożoność, stosuje się haszowanie i kompresję (do rozróżnienia m rozwiązań
wystarczy log(m) bitów).
Pełny opis metody można znaleźć w [6].

4. Tabu Cycle Method

Metoda dzieli w trakcie działania listę tabu na grupy, gdzie k-ta grupa zawiera elementy do-
dane w określonym przedziale iteracji.
Ruchy w grupie najmłodszej nr. 0, zwanej Buffer Group są zabronione na stałe. Algorytm
pozwala na łamanie tabu dla starszych grup, z częstotliwością zależną od współczynnika
TC(k) = n − k + 1, gdzie k jest numerem grupy, a n liczbą grup. Współczynnik TC(k)
mówi o tym, co ile iteracji wolno łamać tabu w grupie k-tej.
Ponadto wprowadza się współczynnik CC(k) inkrementowany o 1 w każdej iteracji, w której
nie następuje łamanie tabu w grupie k-tej. Jeżeli nastąpiło złamanie tabu, to ∀h­kCC(h) =
CC(h)–TC(h). W zależności od wyżej wymienionych współczynników, poszczególnym gru-
pom nadawane są następujące statusy:

- OFF — grupie nigdy nie wolno łamać tabu, przypadek dla CC(k) < TC(K);

- ON – grupie wolno łamać tabu co TC(K) iteracji, przypadek CC(k) ­ TC(K);

- FREE — na grupę nie jest nałożone żadne tabu, przypadek, gdy grupa jest ON i każda
starsza od niej też jest ON.

6



Przeszukiwanie z tabu

Jeżeli dozwolony ruch dla grupy k-tej nie jest wykonany to: CC(k) = min(CC(k)+1, aTC(k))
, gdzie a jest odpowiednio dobranym współczynnikiem, który pilnuje jak dużą wielokrotność
TC można osiągnąć (czasami CC(k) staje się tak duży, że grupy są ON lub wręcz FREE zbyt
długo). Pełny opis metody można znaleźć w pracy autorstwa Glovera i Laguny z 1997 roku.

5. Iterated Tabu Search

5.1. Algorytm

Uproszczony schemat ogólny algorytmu w pseudokodzie (w szczególności pewne metody nie
zostały jawnie zdefiniowane i algorytm należy samodzielnie dospecyfikować, ze względu na
specyfikę danego problemu):

//losowe rozwiązanie startowe
s = RANDOM SOLUTION()
//wywołanie klasycznego Tabu Search na rozwiązaniu startowym
s’ = TABU SEARCH(s)
//zapamiętujemy najlepsze dotychczasowe rozwiązanie jako s*
s* = s’
//pętla trwa dopóki nie zostaną spełnione określone warunki końcowe
WHILE NOT(TERMINATION CONDITION)
{
//wybieranie rozwiązania do zoptymalizowania
s = CANDIDATE ACCEPTANCE(s’, s’’, s*, s, ...)
//rekonstrukcja wybranego rozwiązania
s’ = RECONSTRUCTION(s)
//wywołanie klasycznego Tabu Search na wybranym rozwiązaniu
s’’ = TABU SEARCH(s’)
//najlepsze rozwiązanie zapamiętujemy
if (f(s*) < f(s’’))
{

s* = s’’
}

}
return s*
Oryginalna wersja omówionego w tej pracy algorytmu pochodzi z pracy [8].

5.2. Zapamiętywanie rozwiązań

Algorytm ITS zawsze zapamiętuje najlepsze znane do tej pory rozwiązanie jako s*. Reszta
rozwiązań, która okazuje się słabsza, a w szczególności pewne rozwiązania pośrednie, również
mogą być warte zapamiętywania (w zależności od strategii wyboru kandydatów do zoptyma-
lizowania), ale trzymanie tych rozwiązań nie jest obowiązkowe.

7



Przeszukiwanie z tabu

5.3. Wybór kandydatów do zoptymalizowania

Wybór, którego należy dokonać to pewien kompromis między intensyfikacją a dywersyfikacją
przeszukiwania.
Najprostszy pomysł polega na wyborze najlepszego znanego rozwiązania (s* w schemacie
algorytmu) i może prowadzić (szczególnie przy słabszej metodzie rekonstrukcji) do intensyfi-
kacji. Pomysł może sprzyjać również szybszej zbieżność.
Inne pomysły, które wymagają pamiętania rozwiązań pośrednich, jak np. losowe wybieranie
może prowadzić do dywersyfikacji.
Często stosuje się też metodę WYA (skrót od ang. „where are you”) polega na wyborze kolej-
nych optimów z poprzedniej iteracji, bez względu na ich jakość z globalnego punktu widzenia.
Wszystkie „inteligentniejsze” metody wyboru rozwiązań wymagają znacznie bardziej wyspe-
cjalizowanych metod, które dotyczą bardziej zaawansowanych algorytmów ewolucyjnych np.
BOA (ang. Bayesian optimization algorithm), ECGA (ang. Extended Compact Genetic Algo-
rithm), PBIL (ang. Population Based Incremental Learning). Pierwsze dwa dają już po kilku
iteracjach pewną specyficzną wiedzę na temat zadania, pozwalają zlokalizować zależności mię-
dzy genami i wykorzystać uzyskaną wiedzę do dokonywania bardziej świadomych wyborów.
Omawianie tych algorytmów przekracza znacznie temat tej pracy.

5.4. Rekonstrukcja rozwiązania

Wybór metody rekonstrukcji rozwiązania to kolejny kompromis między intensyfikacją a dy-
wersyfikacją przeszukiwania.
Z jednej strony rekonstrukcja musi być na tyle silna, aby umożliwić skuteczną ”ucieczkę” z
regionu przyciągania ekstremum lokalnego. Z drugiej strony zależy nam na tym, aby nie tracić
wiedzy o dobrych rozwiązaniach (jeżeli zaburzymy rozwiązanie zbyt mocno to algorytm stanie
się zbyt losowy).

6. Opis problemu QAP

6.1. Opis problemu i specyfikacja

Kwadratowy problem przydziału (ang. Quadratic assignment problem – QAP) to jeden z naj-
ważniejszych NP-trudnych problemów optymalizacji kombinatorycznej. Przedstawiona poni-
żej interpretacja tego problemu jest jedną z wielu znanych.
Dysponujemy zbiorami N fabryk i N lokacji oraz dwoma kwadratowymi macierzami roz-

miaru N (macierz d odległości między każdą parą lokacji i macierz f wag między każdą parą
fabryk), gdzie N jest parametrem algorytmu (liczbą naturalną).
Zadanie polega na przypisaniu każdej z fabryk do jednej z lokacji (każdą do innej) tak,

aby zminimalizować sumę iloczynów dystansów między lokacjami i odpowiadających wag. W
praktyce chodzi o minimalizację pewnej funkcji celu:

8



Przeszukiwanie z tabu

min
p∈Π

N∑
i=1

N∑
j=1

d[i][j] ∗ f [p[i]][p[j]] (1)

gdzie p jest wektorem przypisania.
Wektor przypisania jest w rzeczywistości permutacją liczb naturalnych z zakresu [0,N), gdzie
na i-tym polu odpowiadającym i-tej lokacji znajduje się numer fabryki, która jest przypisana
do tej lokacji.

6.2. Źródło danych

Wszystkie zestawy danych testowych w postaci plików o rozszerzeniu .DAT pochodzą z serwisu
QAPLIB - A Quadratic Assignment Problem Library (adres [2]). Struktura pliku z danymi
składa się z trzech części:

- liczba naturalna N;

- poprzedzona pustym wierszem zawartość macierzy f (w każdej z N linijek jeden wiersz
macierzy);

- poprzedzona pustym wierszem zawartość macierzy d (w każdej z N linijek jeden wiersz
macierzy).

Serwis udostępnia ponadto najlepsze znane rozwiązania dla wszystkich udostępnionych testów.

7. Zastosowanie połączenia Tabu Search z algorytmem ewolu-
cyjnym do rozwiązania problemu QAP

7.1. Algorytm

Oryginalna wersja omówionego w tej pracy algorytmu pochodzi z pracy [1], wersja opisana w
tej pracy została zaimplementowana na nowo, interpretując i rozszerzając pomysły z wersji
oryginalnej.

7.1.1. Schemat ogólny zastosowanego algorytmu

Uproszczony schemat ogólny algorytmu w pseudokodzie (w szczególności, w kodzie źródło-
wym nazwy poszczególnych metod i ich parametry są inne):

//czyta dane z pliku
READ DATA(file)
//inicjuje obie populacje (zróżnicowaną i najlepszą)
INIT BOTH POPULATIONS(DIV POP, BEST POP)
//heurystyka Tabu Search

9



Przeszukiwanie z tabu

BEST POP UPDATE(BEST POP)
//warunkiem końcowym jest osiągnięcie zadanej liczby iteracji
FOR (i = 0; i < MAX-ITER; i++)
{
//jeżeli w poprzedniej iteracji nie dodano żadnego nowego rozwiązania
if (!added)
{

//inicjujemy na nowo zróżnicowaną populację
INIT DIV POPULATION(DIV POP)

}
// krzyżowanie osobników (krok zrównoleglony, osobno dla każdej pary)
CHILDREN = CROSSOVER(DIV POP, BEST POP)
// podmiana starego pokolenia na nowe
(DIV POP, BEST POP) = REPLACEMENT(CHILDREN, DIV POP, BEST POP)
//heurystyka Tabu Search
BEST POP UPDATE(BEST POP)

}

7.1.2. Inicjowanie populacji

Generujemy startowy zbiór rozwiązań wykorzystując wiedzę o typie problemu. Pewna z góry
ustalona liczba mówi nam ile chcemy rozwiązań najlepszej jakości, a ile najbardziej różnorod-
nych (one rozszerzają nam przestrzeń poszukiwań i zmniejszają prawdopodobieństwo zbieżno-
ści do ekstremum lokalnego). Można stosować wyspecjalizowane heurystyki, ulepszające zbiór
startowy.

Wykorzystano tzw. metodę Glovera, która gwarantuje pewien poziom zróżnicowania w
zbiorze rozwiązań (w przeciwieństwie do podejścia czysto losowego). Wygenerowane przez
metodę wektory są poprawne i nie trzeba ich naprawiać.
Jako ziarno wykorzystujemy 1 losowy, poprawny wektor x. Na podstawie ziarna tworzymy
nowe rozwiązanie.
Dane:

- b – naturalne, mniejsze od N;

- s – pozycja startowa, na początku równa b.

Algorytm:
Rozwiązanie x’ budujemy dodając najpierw element x[s], potem kolejno x[s + b], x[s +
2b], ..., x[s + rb], gdzie r jest tak dobrane, że s+rb nie przekracza N. Kiedy dojdziemy
do końca ziarna, to pozycja startowa zmniejsza się o 1 i cała operacja się powtarza aż nie
zapełnimy całego wektora x’ (musimy odwiedzić wszystkie pozycje w x).

10



Przeszukiwanie z tabu

7.1.3. Tabu Search jako heurystyka usprawniająca

Dla najlepszej populacji wygenerowanych osobników stosujemy metodę przeszukiwania tabu
Erica Taillarda dla QAP.
Heurystyka oblicza możliwe zamiany lokacji 2 firm, wykorzystując prostą listę tabu (ruchy
niedozwolone). Aby zmusić algorytm do przeszukiwania niezbadanych fragmentów przestrze-
ni, wymieniane są ze sobą tylko te elementy, które nie były wymieniane przez kilka ostatnich
iteracji (na podstawie listy tabu). Jeżeli jednak, zabroniona zmiana doprowadza do wypro-
dukowania najlepszego nieznanego do tej pory przez algorytm rozwiązania, to zamiana się
dokonuje, mimo obecności na liście tabu (ang. aspiration criterion).

7.1.4. Wybór rodziców i generowanie nowego zbioru rozwiązań

Wszystkie rozwiązania ze zbioru łączymy w pary (metoda każdy z każdym). Stosujemy me-
todę path-relinking.
Wektorami wiodącymi, zostają te, które są lepsze w swojej parze (lepiej optymalizują f. ce-
lu), potomek jest inicjowany wektorem niewiodącym. Iterujemy wektory. Jeżeli na napotkanej
pozycji wektory rodziców nie różnią się, to odpowiadająca pozycja w potomku jest pozosta-
wiana. Jeżeli na napotkanej pozycji wektory rodziców różnią się oraz pozycja ta w potomku
nie była wcześniej zmieniana to do potomka przepisywana jest wartość z wektora wiodącego
(pod warunkiem, że nie zwiększa wartości funkcji celu). Jeżeli pozycja była już rozważana to
nie ulega zmianie (algorytm nigdy nie robi zamiany wstecz).

7.1.5. Zamiana pokolenia

Niech R1 to zbiór najlepszych rozwiązań oraz niech R2 to zbiór najbardziej zróżnicowanych
rozwiązań.
Nowe rozwiązanie wchodzi do R1, jeżeli jest lepsze niż najgorsze z tego zbioru i nie ma jego
kopii ani w R1 ani w R2. Nowe rozwiązanie wchodzi do R2, jeżeli jest bardziej zróżnicowane
niż najmniej zróżnicowane z tego zbioru i nie ma jego kopii ani w R1 ani w R2.
Różnorodność rozwiązania x jest zdefiniowana jako dystans między tym rozwiązaniem, a
wszystkimi rozwiązaniami z R1.

∀x1∈R1d(x, x
1) =

N∑
i=1

|x− x1| (2)

D(x,R1) =
∑
x1∈R1

d(x, x1) (3)

7.1.6. Własne usprawnienia

Populacja zróżnicowana jest inicjowana na nowo, jeżeli w ciągu pięciu kolejnych iteracji nie
znaleziono nowego minimum.
Różnorodność rozwiązania x jest zdefiniowana jako dystans między tym rozwiązaniem, a

11



Przeszukiwanie z tabu

wszystkimi rozwiązaniami z R1 oraz z R2. Zapobiega to zbieżności populacji zróżnico-
wanej do określonych wartości, bo nowe przedziały przeszukiwania rozwiązania zależą teraz
także od populacji najlepszej.

7.2. Obsługa programu

7.2.1. Kompilacja i uruchamianie

Program został napisany w całości w języku C++ przy użyciu zestawu narzędzi programistycz-
nych Dev-C++ w wersji 4.9.9.2.
Nie gwarantuję, że przy innej wersji zintegrowanego środowiska programistycznego, a w szcze-
gólności innej wersji kompilatora języka C++ program będzie działał poprawnie. Aplikacja była
testowana pod systememWindows XP Professional z zainstalowanym dodatkiem Service Pack
2 i jest przeznaczona wyłącznie dla systemów operacyjnych Microsoft Windows.
Kod źródłowy implementacji znajduje się w całości w pliku main.cpp.

7.2.2. Wywołanie i parametry algorytmów

Przed uruchomieniem algorytmu można ustawić następujące parametry (jako stałe zdefinio-
wane na początku kodu źródłowego):

- wielkość populacji zróżnicowanej i najlepszej (stała P, domyślnie P = 50) – łączna wiel-
kość populacji wynosi więc 2P;

- liczba iteracji (stała MAX ITER, domyślnie MAX ITER = 500).

Pozostałe parametry dostarczane są wraz z plikiem z danymi, jego struktura została omówiona
w jednym z poprzednich działów tej pracy.
Przykładowe wywołanie skompilowanego programu:
Projekt.exe < plik.dat, gdzie plik.dat to plik z danymi o odpowiedniej strukturze.

7.3. Testy

Wyniki algorytmu
Test Rozmiar MAX ITER MIN ITER P T %best known %opt
Wil100 100 50 38 2*70 5 1.6% 3.4%
Inst100 100 25 12 2*100 5 0.05% brak danych
Sko100c 100 35 22 2*150 5 2.6% 5.73%
Sko100f 100 50 28 2*150 5 1.99% 6.43%
Esc128 128 20 8 2*110 10 0% 96.86%
Tho150 150 75 57 2*110 10 1.8% 6.3%
Tai150b 150 40 17 2*100 5 1.9% 12.66%
Inst200 200 50 23 2*100 10 0.34% brak danych
Tai256c 256 80 42 2*120 5 0.55% 2.03%

12



Przeszukiwanie z tabu

7.3.1. Oznaczenia

Test – nazwa testu.
N – rozmiar testu.
MAX ITER – liczba wszystkich iteracji, jakie wykonał algorytm.
MIN ITER – minimalna liczba iteracji, jakich potrzebuje algorytm do znalezienia najlepszego
rozwiązania.
P – suma rozmiarów populacji.
T – liczba iteracji bez poprawy najlepszego rozwiązania, która skutkuje wygenerowaniem po-
pulacji zróżnicowanej na nowo.
%best known – procent o jaki gorsze jest rozwiązanie algorytmu od najlepszego znanego roz-
wiązania.
%opt – procent o jaki gorsze jest najlepsze znane rozwiązanie od optymalnego.

7.3.2. Komentarz do testów

Badanie pokazało, że zastosowanie Tabu Search jako wspomagania innych heurystyk do roz-
wiązywania NP-trudnych, kombinatorycznych problemów takich jak QAP znajduje swoje uza-
sadnienie w praktyce. Algorytm we wszystkich opisanych testach znalazł rozwiązania niewiele
gorsze od najlepszych znanych (w jednym przypadku udało się wyrównać najlepszy znany
wynik). Ponadto na podstawie wyników ze strony QAP można zauważyć, że nie istnieje obec-
nie ani jeden algorytm heurysytyczny, który radziłby sobie wzorowo ze wszystkimi testami
(najlepsze znane rezultaty są osiągane przez wiele implementacji, różnych algorytmów, nie
tylko ewolucyjnych i Tabu Search).

13



Przeszukiwanie z tabu

Literatura

[1] T. James, C. Rego, F. Glover Sequential and Parallel Path-Relinking Algorithms for the
Quadratic Assignment Problem, IEEE Computer Society 2005;

[2] http://www.seas.upenn.edu/qaplib/inst.html (ostatni dostęp 05.04.2011);

[3] http://www.soften.ktu.lt/ gintaras/qproblem.html (ostatni dostęp 05.04.2011);

[4] M.Laguna Exploration of Metaheuristic Optimization: Tabu Search, Scatter Search and
Path Relinking ;

[5] F.Glover, M.Laguna Tabu Search ;

[6] R.Battiti, G. Tecchiolli The Reactive Tabu Search , ORSA Journal on Computing Vol.6,
No. 2 (1994);

[7] M.Laguna Implementing and Testing the Tabu Cycle and Conditional Probability Methods,
Leeds School of Business University of Colorado Boulder,(2005);

[8] A. Misevicius, A. Lenkevicius, D. Rubliauskas Iterated Tabu Search: An Improvement To
Standrard Tabu Search, Information Technology and Control, 2006, Vol. 35, No. 3.

14


