
Genetic

Algorithms
Nha Nam Ngoc Nguyen

The Genetic Algorithm

• Directed search algorithms based on the mechanics of

biological evolution

• Developed by John Holland, University of Michigan

(1970’s)

• To understand the adaptive processes of natural systems

• To design artificial systems software that retains the

robustness of natural systems

• Provide efficient, effective techniques for optimization

and machine learning applications

• Widely-used today in business, scientific and engineering

circles

Components of a GA

• A problem to solve, and ...

• Encoding technique (gene, chromosome)

• Initialization procedure (creation)

• Evaluation function (environment)

• Selection of parents (reproduction)

• Genetic operators (mutation, recombination)

• Parameter settings (practice and art)

Simple Genetic Algorithm

{

initialize population;

evaluate population;

while TerminationCriteriaNotSatisfied

{

select parents for reproduction;

perform recombination and mutation;

evaluate population;
}

}

The GA Cycle of Reproduction

reproduction

population evaluation

modification

discard

deleted

members

parents

children

modified

children

evaluated children

Population

Chromosomes could be:

• Bit strings (0101 ... 1100)

• Real numbers (43.2 -33.1 ... 0.0 89.2)

• Permutations of element (E11 E3 E7 ... E1 E15)

• Lists of rules (R1 R2 R3 ... R22 R23)

• Program elements (genetic programming)

• ... any data structure ...

population

Reproduction

• Parents are selected at random with selection chances

biased in relation to chromosome evaluations.

reproduction

population

children

parents

Chromosome Modification

• Modifications are stochastically triggered

• Operator types are:

• Mutation

• Crossover (recombination)

evaluation

modification
children

modified

children

Mutation: Local Modification

• Before: (1 0 1 1 0 1 1 0)

• After: (0 1 1 0 0 1 1 0)

• Before: (1.38 -69.4 326.44 0.1)

• After: (1.38 -67.5 326.44 0.1)

• Causes movement in the search space

(local or global)

• Restores lost information to the population

Crossover: Recombination

P1 (0 1 1 0 1 0 0 0) (0 1 0 0 1 0 0 0) C1

P2 (1 1 0 1 1 0 1 0) (1 1 1 1 1 0 1 0) C2

Crossover is a critical feature of genetic

algorithms:

• It greatly accelerates search early in evolution of a population

• It leads to effective combination of schemata (subsolutions on

different chromosomes)

Evaluation

• The evaluator decodes a chromosome and assigns it a

fitness measure

• The evaluator is the only link between a classical GA and

the problem it is solving

evaluation

modified

children

evaluated children

Deletion

• Generational GA:

entire populations replaced with each iteration

• Steady-state GA:

a few members replaced each generation

population

discard

deleted

members

An Abstract Example

A Simple Example

The Traveling Salesman Problem:

Find a tour of a given set of cities so that

• each city is visited only once

• the total distance traveled is minimized

Representation

Representation is an ordered list of city

numbers known as an order-based GA.

1) London 3) Dunedin 5) Beijing 7) Tokyo

2) Venice 4) Singapore 6) Phoenix 8) Victoria

CityList1 (3 5 7 2 1 6 4 8)

CityList2 (2 5 7 6 8 1 3 4)

Problem  !!!

• Testing every possibility for an N city tour would be N!

math additions. A 30 city tour would have to measure the

total distance of be 2.65 x 1032 different tours.

• Assuming a trillion additions per second, this would take

252,333,390,232,297 years. Adding one more city would

cause the time to increase by a factor of 31.

• Obviously, this is an impossible solution.

Apply GA To This Problem

• A genetic algorithm can be used to find a solution is

much less time

• It might not find the best solution, it can find a near

perfect solution for a 100 city tour in less than a minute

Basic Steps

• First, create a group of many random tours in what is called a
population. This algorithm uses a greedy initial population that gives
preference to linking cities that are close to each other.

• Second, pick 2 of the better (shorter) tours parents in the population
and combine them to make 2 new child tours. Hopefully, these
children tour will be better than either parent.

• A small percentage of the time, the child tours are mutated. This is
done to prevent all tours in the population from looking identical.

• The new child tours are inserted into the population replacing two of
the longer tours. The size of the population remains the same.

• New children tours are repeatedly created until the desired goal is
reached.

=>As the name implies, Genetic Algorithms mimic nature and evolution
using the principles of Survival of the Fittest.

Complex Issues   

• The encoding of the tour

• The crossover algorithm that is used to combine the two

parent tours to make the child tours.

Solution 

• In a standard Genetic Algorithm, the encoding is a simple

sequence of numbers and Crossover is performed by

picking a random point in the parent's sequences and

switching every number in the sequence after that point.

• In this example, the crossover point is between the 3rd and

4th item in the list. To create the children, every item in

the parent's sequence after the crossover point is

swapped.

Solution 

Parent 1 • F A B | E C G D

Parent 2 • D E A | C G B F

Child 1 • F A B | C G B F

Child 2 • D E A | E C G D

Problem Again 

• The difficulty with the Traveling Salesman Problem is

that every city can only be used once in a tour. If the

letters in the above example represented cities, this child

tours created by this crossover operation would be

invalid.

• CHILD 1 GOES TO CITY F & B TWICE, AND

NEVER GOES TO CITIES D OR E.

What is the point ?

• The encoding cannot simply be the list of cities in the

order they are traveled.

• We store the links in both directions for each tour. In the

above tour example, Parent 1 would be stored as:

 City

A

B

C

D

E

F

G

First Connection

F

A

E

G

B

D

C

Second Connection

B

E

G

D

C

A

D

Greedy crossover

• The crossover will take every link that exists in both

parents and place those links in both children.

• For Child 1 it alternates between taking links that appear

in Parent 2 and then Parent 1.

• For Child 2, it alternates between Parent 2 and Parent 1

taking a different set of links.

• For either child, there is a chance that a link could create

an invalid tour where instead of a single path in the tour.

These links must be rejected.

• To fill in the remaining missing links, cities are chosen at

random.

Parameters

• Population Size - The population size is the initial number of
random tours that are created when the algorithm starts. A
large population takes longer to find a result. A smaller
population increases the chance that every tour in the
population will eventually look the same. This increases the
chance that the best solution will not be found.

• Neighborhood / Group Size - Each generation, this number of
tours are randomly chosen from the population. A large group
size will cause the algorithm to run faster, but it might not find
the best solution.

• Mutation % - The percentage that each child after crossover
will undergo mutation.When a tour is mutated, one of the
cities is randomly moved from one point in the tour to another.

Parameters

• Nearby Cities - As part of a greedy initial population, the GA
will prefer to link cities that are close to each other to make the
initial tours. When creating the initial population this is the
number of cities that are considered to be close.

• Nearby City Odds % - This is the percent chance that any
one link in a random tour in the initial population will prefer to
use a nearby city instead of a completely random city.

• Maximum Generations - How many crossovers are run
before the algorithm is terminated.

• Random Seed - This is the seed for the random number
generator. By having a fixed instead of a random seed, you can
duplicate previous results as long as all other parameters are
the same.

Issues for GA Practitioners

• Choosing basic implementation issues:

• representation

• population size, mutation rate, ...

• selection, deletion policies

• crossover, mutation operators

• Termination Criteria

• Performance, scalability

• Solution is only as good as the evaluation
function

Benefits of Genetic Algorithms

• Concept is easy to understand

• Modular, separate from application

• Supports multi-objective optimization

• Good for “noisy” environments

• Always an answer; answer gets better with time

• Inherently parallel; easily distributed

Benefits of Genetic Algorithms

• Many ways to speed up and improve a GA-based

application as knowledge about problem domain is

gained

• Easy to exploit previous or alternate solutions

• Flexible building blocks for hybrid applications

• Substantial history and range of use

When to Use a GA

• Alternate solutions are too slow or overly complicated

• Need an exploratory tool to examine new approaches

• Problem is similar to one that has already been

successfully solved by using a GA

• Want to hybridize with an existing solution

• Benefits of the GA technology meet key problem

requirements

Some GA Application Types
Domain Application Types

Control gas pipeline, pole balancing, missile evasion, pursuit

Design semiconductor layout, aircraft design, keyboard
configuration, communication networks

Scheduling manufacturing, facility scheduling, resource allocation

Robotics trajectory planning

Machine Learning designing neural networks, improving classification
algorithms, classifier systems

Signal Processing filter design

Game Playing poker, checkers, prisoner’s dilemma

Combinatorial

Optimization

set covering, travelling salesman, routing, bin packing,
graph colouring and partitioning

