Nha Nam Ngoc Nguyen

 Directed search algorithms based on the mechanics of
biological evolution

« Developed by John Holland, University of Michigan
(1970’s)
« To understand the adaptive processes of natural systems

 To design artificial systems software that retains the
robustness of natural systems

 Provide efficient, effective techniques for optimization
and machine learning applications

» Widely-used today In business, scientific and engineering
circles

The Genetic Algorithm

« A problem to solve, and ...
« Encoding technique (gene, chromosome)

« [nitialization procedure (creation)
 Evaluation function (environment)
 Selection of parents (reproduction)

« (enetic operators (mutation, recombination)
» Parameter settings (practice and art)

{

Initialize population;
evaluate population;
while TerminationCriteriaNotSatisfied

{
select parents for reproduction;

perform recombination and mutation;

evaluate population;

}
}

] children e -
 mosicaion

modified

parents children

evaluation

population

evaluated children
deleted
members

discard

The GA Cycle of Reproduction

Chromosomes could be:

* Bit strings (0101 = - 1100)
* Real numbers (43.2-33.1... 0.0 89.2)
e Permutations of element (E11E3E7...E1EL5)
* Lists of rules (RIRZR3 .. R22R23)
* Program elements (genetic programming)

... any data structure ...

population

e Parents are selected at random with selection chances
biased In relation to chromosome evaluations.

] children

population

v

parents

* Modifications are stochastically triggered

* Operator types are:
« Mutation
 Crossover (recombination)

children

« modification

mE

modified
children

evaluation

 Before: (0 1 a1 10
» After: (-1 1101 106

 Before: (1.38 EEieK:y 326.44 0.1)

 After: (1.38 Eoygy 326.44 0.1)

« Causes movement in the search space
(local or global)

 Restores lost information to the population

01000) (01001000) ct

_

p1 (O 1
P2 (11110 10) (L1121 010 &

Crossover Is a critical feature of genetic

algorithms:

« |t greatly accelerates search early in evolution of a population

* |t leads to effective combination of schemata (subsolutions on
different chromosomes)

» The evaluator decodes a chromosome and assigns it a
fitness measure

« The evaluator is the only link between a classical GA and
the problem it is solving

modified
children

&

evaluated children

evaluation

* Generational GA:
entire populations replaced with each iteration

» Steady-state GA:
a few members replaced each generation

population

deleted
members

discard

>
>

Distribution of Individuals in Generation 0

A

»
>

Distribution of Individuals in Generation N

The Traveling Salesman Problem:
Find a tour of a given set of cities so that

« each city is visited only once
 the total distance traveled is minimized

Representation is an ordered list of city
numbers known as an order-based GA.

1) London
2) \enice

CityListl
CityList2

3) Dunedin
4) Singapore

5) Beijing 7) Tokyo
6) Phoenix 8) Victoria

357216438
2576813 4

 Testing every possibility for an N city tour would be N!
math additions. A 30 city tour would have to measure the
total distance of be 2.65 x 103 different tours.

« Assuming a trillion additions per second, this would take
252,333,390,232,297 years. Adding one more city would
cause the time to increase by a factor of 31.

* Obviously, this is an impossible solution.

Problem © 1!

A genetic algorithm can be used to find a solution is
much less time

« [t might not find the best solution, it can find a near
perfect solution for a 100 city tour In less than a minute

Apply GA To This Problem

 First, create a group of many random tours In what Is called a
population. This algorithm uses a greedy Initial population that gives
preference to linking cities that are close to each other.

« Second, pick 2 of the better (shorter) tours parents in the population
and combine them to make 2 new child tours. Hopefully, these
children tour will be better than either parent.

A small percentage of the time, the child tours are mutated. This Is
done to prevent all tours in the population from looking identical.

 The new child tours are Inserted into the population replacing two of
the longer tours. The size of the population remains the same.

« New children tours are repeatedly created until the desired goal is
reached.

=>As the name implies, Genetic Algorithms mimic nature and evolution
using the principles of Survival of the Fittest.

e The encoding of the tour

* The crossover algorithm that is used to combine the two
parent tours to make the child tours.

Gomplexissues ® ® ®

* In a standard Genetic Algorithm, the encoding is a simple
sequence of numbers and Crossover is performed by
picking a random point in the parent's sequences and
switching every number in the sequence after that point.

« In this example, the crossover point is between the 3" and
4™ item in the list. To create the children, every item in
the parent's sequence after the crossover point is
swapped.

Solution ©

 The difficulty with the Traveling Salesman Problem is
that every city can only be used once in a tour. If the
letters in the above example represented cities, this child

tours created by this crossover operation would be
Invalid.

* CHILD1GOESTOCITY F & B TWICE, AND
NEVER GOES TO CITIES D OR E.

Problem Again 066

* The encoding cannot simply be the list of cities in the
order they are traveled.

* \We store the links in both directions for each tour. In the
above tour example, Parent 1 would be stored as:

City

A
ml:
Oc
o
OE
OF
Oc

First Connection

[IF
LJA
LJE
]G
[]B
[]D
[Jc

Second Connection

ml:
JE
[JG
D
[]c
1A
[]D

» The crossover will take every link that exists in both
parents and place those links in both children.

« For Child 1 it alternates between taking links that appear
In Parent 2 and then Parent 1.

e For Child 2, it alternates between Parent 2 and Parent 1
taking a different set of links.

 For either child, there is a chance that a link could create
an invalid tour where instead of a single path in the tour.
These links must be rejected.

 To fill in the remaining missing links, cities are chosen at
random.

Greedy crossover

Population Size - The population size is the initial number of
random tours that are created when the algorithm starts. A
large population takes longer to find a result. A smaller
population increases the chance that every tour in the
population will eventually look the same. This increases the
chance that the best solution will not be found.

Neighborhood / Group Size - Each generation, this number of
tours are randomly chosen from the population. A large group
size will cause the algorithm to run faster, but it might not find
the best solution.

Mutation % - The percentage that each child after crossover
will undergo mutation.When a tour is mutated, one of the
cities is randomly moved from one point in the tour to another.

Nearby Cities - As part of a greedy initial population, the GA
will prefer to link cities that are close to each other to make the
Initial tours. When creating the initial population this is the
number of cities that are considered to be close.

Nearby City Odds % - This is the percent chance that any
one link in a random tour in the initial population will prefer to
use a nearby city instead of a completely random city.

Maximum Generations - How many crossovers are run
before the algorithm is terminated.

Random Seed - This is the seed for the random number
generator. By having a fixed instead of a random seed, you can
duplicate previous results as long as all other parameters are
the same.

» Choosing basic implementation issues:
representation

population size, mutation rate, ...
selection, deletion policies

crossover, mutation operators

e Termination Criteria
 Performance, scalability

« Solution is only as good as the evaluation
function

« Concept is easy to understand

« Modular, separate from application

 Supports multi-objective optimization

* Good for “noisy” environments

« Always an answer; answer gets better with time
* Inherently parallel; easily distributed

« Many ways to speed up and improve a GA-based
application as knowledge about problem domain is
gained

 Easy to exploit previous or alternate solutions

 Flexible building blocks for hybrid applications

 Substantial history and range of use

 Alternate solutions are too slow or overly complicated
* Need an exploratory tool to examine new approaches

* Problem is similar to one that has already been
successfully solved by using a GA

« Want to hybridize with an existing solution

 Benefits of the GA technology meet key problem
requirements

some GA Application Types

Domain

Control

Design
Scheduling
Robotics
Machine Learning
Signal Processing
Game Playing

Combinatorial
Optimization

Application Types

gas pipeline, pole balancing, missile evasion, pursuit
semiconductor layout, aircraft design, keyboard
configuration, communication networks
manufacturing, facility scheduling, resource allocation
trajectory planning

designing neural networks, improving classification
algorithms, classifier systems

filter design

poker, checkers, prisoner’s dilemma

set covering, travelling salesman, routing, bin packing,
graph colouring and partitioning

