
laboratorium: zadanie 3 termin: 26–28 października 2010 r.

kurs programowania w Javie
drzewa obliczeń

Instytut Informatyki Uniwersytetu Wrocławskiego Paweł Rzechonek

Zadanie 1.
Zdefiniuj klasę Para, która będzie przechowywać pary klucz–wartość, gdzie klucz jest typu String a wartość

typu int. Klucz powinien być polem publicznym ale niemodyfikowalnym a wartość polem ukrytym, które
można odczytać za pomocą gettera i zmodyfikować tylko za pomocą settera.
Zdefiniuj abstrakcyjną klasę Słownik, która będzie reprezentowć zbiór obiektów typu Para z podstawo-

wymi operacjami słownikowymi: wyszukiwanie (metoda szukaj()), wstawianie (metoda wstaw()), usuwanie
(metoda usuń()) i policzenie wszystkich elementów w zbiorze (metoda ile()).
Następnie zdefiniuj klasę Stos, która będzie dziedziczyć po klasie Słownik i będzie realizować operacje

słownikowe w oparciu o listę jednokierunkowej przechowując w węzłach wspomniane wcześniej pary (operacja
textttwstaw() wstawia parę na początek listy, operacja usuń() usuwa parę z początku listy a operacja szukaj()
przeszukuje calą listę). Klasa Stos powinna być tylko opakowaniem dla homogenicznej dynamicznej struktury
danych opartej na węzłach. W klasie Węzeł zaimplementuj metody do wstawiania pary klucz–wartość na stos,
usuwania pary i wyszukiwania w całym stosie wartości według zadanego klucza.

Zadanie 2.
Zdefiniuj abstrakcyjną klasę bazową Wyrazenie, reprezentującą wyrażenie arytmetyczne. W klasie tej

umieść deklarację abstrakcyjnej metody oblicz(), której zadaniem w klasach potomnych będzie obliczanie
wyrażenia i przekazywanie wyniku jako wartości typu int.
Następnie zdefiniuj klasy dziedziczące po klasie Wyrazenie, które będą reprezentowały kolejno liczbę (stała

całkowitoliczbowa), zmienną (zmienne pamiętaj na zdefiniowanym wcześniej stosie par klucz–wartość), ope-
racje arytmetyczne (dodawanie, odejmowanie, mnożenie, dzielenie i modulo oraz jednoargumentowa operacja
zmiany znaku na przeciwny) i porównania (wynikiem porównania ma być jak w języku C liczba 0 albo 1
odpowiadająca wartościom logicznym false albo true). Klasy te powinny być tak zaprojektowane, aby można

Stala Zmienna Operator1Arg

PrzeciwnyZnak WartBezwzgl Operator2Arg

Wyrazenie

Dziel ModuloMnoz Minimum MaksimumOdejmijDodaj

RozneMniejszeRowne WiekszeRowneWiekszeMniejszeRowne

z nich było zbudować drzewo wyrażenia: obiekty klas Liczba lub Zmienna to liście, a operatory to węzły
wewnętrzne w takim drzewie. W klasach potomnych zdefiniuj metody oblicz() oraz toString().
Na koniec napisz krótki program testowy, sprawdzający działanie obiektów tych klas. W swoim programie

skonstruuj drzewa obliczeń, wypisz je metodą toString() a potem oblicz i wypisz wartość dla następujących
wyrażeń:

1



3+5
2+x*7
(3*11-1)/(7+5)
((x+1)*x)/2
2*x+1<0

Na przykład wyrażenie 2+x*7 należy zdefiniować następująco (klasa St przechowuje liczbę a klasa Zm nazwę
zmiennej):

Wyrazenie w = new Wyrazenie(
new Dodaj(
new Liczba(2),
new Mnóż(
new Zmienna("x"),
new Liczba(7)

)
)

);

Ustaw na początku programu testowego zmienną x na wartość –3.

Zadanie 3.
Zdefiniuj abstrakcyjną klasę bazową Instrukcja, reprezentującą instrukcję w programie. W klasie tej

umieść deklarację abstrakcyjnej metody wykonaj(), której zadaniem w klasach potomnych będzie wykonywa-
nie odpowiednich obliczeń.
Następnie zdefiniuj klasy dziedziczące po klasie Instrukcja, które będą reprezentowały kolejno deklara-

cję zmiennej (zmienne zapamiętuj na stosie par klucz–wartość), instrukcję przypisania wartości wyrażenia do
zmiennej, instrukcję warunkową (taką jak instrukcja if /if-else w języku C), instrukcję pętli (taką jak instrukcja
while/do-while w języku C), przy czym warunki są wyrażeniami (warunek jest prawdziwy tylko wtedy gdy
wartość wyrażenia jest różna od 0), instrukcje czytania ze standardowego wejścia i pisania na standardowe
wyjście oraz instrukcję blokową (złożenie dwóch lub więcej instrukcji). Klasy te powinny być tak zaprojekto-
wane, aby można z nich było zbudować drzewo sterujące sekwencją obliczeń. W klasach potomnych zdefiniuj
metody wykonaj() oraz toString().
Na koniec napisz krótki program testowy, sprawdzający działanie obiektów tych klas. W swoim programie

skonstruuj drzewo obliczeń dla programu obliczającego silnię:

var silnia;
silnia = 1;
var n;
read n;
if (n>1)
{
var i;
i = 2;
while (i<=n)
{
silnia = silnia*i;
i = i+1;

}
}
write silnia;

Wydrukuj swój program metodą toString() a potem wykonaj.

Uwaga.
W swoich programach nie czytaj ani nie analizuj danych ze standardowego wejścia. Drzewa obliczeń

zdefiniuj na stałe w swoich programach testowych.

2


