
ćwiczenia (licencjat wieczorowy): lista zadań nr 3 23 października 2006 r.

algorytmy i struktury danych
sortowanie i wybór

Instytut Informatyki Uniwersytetu Wrocawskiego Paweł Rzechonek

1. [∗] Czasami mamy do czynienia z danymi, których wartości często się powtarzają. Jak
zmodyfikować procedurę podziału, aby dokonywała ona tak zwanego trójpodziału względem
wybranego elementu x: na początku ma się znaleźć blok z elementami < x, potem blok
z elementami = x, a na końcu blok z elementami > x. Czas działania twojego algorytmu
powinien być liniowy.

2. [∗] Jak zaimplementować algorytm quick–sort, aby w pesymistycznym przypadku działał
on w czasie O(n log n) na danych rozmiaru n?

3. [∗∗∗] Jak zmodyfikować algorytm quick–sort, aby w każdym przypadku głębokość wywołań
rekurencyjnych była nie większa niż log n dla danych rozmiaru n?

4. [∗∗] Mamy dostęp do algorytmu czarna skrzynka, który w liniowym czasie znajduje me-
dianę nieuporządkowanego ciągu liczb. W jaki sposób, korzystając z czarnej skrzynki,
wyznaczyć dowolny k-ty co do wielkości element w nieuporządkowanym ciągu liczb. Twój
algorytm także powinien działać w czasie liniowym.

5. [∗∗] Przedstawiony poniżej algorytm dokonuje jednoczesnego wyboru minimum i mak-
simum spośród nieuporządkowanych elementów. Określ ile porównań będzie wykonywał
ten algorytm dla danych rozmiaru n. Jak bardzo różni się ten wynik od dolnej granicy
d 32 n− 2e? Jak zachowuje się ten algorytm dla danych, których rozmiar jest potęgą 2?

function minmax–rec (key T [0 . . . n− 1]) 7→ (key, key)
{

if n = 1 then return (T [0], T [0]) ;
if n = 2 then

if T [0] ≤ T [1] then return (T [0], T [1]) ; else return (T [1], T [0]) ;
m ← bn

2 c ;
(ml, Ml) ← minmax–rec (T [0 . . . m− 1]) ;
(mr, Mr) ← minmax–rec (T [m. . . n− 1]) ;
return (min{ml,mr}, max{Ml, Mr}) ;

}

1


