
Laboratorium: zadanie nr 10 22 maja 2006

język programowania C++
(de)szyfrowanie danych w strumieniach

Instytut Informatyki Uniwersytetu Wrocławskiego Paweł Rzechonek

Zaimplementuj manipulator encrypt(k), który zapewnia, że wyjście na strumień ostream
będzie kodowane za pomocą klucza k. Podobnie zaimplementuj manipulator decrypt(k) dla
strumienia istream, który będzie odkodowywał tekst zakodowany wcześniej kluczem k. Zdefiniuj
również manipulatory bezparametrowe noencrypt dla strumienia wyjściowego i nodecrypt dla
strumienia wejściowego, wyłączające dalsze kodowanie i dekodowanie.

Proces szyfrowania ma dotyczyć strumieni znakowych. Kodowane lub dekodowane powinny
być tylko znaki o kodach z zakresu 32 . . . 126. Parametr k powinien być liczbą naturalną nie
większą niż 95. Jako funkcję kodującą znak o kodzie z przyjmij e(z):

e(z) =
{

((z − 32 + k) mod 95) + 32 dla z ∈ {32 . . . 126}
z dla z /∈ {32 . . . 126}

Funkcja dekodująca d(z) ma przywracać pierwotną postać znku.
Następnie napisz program, który czyta dane linia po linii ze wskazanego strumienia wej-

ściowego, ewentualnie koduje tekst i posyła go wskazanego strumienia wyjściowego. Sygnałem
do rozpoczęcia/zakończenia kodowania jest linia zawierająca pojedynczy znak kropki. Nazwy
plików oraz klucz k przekaż do programu poprzez parametry wywołania. Sprawdź poprawność
szyfru analogicznym programem dekodującym.

Wskazówka! Operacje zapisu i odczytu nie są wykonywane bezpośrednio przez strumie-
nie, lecz przez specjalne obiekty obsługujące bufory strumieni. Bufor strumienia jest klasą typu
basic streambuf<>. Dla typów znakowych jest zdefiniowana specjalizacja o nazwie streambuf.
Użytkownik może więc zdefiniować swoje bufory dla strumieni typu istream (nadpisując me-
todę overflow()) lub ostream (nadpisując metody underflow() i uflow()), które dziedziczą
publicznie po streambuf i podmienić je metodą rdbuf().

Zdefiniuj własne klasy buforów (osobno dla strumienia wejściowego istream i dla strumie-
nia wyjściowego ostream) dziedziczące po streambuf. Manipulator, który będzie podmie-
niał te bufory, powinien zapamiętać również wskaźnik na poprzedni bufor w tym strumieniu
(jako pole w nowym buforze). Do sprawdzenia, czy mamy do czynienia z oryginalnym bufo-
rem czy z naszą podróbką wykorzystaj operator rzutowania dynamic cast<>. Jeśli wyrażenie
dynamic cast<buf w*>(rdbuf()) zwróci wskaźnik 0, to znaczy że mamy do czynienia z orygia-
łem, w przeciwnym przypadku z naszą podróbką (gdzie buf w jest zdefiniowaną przez nas klasą
bufora).

1


