
Laboratorium: zadanie nr 6 3/6 kwietnia 2006

język programowania C++
tablica bitów

Instytut Informatyki Uniwersytetu Wrocławskiego Paweł Rzechonek

Zdefiniuj klasę TabBit reprezentującą tablicę bitów. Najprościej implementuje się taką struk-
turę danych za pomocą zwykłej tablicy typu int[], przeznaczając na zapamiętanie bitu całe
słowo. Jest to rozwiązanie proste, ale bardzo rozrzutne co do zużywanej pamięci — tablica bi-
tów pamiętana w ten sposób jest kilka/kilanaście razy obszerniejsza niż potrzeba. A więc takie
rozwiązanie nas nie satysfakcjonuje, szczególnie gdy trzeba posługiwać się w programie wieloma
dużymi tablicami (chodzi o tablice zawierające tysiące a nawet miliony bitów).

Należy zatem tak zaprojektować tablice bitowe, aby przydzielona pamięć była wykorzysty-
wana co do bitu (modulo rozmiar słowa). W klasie TabBit zdefiniuj operator indeksowania,
który umożliwiałby zarówno czytanie z tablicy, jak również pisanie do niej. Oto fragment kodu,
który powinien się skompilować i uruchomić:

TabBit t(72); // tablica 72 bitow
t[0] = 1; // ustawienie bitu 0-ego bitu na 1
t[71] = true; // ustawienie bitu 71-go bitu na 1
bool b = t[0]; // odczytanie bitu 0-ego
t[40] = b; // ustawienie bitu 40-go
t[36] = t[38] = t[71]; // przepisanie bitu 71-go do bitow 38-go i 36-go
cout<<t<<endl; // wysietlenie zawartosci tablicy bitow na ekranie

Ponieważ nie można zaadresować pojedynczego bitu (a tym samym nie można ustamowić
referencji do niego), więc trzeba się posłużyć specjalną techniką umożliwiającą dostęp do poje-
dynczego bitu w tablicy. Robi się to poprzez zastosowanie obiektów niewidocznej dla programisty
klasy pomocniczej, umiejącej odczytać i zapisać pojedynczy bit.

class TabBit
{

typedef unsigned long long slowo; // komorka w tablicy
static int rozmiarSlowa; // rozmiar slowa w bitach
friend istream & operator >> (istream &we, TabBit &tb);
friend ostream & operator << (ostream &wy, const TabBit &tb);
class Ref; // klasa pomocnicza dla operatora indeksowania
class Zakres {}; // klasa wyjatku

protected:
slowo *tab;
int dl;

1



private:
void _TabBit (const TabBit &tb);

public:
explicit TabBit (int rozm);
TabBit (const TabBit &tb);
~TabBit ();

public:
TabBit & operator = (const TabBit &tb);

private:
bool czytaj (int i) const;
bool pisz (int i, bool b);

public:
bool operator[] (int i) const; // operator indeksowania dla czytania
Ref operator[] (int i); // operator indeksowania dla pisania
int rozmiar () const { return dl; } // rozmiar tablicy

};

Klasa Ref jest klasą pomocniczą, która umożliwia zaimplementowanie operatora indeksowania
rozróżniającego czytanie i pisanie w klasie TabBit— zastanów się jak powinna ona być zaimple-
mentowana.

Do kompletu podefiniuj operatory koniunkcji, alternatywy i alternatywy wykluczającej (ope-
ratory zaprzyjaźnione) operujące na tablicach bitów, oraz operatory przypisania połączone z wy-
mienionymi operatorami bitowymi. Nie zapomnij też o operatorach czytania ze strumienia wej-
ściowego i pisania do strumienia wyjściowego.

Całą definicję klasy TabBit podziel na część nagłówkową i źródłową. Następnie w osobnym
pliku umieść program testowy, który sprawdzi poprawność zdefiniowanych przez Ciebie operacji
na tablicach bitowych i operacji na poszczególnych bitach tych tablic.

Uwaga! Klasa TabBit będzie wykorzystana w następnym zadaniu, a zatem warto napisać
ją bardzo starannie.

2


