Laboratorium: zadanie nr 6 3/6 kwietnia 2006

JEZYK PROGRAMOWANIA C++

TABLICA BITOW

Instytut Informatyki Uniwersytetu Wroctawskiego Pawel Rzechonek

Zdefiniuj klase TabBit reprezentujaca tablice bitéw. Najprosciej implementuje sie taka struk-
ture danych za pomoca zwyklej tablicy typu int[], przeznaczajac na zapamietanie bitu cale
stowo. Jest to rozwiazanie proste, ale bardzo rozrzutne co do zuzywanej pamieci — tablica bi-
téw pamietana w ten sposéb jest kilka/kilanascie razy obszerniejsza niz potrzeba. A wiec takie
rozwiazanie nas nie satysfakcjonuje, szczegélnie gdy trzeba postugiwaé sie w programie wieloma
duzymi tablicami (chodzi o tablice zawierajace tysiace a nawet miliony bitéw).

Nalezy zatem tak zaprojektowaé tablice bitowe, aby przydzielona pamieé¢ byta wykorzysty-
wana co do bitu (modulo rozmiar stowa). W klasie TabBit zdefiniuj operator indeksowania,
ktory umozliwialby zaréwno czytanie z tablicy, jak réwniez pisanie do niej. Oto fragment kodu,
ktory powinien sie skompilowaé i uruchomic:

TabBit t(72); // tablica 72 bitow

t[0] = 1; // ustawienie bitu O-ego bitu na 1

t[71] = true; // ustawienie bitu 71-go bitu na 1

bool b = t[0]; // odczytanie bitu O-ego

t[40] = b; // ustawienie bitu 40-go

t[36] = t[38] = t[71]; // przepisanie bitu 71-go do bitow 38-go i 36-go
cout<<t<<endl; // wysietlenie zawartosci tablicy bitow na ekranie

Poniewaz nie mozna zaadresowaé pojedynczego bitu (a tym samym nie mozna ustamowié
referencji do niego), wiec trzeba sie postuzyé specjalna technika umozliwiajaca dostep do poje-
dynczego bitu w tablicy. Robi sie to poprzez zastosowanie obiektéw niewidocznej dla programisty
klasy pomocniczej, umiejacej odczytaé i zapisa¢ pojedynczy bit.

class TabBit

{
typedef unsigned long long slowo; // komorka w tablicy
static int rozmiarSlowa; // rozmiar slowa w bitach
friend istream & operator >> (istream &we, TabBit &tb);
friend ostream & operator << (ostream &wy, const TabBit &tb);
class Ref; // klasa pomocnicza dla operatora indeksowania
class Zakres {}; // klasa wyjatku

protected:
slowo *tab;
int dl;



private:
void _TabBit (const TabBit &tb);
public:
explicit TabBit (int rozm);
TabBit (const TabBit &tb);

“TabBit O);
public:

TabBit & operator = (const TabBit &tb);
private:

bool czytaj (int i) const;
bool pisz (int i, bool b);
public:
bool operator[] (int i) comnst; // operator indeksowania dla czytania
Ref operator[] (int i); // operator indeksowania dla pisania
int rozmiar () const { return dl; } // rozmiar tablicy

};

Klasa Ref jest klasa pomocnicza, ktéra umozliwia zaimplementowanie operatora indeksowania
rozrézniajacego czytanie i pisanie w klasie TabBit— zastanéw si¢ jak powinna ona by¢ zaimple-
mentowana.

Do kompletu podefiniuj operatory koniunkeji, alternatywy i alternatywy wykluczajacej (ope-
ratory zaprzyjaznione) operujace na tablicach bitéw, oraz operatory przypisania polaczone z wy-
mienionymi operatorami bitowymi. Nie zapomnij tez o operatorach czytania ze strumienia wej-
Sciowego i pisania do strumienia wyjsciowego.

Cala definicje klasy TabBit podziel na cze$¢ nagtéwkowa i zrédlowa. Nastepnie w osobnym
pliku umies$¢ program testowy, ktéry sprawdzi poprawnosé zdefiniowanych przez Ciebie operacji
na tablicach bitowych i operacji na poszczegdlnych bitach tych tablic.

Uwaga! Klasa TabBit bedzie wykorzystana w nastepnym zadaniu, a zatem warto napisaé
ja bardzo starannie.



