
Programowanie w C++

Opis procesora Sextium

materiały dydaktyczne udostępnione przez
Tomasza Wierzbickiego

1 Opis procesora Sextium II
Budowa procesora Sextium II1 o architekturze typu RISC2 jest przedstawiona na rysunku 1.
Poprzez szynę danych i szynę adresową do procesora jest podłączona pamięć (MEM) zło-
żona z 64k słów 16-bitowych, a poprzez szynę wejścia/wyjścia — urządzenie wejścia/wy-
jścia (IO). Szyny: danych, adresowa i we/wy są 16-bitowe, podobnie jak rejestry: akumulator
(ACC), rejestr danych (DR), rejestr adresowy (AR) i licznik rozkazów (PC). Rozkazy (jest
ich 16) zajmują po 4 bity i są pakowane po 4 w słowie maszyny. Opis rozkazów jest przed-
stawiony w tablicach 1 i 2, a sposób pakowania rozkazów w słowie na rysunku 2.

Do przedstawiania zawartości pamięci i rejestrów procesora będziemy konsekwentnie
używać zapisu szesnastkowego. Zawartość pojedynczego słowa będzie zatem opisana cią-
giem czterech cyfr szesnastkowych. Dla wygody rozkazy mają swoje nazwy mnemoniczne.
Zatem np. zamiast pisać „rozkaz E”, będziemy pisać „rozkaz DIV”. Dla procesora jednak
rozkaz, to po prostu cztery bity (które my zapisujemy za pomocą pojedynczej cyfry szes-
nastkowej).

Cykl rozkazowy procesora polega na pobieraniu, dekodowaniu i wykonywaniu rozka-
zów. Wczytane słowo zawierające cztery rozkazy jest przechowywane w specjalnym bu-
forze rozkazów (nie uwidocznionym na rysunku 1). W celu pobrania rozkazów procesor
odwołuje się do pamięci przeważnie raz na cztery cykle rozkazowe, chyba że wykonuje in-
strukcję skoku. Wówczas bufor rozkazów jest opróżniany. Można zatem skoczyć jedynie do

1Pierwsza wersja procesora Sextium, o czym przekonali się studenci rocznika 1999/2000, była nieudana i została
wkrótce zastąpiona modelem Sextium II.

2Reduced instruction set computer, procesor o ograniczonym zbiorze instrukcji: procesor w którym lista rozka-
zów jest maksymalnie skrócona. Dzięki temu rozkazy mogą być wykonywane bardzo szybko i sprawnie. Procesory
RISC (posiadające kilkanaście do kilkudziesięciu rozkazów) są przy tej samej częstotliwości zegara kilkakrotnie
bardziej efektywne niż procesory CISC (complex instruction set computer). Wynika to z faktu, że jeden cykl roz-
kazowy w takim procesorze trwa tylko jeden lub najwyżej kilka taktów zegara a nie kilkanaście czy kilkadziesiąt
jak w procesorach typu CISC. Rozbudowana lista rozkazów może pomóc zoptymalizować kod wynikowy, jeśli
programista pisze program w asemblerze, natomiast zbudowanie kompilatora języka wysokiego poziomu, który
wykorzystywałby wiele rozkazów jest kłopotliwe. W praktyce kompilatory używają tylko najprostszych rozkazów
procesora CISC i dodatkowe możliwości takiego procesora związane z bardzo bogatą listą instrukcji nie są wyko-
rzystywane (optymalizacja kodu jest trudna). Tworzenie kompilatorów generujących efektywny kod dla procesorów
RISC jest łatwiejsze niż dla procesorów CISC (efektywność jest osiągnięta dzięki masowości a nie różnorodności).

1 OPIS PROCESORA SEXTIUM II 2

JUM
P

LO
AD

STO
RE

SW
APD

CO
NST

BRANCH*

SW
APA

READ
W

RITE

rejestr danych DR

licznik rozkazów PC

akumulator ACC

Pamięć operacyjna MEM

Procesor

szyna adresowa (16 bit)

szyna danych (16 bit)

szyna we/wy (16 bit)

rejestr adresowy AR

Urządzenie we/wy IODMA

SextiumR

ACC, accumulator, akumulator: rejestr procesora, na którym są wykonywane operacje aryt-
metyczne i przesyłu danych.

DR, data register, rejestr danych: pomocniczy rejestr przechowujący drugi argument ope-
racji arytmetycznych.

AR, address register, rejestr adresowy: rejestr, którego zawartość służy do adresowania
pamięci w celu pobrania (zapisu) danych z (do) pamięci.

PC, program counter, licznik rozkazów: rejestr, którego zawartość służy do adresowania
pamięci w celu pobrania kolejnych rozkazów do wykonania.

MEM, memory, pamięć operacyjna.

IO, input/output, urządzenie wejścia/wyjścia.

DMA, direct memory access, możliwość bezpośredniego zapisu do pamięci wprost z urzą-
dzenia wejścia/wyjścia bez udziału procesora.

Rysunek 1: Architektura procesora Sextium II

1 OPIS PROCESORA SEXTIUM II 3

rozkaz symb. opis uwagi

0 NOP nic nie rób przejdź do wykonania następnego
rozkazu

1 LOAD MEM[AR]→ ACC
załaduj słowo o adresie
znajdującym się w rejestrze
adresowym do akumulatora

2 STORE ACC→ MEM[AR]
zapisz zawartość akumulatora do
słowa o adresie znajdującym się w
rejestrze adresowym

3 READ IO→ ACC wczytaj słowo z urządzenia
wejściowego do akumulatora

4 WRITE ACC→ IO prześlij zawartość akumulatora do
urządzenia wyjściowego

5 SWAPA ACC↔ AR zamień miejscami zawartość
rejestru adresowego i akumulatora

6 SWAPD ACC↔ DR zamień miejscami zawartość
rejestru danych i akumulatora

7 JUMP ACC→ PC

wpisz do licznika instrukcji
zawartość akumulatora (skocz do
instrukcji o adresie znajdującym
się w akumulatorze)

8 BRANCHZ if ACC = 0 then AR→ PC

jeżeli akumulator zawiera liczbę 0,
zapisz do licznika instrukcji
zawartość rejestru adresowego
(skocz do instrukcji o adresie
znajdującym się w rejestrze
adresowym)

9 BRANCHP if ACC > 0 then AR→ PC

jeżeli akumulator zawiera liczbę
dodatnią, zapisz do licznika
instrukcji zawartość rejestru
adresowego (skocz do instrukcji o
adresie znajdującym się w
rejestrze adresowym)

Tablica 1: Zestaw rozkazów procesora Sextium II (część 1)

1 OPIS PROCESORA SEXTIUM II 4

01234567891011121315 14

rozkaz 1 rozkaz 2 rozkaz 3 rozkaz 4

bity słowanajbardziej znaczący najmniej znaczący

Rysunek 2: Sposób pakowania rozkazów procesora Sextium II w słowie maszynowym

rozkazu, który zajmuje cztery najbardziej znaczące bity słowa (jeśli sprawia to jakieś pro-
blemy, można poprzednie słowo wypełnić rozkazami NOP w celu wyrównania wskazanego
rozkazu do granicy słowa). Rozkaz CONST służy do załadowania stałej do akumulatora.
Stała jest umieszczana w słowie następującym bezpośrednio po słowie zawierającym ten
rozkaz (lub w następnych słowach, jeżeli w jednym słowie znajduje się więcej niż jeden
rozkaz CONST). Np. następująca para słów: 6AB0 0001 zawiera ciąg rozkazów SWAPD,
CONST, ADD, NOP, po którym następuje liczba 1. Wykonanie tych rozkazów powoduje
zwiększenie zawartości akumulatora o jeden. Podobnie ciąg sześciu słów:

A6AD 0004 0005 6A56 FFFA 2000

który symbolicznie zapiszemy jako:

CONST SWAPD CONST MUL
0004
0005
SWAPD CONST SWAPA SWAPD
FFFA
STORE NOP NOP NOP

powoduje załadowanie do rejestru danych liczby 4, do akumulatora liczby 5, przemnożenie
zawartości akumulatora przez zawartość rejestru danych i zapisanie wyniku (liczby 20) do
komórki pamięci o adresie FFFA.

Program dla procesora jest wpisywany do pamięci wprost z urządzenia wejścia/wyjścia
(poprzez tzw. szynę DMA). W tym czasie procesor nie pracuje. Następnie urządzenie wej-
ścia/wyjścia wysyła sygnał do procesora, który zeruje zawartość wszystkich swoich reje-
strów i opróżnia bufor rozkazów, a następnie rozpoczyna wykonywanie cyklu rozkazowego.
Procesor przekazuje sterowanie na powrót do urządzenia wejścia/wyjścia po wykonaniu roz-
kazu HALT lub w razie próby dzielenia przez zero. Pracę procesora może również przerwać
urządzenie wejścia/wyjścia. Po uruchomieniu licznik rozkazów ma wartość 0000, zatem
procesor rozpoczyna działanie od wykonania rozkazów znajdujących się w zerowym sło-
wie pamięci. Algorytm pracy procesora jest opisany w tablicy 3, w której A++ oznacza
zwiększenie zawartości rejestru A o jeden.

Słowa w operacjach arytmetycznych reprezentują liczby całkowite ze znakiem z prze-
działu −215 ÷ (215 − 1) w zapisie uzupełnieniowym do dwóch, tj. zmiana znaku liczby
polega na zanegowaniu wszystkich bitów liczby i dodaniu jedynki. Słowa od 0000 do 7FFF
reprezentują liczby nieujemne 0 do 32767, słowa 8000 do FFFF zaś liczby −32768 do −1.

2 ASEMBLER 5

rozkaz symb. opis uwagi

A CONST MEM[PC++]→ ACC

zapisz słowo znajdujące się w
komórce pamięci o adresie
wskazywanym przez bieżącą
zawartość licznika rozkazów do
akumulatora

B ADD ACC+ DR→ ACC dodaj do akumulatora zawartość
rejestru danych

C SUB ACC− DR→ ACC odejmij od akumulatora zawartość
rejestru danych

D MUL ACC× DR→ ACC pomnóż zawartość akumulatora
przez zawartość rejestru danych

E DIV ACC / DR→ ACC podziel zawartość akumulatora
przez zawartość rejestru danych

F HALT zatrzymaj przekaż sterowanie do urządzenia
we/wy

Tablica 2: Zestaw rozkazów procesora Sextium II (dokończenie)

2 Asembler
Zapisywanie programu wprost w kodzie maszynowym jest kłopotliwe. Asembler, inaczej
język adresów symbolicznych, pozwala na symboliczne zapisywanie rozkazów i adresów
uwalniając programistę od żmudnego i mechanicznego kodowania programu. Jest to przy
tym język niskiego poziomu, w którym programista ma pełną kontrolę nad postacią kodu
wynikowego. Zwykle jedna instrukcja asemblera jest przekładana na jeden rozkaz maszyny.
Program w asemblerze jest dokładnym opisem kodu maszynowego, w którym rozkazy są
reprezentowane przez ich nazwy mnemoniczne a adresy przez identyfikatory. Program tłu-
maczący (również zwany asemblerem) składa (ang. assemble) kod maszynowy według tego
opisu, wstawiając kody rozkazów w miejsce ich nazw mnemonicznych, a wyliczone adresy
w miejsce identyfikatorów. W językach wysokiego poziomu, takich jak np. SML, progamista
posługuje się zwykle pojęciem maszyny abstrakcyjnej, której budowa jest nieraz bardzo od-
legła od architektury rzeczywistego procesora, na którym jest wykonywany skompilowany
program (np. w SML-u dołączenie głowy do listy jest traktowane jako pojedyncza operacja,
tymczasem przekłada się ono na ciąg wielu rozkazów procesora). Natomiast programując
w asemblerze programista nadal myśli w kategoriach rzeczywistego procesora. Ponieważ
asembler jest ściśle związany z architekturą danego procesora, w odróżnieniu od języków
wysokiego poziomu, asembler jest zależny od maszyny. Dlatego nie istnieje jeden język

2 ASEMBLER 6

wyzeruj rejestry ACC, PC, AR i DR i opróżnij bufor rozkazów
loop

if bufor rozkazów jest pusty then
pobierz słowo z pamięci o adresie zawartym w PC
PC++

end if
R← odkoduj następny rozkaz
if R = LOAD, STORE,READ,WRITE,SWAPA,SWAPD,ADD, SUB,MUL,DIV
then

wykonaj tę operację zgodnie z opisem w tablicach 1 i 2
else if R = CONST then

załaduj słowo z pamięci o adresie zawartym w PC do ACC
PC++

else if R = JUMP then
zapisz do PC zawartość ACC
opróżnij bufor rozkazów

else if (R = BRANCHZ i ACC = 0) lub (R = BRANCHP i ACC > 0) then
zapisz do PC zawartość AR
opróżnij bufor rozkazów

else if R = HALT then
zatrzymaj pracę

end if
end loop

Tablica 3: Cykl rozkazowy procesora Sextium II

zwany asemblerem, są tylko asemblery konkretnych procesorów. Aby język programowa-
nia był niezależny od procesora, jego maszyna abstrakcyjna musi być idealizacją, częścią
wspólną wszystkich procesorów, na które programy w tym języku mają być kompilowane.
Przykładem takiego języka jest C, zwany niekiedy asemblerem strukturalnym. Należy on już
jednak do kolejnego piętra w hierarchii „poziomu” języków programowania.

2.1 Asembler procesora Sextium II
Jednostkami leksykalnymi asemblera procesora Sextium II są literały całkowitoliczbowe,
tj. niepuste ciągi cyfr dziesiętnych, poprzedzone opcjonalnie znakiem minus, np. 73, literały
szesnastkowe, tj. ciągi dokładnie czterech cyfr szesnastkowych poprzedzone znakami 0x lub
0X, np. 0xFAFA, słowa kluczowe:

ADD BRANCHP BRANCHZ CONST DATA DIV HALT JUMP LOAD MUL
READ STORE SUB SWAPA SWAPD WRITE

identyfikatory, tj. ciągi liter i cyfr zaczynające się literą i różne od słów kluczowych oraz
symbol pomocniczy „:”. Identyfikatory są używane jako etykiety. Wielkie i małe litery są

2 ASEMBLER 7

rozróżniane w identyfikatorach i słowach kluczowych, natomiast cyfry szesnastkowe A–
F można pisać zarówno wielką, jak i małą literą. Znakiem początku komentarza jest #.
Komentarz rozciąga się do końca wiersza w którym występuje (do znaku nowego wiersza).

Program w asemblerze jest ciągiem instrukcji asemblera, po co najwyżej jednej w wier-
szu. Instrukcja może się składać z pojedynczego słowa kluczowego

ADD BRANCHP BRANCHZ DATA DIV HALT JUMP LOAD MUL READ
STORE SUB SWAPA SWAPD WRITE

lub może być postaci
CONST parametr

gdzie parametr to albo literał dziesiętny lub szesnastkowy, albo identyfikator (etykieta).
Każda instrukcja może być opcjonalnie poprzedzona napisem postaci

etykieta :

Zauważmy że rozkaz procesora NOP nie jest instrukcją asemblera, natomiast instrukcja
DATA nie ma odpowiednika wśród rozkazów procesora. Identyfikatory (etykiety) są sym-
bolicznymi reprezentacjami adresów pamięci. Każda etykieta powinna pojawić się dokładnie
raz w programie przed dwukropkiem i może pojawiać się wielokrotnie w instrukcji CONST.
Zadaniem asemblera jest przetłumaczenie symbolicznych nazw instrukcji na odpowiadające
im rozkazy, spakowanie rozkazów po cztery w 16-bitowe słowa (wypełniając puste miej-
sca rozkazami NOP), wyznaczenie faktycznych adresów instrukcji opatrzonych etykietami
i wygenerowanie kodu binarnego. Asembler generuje rozkazy w takiej kolejności, w ja-
kiej odpowiednie instrukcje znajdują się w tekście programu. Instrukcja CONST powoduje
wygenerowanie rozkazu ładującego stałą opisaną podanym literałem lub etykietą do akumu-
latora. Instrukcja DATA powoduje zarezerwowanie słowa w pamięci w miejscu, w którym
występuje (dlatego zwykle umieszcza się ją na końcu programu). Do tego słowa w pamięci
wpisywana jest liczba 0x0000 (tj. pamięć dla zmiennych jest inicjowana podczas uruchamia-
nia programu). Do adresu tego słowa można się odwoływać poprzez etykietę tej instrukcji
(zatem użycie rozkazu DATA bez etykiety ma niewiele sensu). Program tłumaczący pro-
gram w asemblerze na kod wynikowy jest dwuprzebiegowy: w pierwszym przebiegu tworzy
się kod wynikowy „na próbę”, nie wstawiając do niego stałych opisanych przez etykiety (nie
są one bowiem jeszcze znane). W tym przebiegu ustala się ich wartości. W drugim przebiegu
generuje się ostatecznie kod wynikowy, ponieważ wartości etykiet są już ustalone. Tablica 6
zawiera program w asemblerze obliczający największy wspólny podzielnik dwóch liczb we-
dług algorytmu z tablicy 4, tablica 7 jego tłumaczenie na kod wynikowy, a tablica 5 plik z
kodem wynikowym w postaci szesnastkowej.

2 ASEMBLER 8

wczytaj x
wczytaj y
while y 6= 0 do

z← x mod y
x ← y
y← z

end while
wypisz x

Tablica 4: Algorytm Euklidesa obliczania największego wspólnego podzielnika

A532 001C A532 001D 9516 001D A568 0019
6A51 001C ED6A 001C 51C6 A562 001E A516
001D A562 001C A516 001E A562 001D A700
0004 001C F000 0000 0000 0000

Tablica 5: Plik gcd.hex zawierający program dla procesora Sextium II w postaci szesnast-
kowej obliczający największy wspólny podzielnik dwóch liczb (opis w tablicy 7)

2 ASEMBLER 9

Program gcd.asm
Wczytuje dwie liczby i wypisuje
ich największy wspólny dzielnik
#

CONST x # czytaj x
SWAPA
READ
STORE
CONST y # czytaj y
SWAPA
READ
STORE

dalej: CONST y # czy y=0?
SWAPA
LOAD
SWAPD
CONST koniec
SWAPA
SWAPD
BRANCHZ
SWAPD # z=x/y
CONST x
SWAPA
LOAD
DIV
MUL # z=z*y
SWAPD # z=x-z
CONST x
SWAPA
LOAD
SUB

SWAPD
CONST z
SWAPA
SWAPD
STORE
CONST y # x=y
SWAPA
LOAD
SWAPD
CONST x
SWAPA
SWAPD
STORE
CONST z # y=z
SWAPA
LOAD
SWAPD
CONST y
SWAPA
SWAPD
STORE
CONST dalej
JUMP

koniec: CONST x # pisz x
SWAPA
LOAD
WRITE
HALT

x: DATA # zmienne
y: DATA
z: DATA

Tablica 6: Program w asemblerze obliczający największy wspólny podzielnik dwóch liczb

2 ASEMBLER 10

adres zawartość słowa opis zawartości słowa

0000 A532 CONST SWAPA READ STORE
0001 001C adres reprezentowany przez zmienną x
0002 A532 CONST SWAPA READ STORE
0003 001D adres reprezentowany przez zmienną y

dalej = 0004 9516 CONST SWAPA LOAD SWAPD
0005 001D adres reprezentowany przez zmienną y
0006 A568 CONST SWAPA SWAPD BRANCHZ
0007 0019 adres reprezentowany przez zmienną koniec
0008 6A51 SWAPD CONST SWAPA LOAD
0009 001C adres reprezentowany przez zmienną x
000A ED6A DIV MUL SWAPD CONST
000B 001C adres reprezentowany przez zmienną x
000C 51C6 SWAPA LOAD SUB SWAPD
000D A562 CONST SWAPA SWAPD STORE
000E 001E adres reprezentowany przez zmienną z
000F A516 CONST SWAPA LOAD SWAPD
0010 001D adres reprezentowany przez zmienną y
0011 A562 CONST SWAPA SWAPD STORE
0012 001C adres reprezentowany przez zmienną x
0013 A516 CONST SWAPA LOAD SWAPD
0014 001E adres reprezentowany przez zmienną z
0015 A562 CONST SWAPA SWAPD STORE
0016 001D adres reprezentowany przez zmienną y
0017 A700 CONST JUMP NOP NOP
0018 0004 adres reprezentowany przez zmienną dalej

koniec = 0019 A514 CONST SWAPA LOAD WRITE
001A 001C adres reprezentowany przez zmienną x
001B F000 HALT NOP NOP NOP

x = 001C 0000 miejsce przechowywania zmiennej x
y = 001D 0000 miejsce przechowywania zmiennej y
z = 001E 0000 miejsce przechowywania zmiennej z

Tablica 7: Tłumaczenie programu w asemblerze z tablicy 6 na kod procesora Sextium II

