Programowanie w C++

Opis procesora Sextium

materiaty dydaktyczne udostgpnione przez
Tomasza Wierzbickiego

1 Opis procesora Sextium IT

Budowa procesora Sextium II! o architekturze typu RISC? jest przedstawiona na rysunku 1.
Poprzez szyng danych i szyne adresowa do procesora jest podtaczona pamigé (MEM) zto-
zona z 64k stéw 16-bitowych, a poprzez szyng wejscia/wyjscia — urzadzenie wejsScia/wy-
jScia (10). Szyny: danych, adresowa i we/wy sa 16-bitowe, podobnie jak rejestry: akumulator
(ACQ), rejestr danych (DR), rejestr adresowy (AR) i licznik rozkazéw (PC). Rozkazy (jest
ich 16) zajmuja po 4 bity i sa pakowane po 4 w stowie maszyny. Opis rozkazéw jest przed-
stawiony w tablicach 1 i 2, a sposéb pakowania rozkazéw w stowie na rysunku 2.

Do przedstawiania zawartoSci pamigci i rejestréw procesora bedziemy konsekwentnie
uzywaé zapisu szesnastkowego. Zawarto$¢ pojedynczego stowa bedzie zatem opisana cia-
giem czterech cyfr szesnastkowych. Dla wygody rozkazy maja swoje nazwy mnemoniczne.
Zatem np. zamiast pisaé ,,rozkaz E”, bedziemy pisaé ,,rozkaz DIV™. Dla procesora jednak
rozkaz, to po prostu cztery bity (ktére my zapisujemy za pomoca pojedynczej cyfry szes-
nastkowej).

Cykl rozkazowy procesora polega na pobieraniu, dekodowaniu i wykonywaniu rozka-
z6w. Wcezytane stowo zawierajace cztery rozkazy jest przechowywane w specjalnym bu-
forze rozkazéw (nie uwidocznionym na rysunku 1). W celu pobrania rozkazéw procesor
odwotuje si¢ do pamigci przewaznie raz na cztery cykle rozkazowe, chyba ze wykonuje in-
strukcje skoku. Wéwczas bufor rozkazéw jest opr6zniany. Mozna zatem skoczy¢ jedynie do

IPierwsza wersja procesora Sextium, o czym przekonali si¢ studenci rocznika 1999/2000, byta nieudana i zostata
wkrétce zastapiona modelem Sextium II.

2Reduced instruction set computer, procesor o ograniczonym zbiorze instrukcji: procesor w ktérym lista rozka-
z6w jest maksymalnie skrécona. Dzigki temu rozkazy moga by¢ wykonywane bardzo szybko i sprawnie. Procesory
RISC (posiadajace kilkanascie do kilkudziesigciu rozkazéw) sa przy tej samej czgstotliwosci zegara kilkakrotnie
bardziej efektywne niz procesory CISC (complex instruction set computer). Wynika to z faktu, ze jeden cykl roz-
kazowy w takim procesorze trwa tylko jeden lub najwyzej kilka taktéw zegara a nie kilkanascie czy kilkadziesiat
jak w procesorach typu CISC. Rozbudowana lista rozkazéw moze poméc zoptymalizowaé kod wynikowy, jesli
programista pisze program w asemblerze, natomiast zbudowanie kompilatora jezyka wysokiego poziomu, ktéry
wykorzystywatby wiele rozkazéw jest ktopotliwe. W praktyce kompilatory uzywaja tylko najprostszych rozkazow
procesora CISC i dodatkowe mozliwosci takiego procesora zwigzane z bardzo bogata lista instrukcji nie sa wyko-
rzystywane (optymalizacja kodu jest trudna). Tworzenie kompilatoréw generujacych efektywny kod dla procesoréw
RISC jest tatwiejsze niz dla procesoré6w CISC (efektywnos¢ jest osiagnieta dzigki masowosci a nie réznorodnosci).

1 OPIS PROCESORA SEXTIUM II

ACC,

DR,

AR,

PC,

MEM,

DMA,

Procesor
. rejestr danych DR =
Sextium®) y
rejestr adresowy AR | o
; licznik rozkazéw PC))1:
Q
E,.; T
g akumulator ACC =
3 Q <
D o [
= zZ
&b (q » »
% g [y ‘g Py
HE z|8
5|0 IS
] 2 g
=E HE
2| @ g|m

Pamie€ operacyjna MEM (bma | Urzadzenie we/wy 10

accumulator, akumulator: rejestr procesora, na ktérym sa wykonywane operacje aryt-
metyczne i przesylu danych.

data register, rejestr danych: pomocniczy rejestr przechowujacy drugi argument ope-
racji arytmetycznych.

address register, rejestr adresowy: rejestr, ktérego zawarto$¢ stuzy do adresowania
pamigci w celu pobrania (zapisu) danych z (do) pamigci.

program counter, licznik rozkazéw: rejestr, ktérego zawarto$¢ stuzy do adresowania
pamigci w celu pobrania kolejnych rozkazéw do wykonania.

memory, pamig¢ operacyjna.
input/output, urzadzenie wejscia/wyjscia.

direct memory access, mozliwo$¢ bezposredniego zapisu do pamigci wprost z urza-
dzenia wejScia/wyjScia bez udziatu procesora.

Rysunek 1: Architektura procesora Sextium II

1 OPIS PROCESORA SEXTIUM II

rozkaz

symb.

opis

uwagi

NOP

nic nie réb

przejdzZ do wykonania nastgpnego
rozkazu

LOAD

MEM[AR] — ACC

zataduj stowo o adresie
znajdujacym sie¢ w rejestrze
adresowym do akumulatora

STORE

ACC —» MEMIAR]

zapisz zawarto$¢ akumulatora do
stowa o adresie znajdujacym si¢ w
rejestrze adresowym

READ

I0 - ACC

wczytaj stowo z urzadzenia
wejSciowego do akumulatora

WRITE

ACC — IO

przeslij zawarto$¢ akumulatora do
urzadzenia wyjSciowego

SWAPA

ACC < AR

zamief miejscami zawartos$¢
rejestru adresowego i akumulatora

SWAPD

ACC < DR

zamien miejscami zawartos$¢
rejestru danych i akumulatora

JUMP

ACC — PC

wpisz do licznika instrukcji
zawarto$¢ akumulatora (skocz do
instrukcji o adresie znajdujacym
si¢ w akumulatorze)

BRANCHZ

if ACC =0 then AR — PC

jezeli akumulator zawiera liczbe 0,
zapisz do licznika instrukcji
zawarto$¢ rejestru adresowego
(skocz do instrukcji o adresie
znajdujacym si¢ w rejestrze
adresowym)

BRANCHP

if ACC > 0 then AR — PC

jezeli akumulator zawiera liczbg
dodatnia, zapisz do licznika
instrukcji zawartoS¢ rejestru
adresowego (skocz do instrukcji o
adresie znajdujacym si¢ w
rejestrze adresowym)

Tablica 1:

Zestaw rozkazéw procesora Sextium II (czes¢ 1)

1 OPIS PROCESORA SEXTIUM II 4

rozkaz 1 I rozkaz 2 1 rozkaz 3 I rozkaz 4

1514|113 (12| 11|10 | 9 8 7 6 5 4 3 2 1 0

L—— najbardziej znaczacy bity stowa najmniej znaczacy ——

Rysunek 2: Sposéb pakowania rozkazow procesora Sextium II w stowie maszynowym

rozkazu, ktéry zajmuje cztery najbardziej znaczace bity stowa (jesli sprawia to jakies pro-
blemy, mozna poprzednie stowo wypeni¢ rozkazami NOP w celu wyréwnania wskazanego
rozkazu do granicy stowa). Rozkaz CONST stuzy do zatadowania statej do akumulatora.
Stata jest umieszczana w stowie nastgpujacym bezposSrednio po stowie zawierajacym ten
rozkaz (lub w nastgpnych stowach, jezeli w jednym stowie znajduje si¢ wigcej niz jeden
rozkaz CONST). Np. nastgpujaca para stow: 6AB0 0001 zawiera ciag rozkazéw SWAPD,
CONST, ADD, NOP, po ktérym nastepuje liczba 1. Wykonanie tych rozkazéw powoduje
zwigkszenie zawartoSci akumulatora o jeden. Podobnie ciag szeSciu stow:

A6AD 0004 0005 6A56 FFFA 2000

ktéry symbolicznie zapiszemy jako:

CONST SWAPD CONST MUL
0004

0005

SWAPD CONST SWAPA SWAPD
FFFA

STORE NOP NOP NOP

powoduje zatadowanie do rejestru danych liczby 4, do akumulatora liczby 5, przemnozenie
zawartosci akumulatora przez zawarto$¢ rejestru danych i zapisanie wyniku (liczby 20) do
komorki pamigei o adresie FFFA.

Program dla procesora jest wpisywany do pamigci wprost z urzadzenia wejscia/wyjscia
(poprzez tzw. szyng DMA). W tym czasie procesor nie pracuje. Nastepnie urzadzenie wej-
Scia/wyjScia wysyla sygnat do procesora, ktéry zeruje zawarto§¢ wszystkich swoich reje-
strOw 1 opréznia bufor rozkazéw, a nastgpnie rozpoczyna wykonywanie cyklu rozkazowego.
Procesor przekazuje sterowanie na powr6t do urzadzenia wejscia/wyjscia po wykonaniu roz-
kazu HALT lub w razie préby dzielenia przez zero. Pracg procesora moze réwniez przerwac
urzadzenie wejscia/wyjscia. Po uruchomieniu licznik rozkazéw ma warto$¢ 0000, zatem
procesor rozpoczyna dziatanie od wykonania rozkazéw znajdujacych si¢ w zerowym sto-
wie pamigci. Algorytm pracy procesora jest opisany w tablicy 3, w ktérej A++ oznacza
zwigkszenie zawartoSci rejestru A o jeden.

Stowa w operacjach arytmetycznych reprezentuja liczby catkowite ze znakiem z prze-
dziatu =25 = (215 — 1) w zapisie uzupetieniowym do dwdéch, tj. zmiana znaku liczby
polega na zanegowaniu wszystkich bitow liczby i dodaniu jedynki. Stowa od 0000 do 7TFFF
reprezentujg liczby nieujemne 0 do 32767, stowa 8000 do FFFF za$ liczby —32768 do —1.

2 ASEMBLER 5

rozkaz symb. opis uwagi

zapisz stowo znajdujace si¢ w
komérce pamigci o adresie

A CONST MEM[PC++] — ACC wskazywanym przez biezaca
zawarto$¢ licznika rozkazéw do
akumulatora

B ADD ACC + DR —s ACC dodaj do akumulatora zawartos$¢
rejestru danych

C SUB ACC — DR — ACC odejmij od akumulatora zawarto$§¢
rejestru danych

D MUL ACC x DR — ACC pomnéz zawarto$¢ akumulatora
przez zawarto$¢ rejestru danych

E DIV ACC / DR — ACC podziel zawarto§¢ akumulatora
przez zawarto$¢ rejestru danych

F HALT Zatrzymaj przekaz sterowanie do urzadzenia

we/wy

Tablica 2: Zestaw rozkazéw procesora Sextium II (dokoriczenie)

2 Asembler

Zapisywanie programu wprost w kodzie maszynowym jest ktopotliwe. Asembler, inaczej
Jjezyk adresow symbolicznych, pozwala na symboliczne zapisywanie rozkazéw i adreséw
uwalniajac programiste od zmudnego i mechanicznego kodowania programu. Jest to przy
tym jezyk niskiego poziomu, w ktérym programista ma peing kontrole nad postacia kodu
wynikowego. Zwykle jedna instrukcja asemblera jest przektadana na jeden rozkaz maszyny.
Program w asemblerze jest doktadnym opisem kodu maszynowego, w ktérym rozkazy sa
reprezentowane przez ich nazwy mnemoniczne a adresy przez identyfikatory. Program ttu-
maczacy (réwniez zwany asemblerem) sktada (ang. assemble) kod maszynowy wedtug tego
opisu, wstawiajac kody rozkazéw w miejsce ich nazw mnemonicznych, a wyliczone adresy
w miejsce identyfikatoréw. W jezykach wysokiego poziomu, takich jak np. SML, progamista
postuguje si¢ zwykle pojeciem maszyny abstrakcyjnej, ktorej budowa jest nieraz bardzo od-
legta od architektury rzeczywistego procesora, na ktérym jest wykonywany skompilowany
program (np. w SML-u dotaczenie glowy do listy jest traktowane jako pojedyncza operacja,
tymczasem przeklada si¢ ono na ciag wielu rozkazéw procesora). Natomiast programujac
w asemblerze programista nadal mysli w kategoriach rzeczywistego procesora. Poniewaz
asembler jest $ciSle zwigzany z architektura danego procesora, w odréznieniu od jezykow
wysokiego poziomu, asembler jest zalezny od maszyny. Dlatego nie istnieje jeden jezyk

2 ASEMBLER 6

wyzeruj rejestry ACC, PC, AR i DR i opr6znij bufor rozkazéw
loop
if bufor rozkazéw jest pusty then
pobierz stowo z pamigci o adresie zawartym w PC
PC++
end if
R < odkoduj nastgpny rozkaz
if R = LOAD, STORE, READ, WRITE, SWAPA, SWAPD, ADD, SUB, MUL, DIV
then
wykonaj t¢ operacj¢ zgodnie z opisem w tablicach 11 2
else if R = CONST then
zataduj stowo z pamigci o adresie zawartym w PC do ACC
PC++
else if R = JUMP then
zapisz do PC zawartos¢ ACC
opréznij bufor rozkazéw
else if (R = BRANCHZ i ACC = 0) lub (R = BRANCHP i ACC > 0) then
zapisz do PC zawartos¢ AR
opréznij bufor rozkazéw
else if R = HALT then
zatrzymaj prace
end if
end loop

Tablica 3: Cykl rozkazowy procesora Sextium II

zwany asemblerem, sa tylko asemblery konkretnych procesoréw. Aby jezyk programowa-
nia byt niezalezny od procesora, jego maszyna abstrakcyjna musi by¢ idealizacja, czgscia
wspOlng wszystkich procesoréw, na ktére programy w tym jezyku maja by¢ kompilowane.
Przyktadem takiego jezyka jest C, zwany niekiedy asemblerem strukturalnym. Nalezy on juz
jednak do kolejnego pigtra w hierarchii ,,poziomu” jezykéw programowania.

2.1 Asembler procesora Sextium II

Jednostkami leksykalnymi asemblera procesora Sextium II sa literaty catkowitoliczbowe,
tj. niepuste ciagi cyfr dziesi¢tnych, poprzedzone opcjonalnie znakiem minus, np. 73, literaty
szesnastkowe, tj. ciagi doktadnie czterech cyfr szesnastkowych poprzedzone znakami Ox lub
0X, np. 0xFAFA, stowa kluczowe:

ADD BRANCHP BRANCHZ CONST DATA DIV HALT JUMP LOAD MUL
READ STORE SUB SWAPA SWAPD WRITE

identyfikatory, tj. ciagi liter i cyfr zaczynajace si¢ litera i r6zne od stéw kluczowych oraz
symbol pomocniczy ,,:”. Identyfikatory sa uzywane jako etykiety. Wielkie i male litery sa

2 ASEMBLER 7

rozr6zniane w identyfikatorach i stowach kluczowych, natomiast cyfry szesnastkowe A—
F mozna pisaé¢ zaréwno wielka, jak i mala litera. Znakiem poczatku komentarza jest #.
Komentarz rozciaga si¢ do korica wiersza w ktérym wystepuje (do znaku nowego wiersza).

Program w asemblerze jest ciagiem instrukcji asemblera, po co najwyzej jednej w wier-
szu. Instrukcja moze si¢ sktadaé z pojedynczego stowa kluczowego

ADD BRANCHP BRANCHZ DATA DIV HALT JUMP LOAD MUL READ
STORE SUB SWAPA SWAPD WRITE

lub moze by¢ postaci
CONST parametr

gdzie parametr to albo literat dziesigtny lub szesnastkowy, albo identyfikator (etykieta).
Kazda instrukcja moze by¢ opcjonalnie poprzedzona napisem postaci

etykieta :

Zauwazmy ze rozkaz procesora NOP nie jest instrukcja asemblera, natomiast instrukcja
DATA nie ma odpowiednika wsrdd rozkazéw procesora. Identyfikatory (etykiety) sa sym-
bolicznymi reprezentacjami adresow pamigci. Kazda etykieta powinna pojawié si¢ doktadnie
raz w programie przed dwukropkiem i moze pojawiac si¢ wielokrotnie w instrukcji CONST.
Zadaniem asemblera jest przettumaczenie symbolicznych nazw instrukcji na odpowiadajace
im rozkazy, spakowanie rozkazéw po cztery w 16-bitowe stowa (wypelniajac puste miej-
sca rozkazami NOP), wyznaczenie faktycznych adreséw instrukcji opatrzonych etykietami
i wygenerowanie kodu binarnego. Asembler generuje rozkazy w takiej kolejnosci, w ja-
kiej odpowiednie instrukcje znajduja si¢ w tekscie programu. Instrukcja CONST powoduje
wygenerowanie rozkazu tadujacego stala opisana podanym literatem lub etykieta do akumu-
latora. Instrukcja DATA powoduje zarezerwowanie stowa w pamigci w miejscu, w ktérym
wystepuje (dlatego zwykle umieszcza si¢ ja na konicu programu). Do tego stowa w pamigci
wpisywana jest liczba 0x0000 (tj. pamigé dla zmiennych jest inicjowana podczas uruchamia-
nia programu). Do adresu tego stowa mozna si¢ odwotywac poprzez etykiete tej instrukcji
(zatem uzycie rozkazu DATA bez etykiety ma niewiele sensu). Program ttumaczacy pro-
gram w asemblerze na kod wynikowy jest dwuprzebiegowy: w pierwszym przebiegu tworzy
si¢ kod wynikowy ,,na probg”, nie wstawiajac do niego stalych opisanych przez etykiety (nie
sa one bowiem jeszcze znane). W tym przebiegu ustala si¢ ich wartoSci. W drugim przebiegu
generuje si¢ ostatecznie kod wynikowy, poniewaz wartoSci etykiet sg juz ustalone. Tablica 6
zawiera program w asemblerze obliczajacy najwigkszy wsp6lny podzielnik dwéch liczb we-
dlug algorytmu z tablicy 4, tablica 7 jego ttumaczenie na kod wynikowy, a tablica 5 plik z
kodem wynikowym w postaci szesnastkowe;.

2 ASEMBLER 8

wczytaj x
wczytaj y
while y #~ 0 do
z<<xmody
X <y
Yy« z
end while
WYpISZ X

Tablica 4: Algorytm Euklidesa obliczania najwigkszego wsp6lnego podzielnika

A532 001C A532 001D 9516 001D A568 0019
6A51 001C EDGA 001C 51C6 A562 001E A516
001D A562 001C A516 001E A562 001D A700
0004 001C F000 0000 0000 0000

Tablica 5: Plik gcd.hex zawierajacy program dla procesora Sextium II w postaci szesnast-
kowej obliczajacy najwigkszy wspdlny podzielnik dwdch liczb (opis w tablicy 7)

2 ASEMBLER

Program gcd.asm
Wezytuje dwie liczby i wypisuje
ich najwiekszy wspolny dzielnik
#
CONST x # czytaj x
SWAPA
READ
STORE
CONST y # czytaj y
SWAPA
READ
STORE
dalej: CONST y # czy y=07
SWAPA
LOAD
SWAPD
CONST koniec
SWAPA
SWAPD
BRANCHZ
SWAPD # z=x/y
CONST x
SWAPA
LOAD
DIV
MUL # z=2*y
SWAPD # 2=X-2
CONST x
SWAPA
LOAD
SUB

SWAPD
CONST z
SWAPA
SWAPD
STORE
CONST y # x=y
SWAPA
LOAD
SWAPD
CONST x
SWAPA
SWAPD
STORE
CONST z # y=z2
SWAPA
LOAD
SWAPD
CONST y
SWAPA
SWAPD
STORE
CONST dalej
JUMP

koniec: CONST x # pisz x

SWAPA

LOAD

WRITE

HALT
x: DATA # zmienne
y: DATA
z: DATA

Tablica 6: Program w asemblerze obliczajacy najwigkszy wspdlny podzielnik dwéch liczb

2 ASEMBLER

10

adres zawartoS¢ stowa

0000 A532
0001 001C
0002 A532
0003 001D
dalej = 0004 9516
0005 001D
0006 A568
0007 0019
0008 6A51
0009 001C
000A ED6A
000B 001C
000C 51C6
000D A562
000E 001E
000F A516
0010 001D
0011 A562
0012 001C
0013 A516
0014 001E
0015 A562
0016 001D
0017 A700
0018 0004
koniec = 0019 A514
001A 001C
001B F000

x = 001C 0000
y = 001D 0000
z = 001E 0000

opis zawartoS$ci stowa

CONST SWAPA READ STORE
adres reprezentowany przez zmienna X
CONST SWAPA READ STORE
adres reprezentowany przez zmienng y
CONST SWAPA LOAD SWAPD
adres reprezentowany przez zmienng y
CONST SWAPA SWAPD BRANCHZ
adres reprezentowany przez zmienng koniec
SWAPD CONST SWAPA LOAD
adres reprezentowany przez zmienng x
DIV MUL SWAPD CONST

adres reprezentowany przez zmienng x
SWAPA LOAD SUB SWAPD
CONST SWAPA SWAPD STORE
adres reprezentowany przez zmienng z
CONST SWAPA LOAD SWAPD
adres reprezentowany przez zmienng y
CONST SWAPA SWAPD STORE
adres reprezentowany przez zmienng x
CONST SWAPA LOAD SWAPD
adres reprezentowany przez zmienng z
CONST SWAPA SWAPD STORE
adres reprezentowany przez zmienng y
CONST JUMP NOP NOP

adres reprezentowany przez zmienng dalej
CONST SWAPA LOAD WRITE
adres reprezentowany przez zmienng x
HALT NOP NOP NOP

miejsce przechowywania zmiennej x
miejsce przechowywania zmiennej y
miejsce przechowywania zmiennej z

Tablica 7: Thumaczenie programu w asemblerze z tablicy 6 na kod procesora Sextium II

