
Laboratorium: projekt nr 4 26 stycznia 2006

Algorytmy i Struktury Danych
zbiory dynamiczne

Instytut Informatyki Uniwersytetu Wrocławskiego Paweł Rzechonek

1 Kopce złączalne

Zadanie:

Zaimplementuj złączalne kolejki priorytetowe na dwa sposoby:

• kopce dwumianowe (ang. binomial heaps) ;

• kopce lewicowe (ang. leftist heaps) .

W kopcach tych mają być przechowywane liczby całkowite.

Następnie napisz programy testujące Twoje struktury danych. Program testujący powinien
interpretować i realizować następujące rozkazy (jeden rozkaz w jednej linii):

• Sprawdzenie liczby elementów w kolejce (przykładowo w kolejce A):
size A
W odpowiedzi program wypisuje liczbę wszystkich elementów w kolejce.

• Wstawienie elementu do kolejki (przykładowo 127 do kolejki B):
insert B 127
W odpowiedzi program wypisuje wartość elementu wstawionego do kolejki.

• Sprawdzenie jaka jest maksymalna wartość w kolejce (przykładowo w kolejce D):
max D
W odpowiedzi program wypisuje wartość elementu maksymalnego w kolejce.

• Usunięcie z kolejki elementu maksymalnego (przykładowo z kolejki E):
extract E
W odpowiedzi program wypisuje wartość elementu maksymalnego usuniętego z ko-
lejki.

• Usunięcie wszystkich elementów z kolejki (przykładowo F ← ∅, kolejka F jest opróż-
niana):
clear F
Procedura ma być zaimplementowana w taki sposób, że powtarzana jest funkcja
extract aż do opróżnienia kolejki. W odpowiedzi program wypisuje w kolejności nie-
rosnącej wartości wszystkich elementów z opróżnianej kolejki (elementy wypisywane
są w jednej linii i pooddzielane pojedynczymi spacjami).

1



• Skopiowanie kolejki (przykładowo R ← S, stara zawartość kolejki R jest usuwana,
a następnie zawartość kolejki S jest prznoszona do kolejki R):
copy R S
W odpowiedzi program wypisuje liczbę wszystkich elementów w nowej kolejce.

• Przyłączenie kolejki (przykładowo T← T∪S oraz S← ∅, do starej zawartości kolejki T
jest dopisywana zawartość kolejki U, a kolejka U zostaje opróżniona):
meld T U
W odpowiedzi program wypisuje liczbę wszystkich elementów w nowej kolejce.

• Wyjście z programu:
exit Program nie wypisuje żadnej odpowiedzi.

Każda odpowiedź programu ma być wypisana w oddzielnej linii.

Zadanie polega na zaaplikowaniu do obu złączalnych kolejek priorytetowych takich samych
danych (sprawdź czy wyniki się zgadzają), dokonania pomiaru czasów działania tych struk-
tur danych i rozstrzygnięciu, która z nich jest szybsza.

Uwaga:

Powinieneś mieć dwa osobne programy i uruchamiać je oddzielnie. Początkowo w każdym
programie ma być utworzonych 26 pustych kolejek priorytetowych oznaczonych kolejnymi
literami alfabetu od A do Z.

Dane:

W pierwszym wierszu z danymi jest podana liczba n (1 ≤ n ≤ 1000000) oznaczająca liczbę
instrukcji wykonywanych na początkowo pustych kolejkach priorytetowych, a w kolejnych
n wierszach zapisane są rozkazy zgodnie ze składnią opisaną wcześniej.

Wyniki:

W wyniku należy wypisać w n wierszach wszystkie n odpowiedzi generowane przez program
testujący (każda odpowiedź w osobnym wierszu).

Sprawozdanie:

W sprawozdaniu należy zamieścić opis struktury danych wraz z opisem wykonywanych na
tej strukturze operacji. Napisz, jakie czasy otrzymałeś/otrzymałaś testując swoje kolejki
priorytetowe na dużych danych.

2 Zbiory rozłączne

Zadanie:

Zaimplementuj struktury do pamiętania zbiorów rozłącznych (ang. disjoint sets) na dwa
sposoby:

• reprezentacja listowa z łączeniem według rozmiarów;

• reprezentacja drzewiasta z łączeniem według rozmiarów i kompresją ścieżek.

W strukturach tych mają być przechowywane liczby całkowite.

Następnie napisz programy testujące Twoje struktury danych. Program testujący powinien
interpretować i realizować następujące rozkazy (jeden rozkaz w jednej linii):

2



• Sprawdzenie ile jest zbiorów:
sets
W odpowiedzi program wypisuje liczbę wszystkich zbiorów.

• Sprawdzenie ile jest elementów w zbiorze (przykładowo w zbiorze, do którego na-
leży 31):
size 31
W odpowiedzi program wypisuje liczbę elementów znalezionego zbioru.

• Sprawdzenie, do którego zbioru należy element (przykładowo 63):
find 63
W odpowiedzi program wypisuje wartość elementu, który jest reprezentantem zbioru.

• Połączenie zbiorów (przykładowo zbiorów, do których należą 127 i 255):
union 255 127
W odpowiedzi program wypisuje wartość elementu, który jest reprezentantem no-
wopowstałego zbioru. Jeśli łączone zbiory mają taki sam rozmiar, to reprezentanta
o większej wartości podczepiamy do reprezentanta o mniejszej wartości.

• Wyjście z programu:
exit Program nie wypisuje żadnej odpowiedzi.

Każda odpowiedź programu ma być wypisana w oddzielnej linii.

Zadanie polega na zaaplikowaniu do obu reprezentacji zbiorów rozłącznych takich samych
danych (sprawdź czy wyniki się zgadzają), dokonania pomiaru czasów działania tych struk-
tur danych i rozstrzygnięciu, która z nich jest szybsza.

Uwaga:

Powinieneś mieć dwa osobne programy i uruchamiać je oddzielnie.

Dane:

W pierwszym wierszu z danymi jest podana liczba k (1 ≤ k ≤ 1000000) oznaczająca
początkową liczbę elementów i zbiorów (elementy są kolejnymi liczbami całkowitymi z za-
kresu 0, . . . , k− 1), w drugim wierszu jest podana liczba n (1 ≤ n ≤ 1000000) oznaczająca
liczbę instrukcji wykonywanych na początkowo jednoelementowych zbiorach, a w kolejnych
n wierszach zapisane są rozkazy zgodnie ze składnią opisaną wcześniej.

Wyniki:

W wyniku należy wypisać w n wierszach wszystkie n odpowiedzi generowane przez program
testujący (każda odpowiedź w osobnym wierszu).

Sprawozdanie:

W sprawozdaniu należy zamieścić opis struktury danych wraz z opisem wykonywanych na
tej strukturze operacji. Napisz, jakie czasy otrzymałeś/otrzymałaś testując swoje struktury
dla zbiorów rozłącznych na dużych danych.

3



3 Drzewa SPLAY i drzewa R–B

Zadanie:

Zaimplementuj zrównoważone drzewa BST (ang. ballanced BST ) na dwa sposoby:

• drzewa rozchylane SPLAY;

• drzwa czerwono–czarne R–B.

W drzewach tych mają być przechowywane liczby całkowite.

Następnie napisz programy testujące Twoje struktury danych. Program testujący powinien
interpretować i realizować następujące rozkazy (jeden rozkaz w jednej linii):

• Sprawdzenie liczby elementów w drzewie:
size
W odpowiedzi program wypisuje liczbę wszystkich elementów w drzewie.

• Sprawdzenie czy element jest w drzewie (przykładowo 17):
search 17
W odpowiedzi program wypisuje wartość 1, gdy element został znaleziony, lub 0 gdy
nie było go w drzewie.

• Wstawienie elementu do drzewa (przykładowo 33):
insert 33
W odpowiedzi program wypisuje wartość 1, gdy element został wstawiony, lub 0 gdy
elementu nie wstawiono (w drzewie już był taki element).

• Usunięcie elementu z drzewa (przykładowo 65):
delete 65
W odpowiedzi program wypisuje wartość 1, gdy element został usunięty, lub 0 gdy
elementu nie usunięto (w drzewie takiego elementu nie było).

• Wypisanie wszystkich elementów zapamiętanych w drzewie w porządku inorder :
print
W odpowiedzi program wypisuje w kolejności niemalejącej wartości wszystkich ele-
mentów zapamiętanych w drzewie BST (elementy wypisywane są w jednej linii i po-
oddzielane pojedynczymi spacjami).

• Wyjście z programu:
exit Program nie wypisuje żadnej odpowiedzi.

Każda odpowiedź programu ma być wypisana w oddzielnej linii.

Zadanie polega na zaaplikowaniu do obu drzew BST takich samych danych (sprawdź czy
wyniki się zgadzają), dokonania pomiaru czasów działania tych struktur danych i rozstrzy-
gnięciu, która z nich jest szybsza.

Uwaga:

Powinieneś mieć dwa osobne programy i uruchamiać je oddzielnie. Początkowo drzewo ma
być puste.

Dane:

W pierwszym wierszu z danymi jest podana liczba n (1 ≤ n ≤ 1000000) oznaczająca liczbę
instrukcji wykonywanych na początkowo pustym drzewie BST, a w kolejnych n wierszach
zapisane są rozkazy zgodnie ze składnią opisaną wcześniej.

4



Wyniki:

W wyniku należy wypisać w n wierszach wszystkie n odpowiedzi generowane przez program
testujący (każda odpowiedź w osobnym wierszu).

Sprawozdanie:

W sprawozdaniu należy zamieścić opis struktury danych wraz z opisem wykonywanych na
tej strukturze operacji. Napisz, jakie czasy otrzymałeś/otrzymałaś testując swoje drzewa
BST na dużych danych.

5


