
Ćwiczenia: lista zadań nr 14 10 stycznia 2006

Algorytmy i Struktury Danych
drzewa BST

Instytut Informatyki Uniwersytetu Wrocławskiego Paweł Rzechonek

1. [∗] Znajdź wszystkie drzewa binarne, których węzły tworzą ten sam ciąg, gdy wypisze się
je w porządkach:

(a) preorder i inorder ;

(b) preorder i postorder ;

(c) inorder i postorder ;

Uwaga: Zakładamy, że żadne dwie wartości w takich drzewach nie powtarzają się.

2. [∗∗] Węzły pewnego drzewa binarnego zostały wypisane w porządku inorder i postorder.
Pokaż, jak można odtworzyć strukturę drzewa, mając takie dwa ciągi danych.
Uwaga: Zakładamy, że żadne dwie wartości w tym drzewie nie powtarzają się.

3. [∗∗∗] Niech dane będzie drzewo binarne o n węzłach. W porządku preorder węzły te tworzą
ciąg u1, u2, . . . , un, a w porządku inorder ciąg uσ1 , uσ2 , . . . , uσn . Pokaż, jak za pomocą stosu
można zrealizować permutację σ (przekształcić ciąg 1, 2, . . . , n w ciąg σ1, σ2, . . . , σn)?

4. [∗] Pokaż, jak za pomocą kolejki można wypisać zawartość drzewa binarnego poziomami
(korzeń znajduje się na poziomie 0, jego synowie na poziomie 1, wnukowie korzenia na
poziomie 2, itd).

5. [∗∗] Węzły drzewa binarnego można utożsamiać z ciągami zer i jedynek w następujący
sposób:

• korzeniowi (jeśli istnieje) odpowiada ciąg 1 ;

• korzeniom lewego i prawego poddrzewa węzła, któremu odpowiada ciąg α, odpowia-
dają odpowiednio ciągi α0 i α1.

Pokaż, jak za pomocą tej notacji można wygodnie zdefiniować porządki preorder, inorder
i postorder.

6. [∗] Pokaż, że w drzewie BST o n węzłach jest zapamiętanych n + 1 wskaźników pustych.

1



7. [∗∗] Dodajmy do węzła w drzewie BST jeszcze jedno pole next, które będzie kolejnym
wskaźnikiem na węzeł. Pole to będziemy chcieli wykorzystać, aby w którymś momencie
istnienia drzewa przeszyć go listą jednokierunkową (od elementu najmniejszego do najwięk-
szego). Przedstaw algorytm, który zadane drzwo BST o n węzłach przeszyje listą. Twój
algowytm powinien działać w miejscu (nie wolno korzystać z rekurencji) i w liniowym
czasie O(n).

8. [∗] Jak przeprojektować drzewo BST, aby można było łatwo znajdować k-ty co do wiel-
kości element w drzewie? Napisz funkcję index(int k), która będzie realizowała to zadanie
w sposób rekurencyjny. Jak zmienią się wtedy metody modyfikujące drzewo BST: insert()
i delete()?

9. [∗∗] Przedstaw algorytm, który podzieli drzewo BST na dwa odrębne drzewa BST wzglę-
dem zadanej wartości klucza x. W jednym z wynikowych drzew mają się znaleźć wszystkie
węzły pierwotnego BST z kluczami ≤ x, a w drugim z kluczami > x.

10. [∗] Napisz procedury, które znajdują element poprzedni i następny co do wielkości wzglę-
dem zadanej wartości klucza x w drzewie BST.

11. [∗∗∗] Budujemy n-elementowe drzewo BST wstawiając do niego w losowej kolejności po-
czątkowe liczby naturalne {1, 2, . . . , n}. Zakładamy, że każdy ciąg wstawień (permutacja
1, 2, . . . , n) jest jednakowo prawdopodobny, oraz że n = 2k − 1. Jakie jest prawdopodo-
bieństwo, że zbudowane drzewo będzie drzewem pełnym?

12. [∗∗∗] Ile jest różnych drzew BST z n węzłami (chodzi o kształt drzewa) o wysokości n−1?
Ile jest różnych sposobów (chodzi o liczbę permutacji) takiego wstawiania n różnych kluczy
do początkowo pustego drzewa BST, które kończą się utworzeniem drzewa o wysokości n−
1?

13. [∗∗] Opisz drzewo BST zawierające n węzłów, dla którego średnia głębokość węzła wynosi
Θ(log n), ale wysokość drzewa jest ω(log n). Jak bardzo wysokie może być takie drzewo
BST?

2


